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Abstract

In a seminal paper of identity based encryption (IBE), Boneh and Franklin [BF01] mentioned an
interesting transform from an IBE scheme to a signature scheme, which was observed by Moni Naor.
In this paper, we give formal security treatments for this transform and discover several implications
and separations among security notions of IBE and transformed signature. For example, we show
for such a successful transform, one-wayness of IBE is an essential condition. Additionally, we give a
sufficient and necessary condition for converting a semantically secure IBE scheme into an existentially
unforgeable signature scheme. Our results help establish strategies on design and automatic security
proof of signature schemes from (possibly weak) IBE schemes. We also show some separation results
which strongly support that one-wayness, rather than semantic security, of IBE captures an essential
condition to achieve secure signature.
keywords: identity based encryption, digital signature, security notions

1 Introduction

Identity-based encryption (IBE) [Sh84, BF01] is a public key encryption scheme where a user’s public
key can be any bit string, such as an email address. Although IBE was originally advocated by Shamir
[Sh84] to simplify public key and certificate management, it has now been shown a powerful tool in
constructing various cryptographic applications: key-insulated encryption [DKXY02, BP02], forward
secure encryption [An97, CHK03] and public key encryption with keyword search [BDOP04], etc. In this
paper, we investigate an interesting application of IBE, whose observation was attributed to Naor, saying
that “an IBE scheme can immediately be converted into a public key signature scheme” [BF01].

Let us briefly recall Naor’s observation. In IBE, a private key generator (PKG) uses his master key
msk to issue a decryption key d which corresponds to an arbitrary bit string “ID”. Here, msk can also
be seen as a signing key of the PKG, and by letting ID = M , d becomes the PKG’s signature for M
where M is a message to be signed. The signature verification can be done by checking if d functions
properly as a correct IBE decryption key for identity “M” by encrypting a random plaintext and checking
if the ciphertext is decrypted to the original plaintext. We hereafter call such a transformation, the Naor
Transform (NT), and NT (Π) denotes a signature scheme derived from an IBE scheme Π via NT (Refer
Sec. 3 for a full description).

∗An extended abstract of this paper appeared in ProvSec 2007 [CFH+07].
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We investigate implications and separations among the notions of IBE and signature in detail. Our
results provide generic security proofs for a wide range of Naor-transformed signatures. For example, we
show that secure signatures can be generally derived from considerably weak IBE schemes.

1.1 IBE and Naor-Transformed Signatures

IBE. Boneh and Franklin [BF01] defined the security model and proposed the first full-fledged IBE,
using bilinear maps and assuming random oracles. Independently, Cocks [Co01] also presented an IBE
scheme based on the decisional quadratic residue assumption. Horwitz and Lynn [HL02] and Gentry and
Silverberg [GS02] generalized the model of IBE with a hierarchical structure, and proposed hierarchical
IBE (HIBE) schemes. Canetti, Halevi, and Katz [CHK04] proposed an IBE whose security can be proven
without random oracles but in a weaker security notion, called the selective-ID (sID) model, where an
adversary has to declare its target before the setup phase. Boneh and Boyen [BB04a] proposed two
more practical IBE schemes in the sID model and they further presented the first fully secure (adaptively
chosen ID secure) IBE system without random oracles [BB04b]. Waters [Wat05] subsequently simplified
the scheme from [BB04b], substantially improving its efficiency. Recently, Gentry [Ge06] presented a
more efficient fully secure IBE scheme with tight security reduction, relying on a stronger assumption.
All schemes in [BB04a, BB04b, Wat05] used a technique proposed by Canetti, Halevi and Katz [CHK04]
to have chosen ciphertext security [NY90, RS91].

Naor-Transformed Signatures. Boneh, Lynn, and Shacham applied NT to the Boneh-Franklin IBE
[BF01], resulting in a short signature [BLS01]. Gentry and Silverberg proposed a hierarchical identity-
based signature (HIBS) scheme from their HIBE scheme via NT [GS02]. Furthermore, Waters [Wat05]
presented the first (efficient) signature scheme whose security can be reduced to hardness of the computa-
tional Diffie-Hellman (CDH) problem. A subsequent paper [BSW06] strengthened the Waters signature
to have strong existential unforgeability.

Boneh and Franklin [BF01], and Waters [Wat05] remarked (in an informal way) the security of Naor-
transformed signatures: “If IBE is semantically secure against adaptive chosen identity and adaptive
chosen ciphertext attacks (IND-ID-CCA) [BF01], then the signature scheme is existentially unforgeable
against adaptive chosen message attacks (UF-CMA) [GMR88]”. Posed a deeper consideration, the state-
ment is true, yet with some subtle aspects that we later clarify. More importantly, since we are interested
in “generic” applications of NT, we further wonder whether this statement admits of a broader interpre-
tation. Namely, we would like to ask, for example, the following question: What are sufficient and/or
necessary conditions for underlying IBE to achieve UF-CMA signature? Previous rich body of research
on IBE seems not to have ready answers for such kind of “general questions”. In particular, it should be
noted that the security of signatures from [BLS01, GS02, Wat05, BSW06] was analyzed individually and
was very specific to their schemes.

1.2 Our Contributions

The main theoretical results are relations among security notions for IBE and signature, which are
depicted in Figure 1. Our results help understand both primitive better, especially on the nature of a
signature scheme with a randomized verification algorithm, which was rarely studied before. Throughout
this paper, we limit our scope within only basic NT with a single encrypt-then-decrypt verification for
some reasons (See Sec. 3). As an important remark, some of our separation results may not hold if
one considers other verification procedures. Especially, IND-ID-CPA implies UF-CMA if iterative encrypt-
then-decrypt verification is introduced.

Let “X →NT Y ” denote “a signature scheme NT (Π) always satisfies condition Y if an IBE scheme Π
satisfies condition X”, “X 6→NT Y ” denote “there exists Π such that NT (Π) may not satisfy Y even if Π
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Solid arrows denote implication and separation with respect to the NT with a single varication, where the symbol “NT ” is
omitted in the above figure for simplicity, and ATK ∈ {CPA, CCA}. Dotted arrows denote trivial implications or separations.
A, B, and C denote {Π|Π is IND-ID-CPA ∧ NT (Π) is UF-CMA}, {Π|Π is L-PTXT}, and {Π|Π is L-CTXT}, respectively.

Figure 1: Relations among Security notions for IBE and Signature.

satisfies X”, and OW-ID-CPA (resp. IND-ID-CPA) [BF01] denotes one-wayness (resp. semantic security)
against adaptive chosen identity and adaptive chosen plaintext attacks.

Implications. We show implications among notions for IBE and signature. We notice that most of
the time, even very weak IBE implies strong digital signature. These supports the belief that IBE is a
significantly stronger cryptographic primitive than signature.

1. ...................OW-ID-CPA .........→NT ..............UF-CMA................(Theorem.......4.1). This is, existentially unforgeable secure signatures [GMR88]
can be derived from considerably weak IBE schemes. An immediate corollary states that ..................IND-ID-CPA

..∧..............L-PTXT..........→NT ...............UF-CMA .................(Corollary.......4.1), where we say Π satisfies largeness of plaintext space (L-
PTXT, Definition 2.3) if 1/|M| is negligible (M and |M| are the message space of Π and the
cardinality of M, respectively).

2. .............L-CTXT.........→NT...............UF-CMA.................(Theorem.......4.2). Roughly speaking, we say Π satisfies condition, largeness of
ciphertext space (L-CTXT, Definition 2.4) if it is even hard to generate a “fake key” (without using
PKG’s master key) which maps a randomly chosen valid ciphertext ontoM. See Definition 2.4 for
details. It is not difficult to determine whether an IBE scheme satisfies L-CTXT or not.

3. ..If.....Π....is .......................GOAL-ID-ATK........and.............NT (Π) ....is ................UF-CMA, ........then....Π..............satisfies..............L-PTXT....∨..............L-CTXT.................(Theorem........4.3),
where GOAL ∈ {OW, IND} and ATK ∈ {CPA,CCA}. This implies L-PTXT ∨ L-CTXT is necessary
and sufficient condition to achieve UF-CMA from IND-ID-CPA. It should be also noted that Π is not
required to have a large message space if it satisfies L-CTXT. We give an example for such an IBE
scheme, namely,

4. .........There..........exists....Π.........such........that....Π.......and.............NT (Π)...........satisfy....................IND-ID-CPA....∧.................¬L-PTXT.......and................UF-CMA,....................respectively

...............(Theorem........4.4). On the other hand, ........there..........exists ....Π........such........that....Π.......and.............NT (Π) ...........satisfy....................IND-ID-CPA....∧

...............¬L-CTXT.......and................UF-CMA,....................respectively ................(Theorem.......4.5).

Separations. We also show separations among security notions, which as usual, are demonstrated by
counterexamples. However, these counterexamples are quite natural and non-trivial, which we believe
form good guidance in building practical signature schemes from IBE.

5. ...................IND-ID-CCA..........6→NT ...............UF-CMA ................(Theorem........5.1). This implies that NT (Π) is not always secure even if Π
satisfies the strongest security (i.e. IND-ID-CCA) for IBE. Actually, the separation is demonstrated
by constructing various IND-ID-CCA secure IBE schemes that satisfy ¬L-PTXT ∧ ¬L-CTXT. We
show examples via various examples: a variant of Boneh-Franklin IBE [BF01], secure with random
oracles, and a variant of Waters IBE [Wat05], secure without random oracles. It should be noticed
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that it is easy to achieve L-PTXT from IND-ID-CCA IBE by a simple modification: just enlarge
the input plaintext domain by encrypting in parallel. However, this modification is considered as
a method to acquire one-wayness from semantic security, and this fact supports our first result
“OW-ID-CPA →NT UF-CMA”, which establishes an essential relation between IBE and signatures.

6. ...................IND-ID-CCA....∧...............L-PTXT ....∧ ..............L-CTXT..........6→NT .................sUF-CMA .................(Theorem.......5.2). Interestingly, this shows even
the most secure IBE does not imply sUF-CMA secure Naor-transformed signature. This immedi-
ately implies that OW-ID-CPA 6→NT sUF-CMA. Here, roughly speaking, sUF-CMA [ADR02] means
inability of adversaries to forge any signature even for any message signed before.

Applications. The first application is, needless to say, to provide security proof for signature schemes
derived from IBE via NT. For example, by straightforwardly applying our results, we can automatically
prove security of Waters signature under the computational bilinear Diffie-Hellman (CBDH) assumption
(weaker than that claimed in [Wat05] via known automatic proof technique). However, we note that
our automatic security proof affords the price of a possibly stronger assumption than that in the specific
proof in [Wat05], i.e. the CDH assumption. Also, in the future, if a new IBE scheme is designed, a
signature scheme corresponding to this IBE scheme will automatically be constructed with its security
proof.

As another important application, we can relax requirements for a secure channel between a user
and PKG. In an IBE system, each user’s decryption key has to be securely transferred from PKG, and
therefore, a secure channel is needed. However, a user’s decryption key can be also considered as PKG’s
signature based on NT, and consequently, only a channel with confidentiality is required when PKG sends
a decryption key to each user. Authentication from the PKG’s side is not needed for this channel.

2 Definitions

Throughout this paper, we use the following notations. Define x
R
← X as x being generated randomly

and uniformly from a finite set X. If A is an algorithm, x←A means that the output of A is x. When
y is not a finite set nor an algorithm, x←y is an assignment operation. | · | is defined as the bit length
if “·” is an element of a finite set (respectively, the cardinality of the set if “·” is a finite set). Let “||”
denote string concatenation. When we say that ǫ(k) is negligible, it means that for any constant c there
exists k0 ∈ N, such that ǫ < (1/k)c for any k > k0.

First we review the definitions and desired security notions of both identity-based encryption and
digital signature. We also define some other related security notions with respect to sizes of a plaintext
and a ciphertext. Finally we review bilinear map and related assumptions.

2.1 Identity-Based Encryption

IBE. An identity-based encryption (IBE) scheme Π consists of four probabilistic polynomial time (PPT)
algorithms: Π = (Setup,Ext,Enc,Dec). The setup algorithm Setup takes as inputs 1k, and generates
public system parameter PK and master key msk, where k is a security parameter. The key extraction
algorithm Ext takes as inputs msk, ID ∈ {0, 1}∗ and PK, and returns the corresponding decryption key
SKID. The encryption algorithm Enc takes as inputs ID, M ∈ M, PK, and outputs ciphertext C ∈ C,
whereM and C are the plaintext and ciphertext spaces, respectively. The decryption algorithm Dec takes
as inputs SKID, C and PK, and outputs M or ⊥, where ⊥ is a distinguished symbol. We require that
for all (msk,PK)(= Setup(1k)), all ID, all SKID(= Ext(msk, ID,PK)), all M , and C(= Enc(ID,M,PK)),
Dec(SKID, C,PK) = M .
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One-wayness. Here, we define one-wayness for IBE, i.e. OW-ID-CPA [BF01]. Let Π = (Setup, Ext,
Enc, Dec) be an IBE scheme. Let A = (A1,A2) and k be an adversary and the security parameter,
respectively. s is some state information that A1 outputs, such as message domain and ID, etc. It will be
further passed to A2. We next use it in the same way if without explanation. Now consider the following
experiment:

Experiment Expow-id-cpa
A,Π (k) : [(PK,msk)← Setup(1k); (ID∗, s)← AOe

1 (PK);M
R
←M;

C∗ ← Enc(ID∗,M,PK);M ′ ← AOe

2 (s,C∗); return 1 if M ′ = M, or 0 otherwise],

where Oe is a key extraction oracle which for a given identity ID, returns SKID(= Ext(msk, ID,PK)). The

only restriction is that ID∗ is not allowed to submit to Oe. We define ǫowe,A = Pr[Expow-id-cpa
A,Π (k) = 1].

Definition 2.1 (OW-ID-CPA) We say Π is (t, qe, ǫ)-OW-ID-CPA secure if for any adversary A in time
bound t with at most qe queries to Oe, ǫowe,A ≤ ǫ. As shorthand, we say that Π is OW-ID-CPA secure if
ǫ is negligible.

Indistinguishability. Semantic security [GM84] for IBE, i.e. IND-ID-ATK [BF01] where ATK ∈
{CPA,CCA}, is defined as follows. Let Π = (Setup, Ext, Enc, Dec) be an IBE scheme. Let A = (A1,A2)
and k be an adversary and the security parameter, respectively. For atk ∈ {cpa, cca}, consider the
following experiment:

Experiment Expind-id-atk
A,Π (k) : [(PK,msk)← Setup(1k); (ID∗,M0,M1, s)← A

Oe,Od

1 (PK); b
R
← {0, 1};

C∗ ← Enc(ID∗,Mb,PK); b′ ← AOe,Od

2 (s,C∗); return 1 if b′ = b, or 0 otherwise],

where Oe and its restriction are the same as the above, Od is a decryption oracle which for given (ID, C),
returns M(or ⊥)(= Dec(SKID, C,PK)) if atk = cca, or a random bit string if atk = cpa. The only
restriction is that (ID∗, C∗) is not allowed to submit to Od. We define ǫind-atk,A = |Pr[Expind-id-atk

A,Π (k) =
1]− 1/2|.

Definition 2.2 (IND-ID-ATK) We say Π is (t, qe, qd, ǫ)-IND-ID-CCA (resp. (t, qe, ǫ)-IND-ID-CPA) secure,
if for any A in time bound t with at most qe queries to Oe and qd queries to Od, ǫind-cca,A ≤ ǫ (resp.
ǫind-cpa,A ≤ ǫ). As shorthand, we say that Π is IND-ID-CCA (resp. IND-ID-CPA) secure if ǫ is negligible.

The above security definitions have mainly considered adaptive chosen ID (ID) attack, however one can
easily adjust the definitions to selective ID (sID) attack [CHK04]. The only difference between the two
attack model is that for sID attack, the target identity ID∗ must be selected by A before the key generation
algorithm Setup is run.

Largeness of Plaintext and Ciphertext Spaces. Interestingly, security of Naor-transformed signa-
tures is significantly influenced by sizes of the plaintext and the ciphertext spaces of the underlying IBE.
Here, we define largeness of the plaintext space as follows.

Definition 2.3 (L-PTXT) We say an IBE scheme Π is γ-L-PTXT if 1/|M| ≤ γ. As shorthand, we say
that Π is L-PTXT if γ is negligible.

It is obvious that if an IBE scheme is IND-ID-CPA secure and L-PTXT, then it always satisfies OW-ID-
CPA.1

1One might think that IND-ID-CPA immediately implies OW-ID-CPA without any condition. However, this is not true
since if, for example, an IBE scheme Π is IND-ID-CPA and its plaintext length is only one-bit long, then by picking a random
plaintext (which is a bit) we can easily break one-wayness of Π with probability at least 1/2.
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Next, we define largeness of the ciphertext space. Here, it should be noticed that by adding harmless
random bits, ciphertext-length can be generally (and meaninglessly) extended for any IBE schemes. In our
definition, therefore, we introduce a new notion for a ciphertext which captures an essential requirement
to achieve UF-CMA security. Sufficiently large ciphertext-length is a necessary condition for satisfying this
notion, and consequently, an IBE scheme may not fulfill this notion if its ciphertext-length is not large
enough. Let Π = (Setup, Ext, Enc, Dec) be an IBE scheme. Without loss of generality, the information
of domain and range is implicitly embedded in the algorithms. Let A and k be an adversary and the
security parameter, respectively. Now, consider the following experiment:

Experiment Expl-ctxt
A,Π (k) : [(PK,msk)← Setup(1k); (ID∗,SK′

ID∗)← AOe(PK);M
R
←M;

C∗ ← Enc(ID∗,M,PK);M ′ ← Dec(SK′
ID∗, C∗,PK); return 1 if M ′ ∈M, or 0 otherwise],

where Oe and its restriction are the same as the above. We define ǫℓ-ctxt,A = Pr[Expl-ctxt
A,Π (k) = 1].

Definition 2.4 (L-CTXT) We say Π is (t, qe, ǫ)-L-CTXT if for any A in time bound t with at most qe

queries to Oe, ǫℓ-ctxt,A ≤ ǫ. As shorthand, we say that Π is L-CTXT if ǫ is negligible.

We note that the mapped plaintext M ′(= Dec(SK′
ID∗ , C∗,PK)) is not necessary to be the original M , and

therefore it is not difficult to find a “fake” key SK′
ID∗ which maps C∗ onto some element of M unless |C|

is significantly larger than |M|.
Here, we additionally explain how largeness of ciphertexts is captured by L-CTXT. It should be

noticed that since for any encryption scheme we can extend its ciphertext length by meaninglessly adding
harmless bits, naive evaluation based on ciphertext length cannot properly express essential largeness of
ciphertexts. Therefore, we focus on implicit redundancy of ciphertexts instead, where implicit redundancy
means redundancy that is essentially used for decryption. If a ciphertext has a sufficiently large amount
of such redundancy, then we can expect that for any ciphertext its decryption result becomes “⊥” unless
the correct decryption key is used. In fact, a necessary condition of L-CTXT is that a ciphertext is
significantly longer than a plaintext. We have to also honestly mention that L-CTXT seems stronger than
more intuitive notions for largeness of ciphertext.

2.2 Digital Signature

Signature. A signature scheme Σ consists of three PPT algorithms: Σ = (Gen,Sig,Ver). The key
generation algorithm Gen takes as inputs 1k, and generates signing key SigK and verification key VK.
The signing algorithm Sig takes as inputs SigK, m ∈ {0, 1}∗, and VK, and outputs (σ,m), where m is a
message to be signed. The verification algorithm Ver takes as inputs VK, σ′, and m′, and outputs accept
or reject. We require that for all (SigK,VK)(= Gen(1k)), all m, all (σ,m)(= Sig(SigK,m,VK)), we have
Ver(VK, σ,m) = accept.

Unforgeability. Here, we define unforgeability for signatures, i.e. UF-CMA [GMR88], and a stronger
notion, i.e. sUF-CMA [ADR02]. Let Σ = (Gen,Sig,Ver) be a signature scheme. Let A and k be an ad-
versary and the security parameter, respectively. For goal ∈ {uf, suf}, consider the following experiment:

Experiment Expgoal-cma
A,Σ (k) : [(SigK,VK)← Gen(1k); (σ∗,m∗)← AOs(PK); return Ver(VK, σ∗,m∗)],

where Os is a signing oracle which for a given message m, returns (σ,m). The only restriction is that m∗

is not allowed to submit to Os if goal = uf, or that (σ∗,m∗) is not allowed to be one of responses from

Os if goal = suf. We define ǫgoal-cma,A = Pr[Expgoal-cma
A,Σ (k) = accept] for goal ∈ {uf, suf}.

Definition 2.5 ((s)UF-CMA) We say Σ is (t, qs, ǫ)-UF-CMA (resp. sUF-CMA) if for any A in time bound
t with at most qs queries to Os, ǫuf-cma,A ≤ ǫ (resp. ǫsuf-cma,A ≤ ǫ). As shorthand, we say that Σ is
UF-CMA (resp. sUF-CMA) secure if ǫ is negligible.
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Algorithm Gen(1k) Algorithm Sig(SigK,m,VK) Algorithm Ver(VK, σ,m)

(PK,msk)← Setup(1k); ID← m; ID← m; SK′
ID ← σ; M

R
←M;

SigK← msk; SKID ← Ext(SigK, ID,VK); C ← Enc(ID,M,VK);
VK← PK; σ ← SKID; M ′ ← Dec(SK′

ID, C,VK);
return (SigK,VK) return (σ,m) if M ′ = M , return accept;

else return reject

Table 1: Algorithms of NT (Π).

2.3 Bilinear Groups and Related Assumptions

Let G1, G2 be two multiplicative cyclic groups of prime order p and g be a generator of G1. A bilinear map
e : G1×G1 → G2 satisfies the following properties. For all (a, b) ∈ Z

2, e(ga, gb) = e(g, g)ab, and e(g, g) 6= 1.
We briefly review the computational bilinear Diffie-Hellman (CBDH) [BF01], the decisional bilinear Diffie-
Hellman (DBDH) [CHK03], and the gap bilinear Diffie-Hellman (GBDH) [OP01] assumptions.

Definition 2.6 (BDH assumptions) Let g be a generator of G1 and a, b, c, z
R
← Z

∗
p. The (t, ǫ)-CBDH

assumption holds in (G1, G2) if for given (g, ga, gb, gc), no t-time algorithm finds e(g, g)abc with prob-
ability at least ǫ. The (t, ǫ)-DBDH assumption holds in (G1, G2) if no t-time algorithm has with at
least ǫ advantage, where for an algorithm A, A’s advantage ǫA is defined as ǫA = 1

2 |Pr[A(g, ga, gb, gc,
e(g, g)abc) = 1]−Pr[A(g, ga, gb, gc, e(g, g)z) = 1]|. The (t, q, ǫ)-GBDH assumption holds in (G1, G2) if for
given (g, ga, gb, gc) and O, no t-time algorithm finds e(g, g)abc with probability at least ǫ, where O is a
decision oracle which for a given (g, gα, gβ , gγ , T ) ∈ G

4
1 ×G2, returns 1 if T = e(g, g)αβγ or 0 otherwise,

assuming that an algorithm is allowed to submit at most q queries to O.

3 Naor-Transform and Its Variants

In this section, we give a detailed description of NT, which is based on the explanation by Boneh and
Franklin [BF01] and Waters [Wat05]. We also discuss some variants of NT.

3.1 A Generic Conversion from IBE to Signature

Let Π = (Setup,Ext,Enc,Dec) be an IBE scheme. Then, a Naor-transformed signature scheme NT (Π) =
(Gen,Sig,Ver) consists of three algorithms, which are depicted in Table 1.

NT can be also extended to other types of IBE schemes. For example, applying NT to an (ℓ + 1)-
level HIBE scheme [HL02, GS02], one gains an ℓ-level HIBS scheme. Applying NT to an sID secure
IBE scheme [CHK04, BB04a], a signature scheme with “selective unforgeability” is then acquired, where
selective unforgeability [Sti05] is a weakened notion of UF-CMA, and in this notion an adversary has to
commit the target message m∗ for the forged signature before the setup phase. In the context of the
NT the target identity ID∗ in the IBE scheme Π corresponds to the target message m∗ in the signature
scheme NT (Π), and therefore, sID security of Π implies selective unforgeability of NT (Π).

3.2 Some Variants

In this paper, we regard the above transformation as Naor Transform (NT), since it is the most natural
and basic formalization of the intuitive explanation of [BF01] and [Wat05]. However, besides the above
basic construction of NT, there are some more variants with respect to signature verification mechanisms.
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Iterative Verification. In the above basic NT, the verification algorithm is randomized, and there is
possibility of verification error. To enhance security, it is possible to reduce error probability by running
the verification algorithm for multiple times. This method is equivalent to the standard message expansion
technique for encryption schemes with small message space. Namely, instead of iterative verification, we
can also extend the message space of the underlying IBE scheme by individually encrypting each block
of a message, and transform it to signature via the basic NT (with a single verification). Therefore, in
the rest of this paper we consider only NT with a single verification, and this makes essential conditions
for achieving UF-CMA clearer.

Non-Interactive Proof of Correctness of Decryption Key. Let L = {(m,σ,VK)|∃(R,SigK) s.t.
σ = Ext(SigK,m,VK;R)}, where R denotes internal coin-flipping of Ext. Since L is an NP -language, it
is also possible to prove validity of σ by adding non-interactive zero-knowledge (NIZK) proof [BFM88]
for (m,σ,VK) ∈ L. However, NIZK proof is generally expensive and/or requires additional assumptions,
e.g. common reference string, random oracle, etc., and therefore, we do not consider this approach.

Specific Verification Function. Suppose that there exists an efficiently computable function f such
that f(SK′

ID, ID,PK) = 1 if and only if SK′
ID is a decryption key for identity “ID”. Then, verification process

becomes much simpler, and some IBE schemes, e.g. Boneh-Franklin [BF01] and Cocks [Co01], have such
specific verification functions. In [BF01], one can test correctness of SK′

ID by only one pairing computation,
and its corresponding signature, i.e. Boneh-Lynn-Shacham signature [BLS01], is constructed by using
this method. In [Co01], a decryption key for ID is square root of (hashed) ID or −ID, and hence, this is
also easily checkable. By using this relation, (a variant of) Rabin signature can be obtained from [Co01].

4 Implication Results

Denote the IBE scheme Π and a corresponding signature NT (Π) as Π = (Setup,Ext,Enc,Dec) and
NT (Π) = (Gen,Sig,Ver). We present several theorems regarding implications among security definitions
regarding Π and NT (Π).

We first show an important and essential relation, which says a weak IBE with only one-wayness is
sufficient to imply a UF-CMA secure Naor-transformed signature.

Theorem 4.1 (OW-ID-CPA →NT UF-CMA) If an IBE scheme Π is (t + O(τ), q, ǫ)-OW-ID-CPA secure,
NT (Π) is (t, q, ǫ)-UF-CMA secure. Here τ is the upper bound of time for one decryption operation.

Proof of Theorem 4.1. We prove the theorem by contradiction. Namely, assuming that there exists
a UF-CMA forger A against NT (Π) with running time t, q signature queries, and succeeding probability
ǫA > ǫ, we construct a OW-ID-CPA adversary B against Π with running time t + O(τ), q key extraction
queries, and succeeding probability ǫB ≥ ǫA.

For a given public system parameter PK, B = (B1,B2) interacts A as follows:

Algorithm BOe

1 (PK)
VK← PK; (σ∗,m∗)← AS(VK);
ID∗ ← m∗;
s← (ID∗, σ∗,PK);
return (ID∗, s)

Algorithm BOe

2 (s,C∗)
(ID∗, σ∗,PK)← s;
SK′

ID∗ ← σ∗; M ′ ← Dec(SK′
ID∗, C∗,PK);

return M ′

When A asks a signing query on a message mi for 1 ≤ i ≤ q, B1 queries its own key extraction oracle
Oe on “identity” mi to get the corresponding decryption key, and delivers it to A as the signature σi for
mi. Note that σi is always valid signature on mi. S denotes the simulated signing oracle by B. Finally,
A outputs a pair (σ∗,m∗), where m∗ has not been asked as one of signature queries. B1 then sets m∗ as
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its target identity ID∗, and relays σ∗ to B2. B2 decrypts C∗ by using it. One point to note here is that
σ∗ is not necessary to be a correct decryption key for ID∗. Now, we estimate B’s succeeding probability
ǫB, that is,

ǫB = Pr[M ′ = M |(PK,msk)← Setup(1k); (ID∗, s)← BOe

1 (PK);

M
R
←M;C∗ ← Enc(ID∗,M,PK);M ′ ← BOe

2 (s,C∗)]

= Pr[M ′ = M |(PK,msk)← Setup(1k); (σ∗,m∗)← AS(PK);

M
R
←M;C∗ ← Enc(m∗,M,PK);M ′ ← Dec(σ∗, C∗,PK)]. (1)

On the other hand, since the simulation of signing oracle is perfect, we have that

ǫA = Pr[Ver(VK, σ∗,m∗) = accept|(PK,msk)← Setup(1k); (σ∗,m∗)← AS(PK)].

Now, recall that Ver(VK, σ∗,m∗) = accept if and only if (M ′ = M |M
R
←M;C ← Enc(m∗,M,PK);M ′ ←

Dec(σ∗, C,PK)). Then, we have

ǫA = Pr[M ′ = M |(PK,msk)← Setup(1k); (σ∗,m∗)← AS(PK);

M
R
←M;C ← Enc(m∗,M,PK);M ′ ← Dec(σ∗, C,PK)]. (2)

Since right-hand sides of Eqs. (1) and (2) are completely identical, we immediately have that ǫB = ǫA.
The running time of B is t + O(τ), and B asks exactly q key extraction queries, which are easily verified
from the description of B. �

One-wayness Is Essential. It should be noticed that Eq. (1) is strikingly identical to Eq. (2) by
accident, and this similarity functions significantly in the above proof. This implies that one-wayness
captures an essential condition to derive a secure Naor-transformed signature. Note that the above
strategy cannot help an IND-ID-CPA adversary B′. In the IND-ID-CPA setting, for a given ciphertext
C∗ B′ has to correctly guess Mb which is the corresponding plaintext of C∗. By introducing the above
strategy, B′ can recover Mb from C∗ by using A’s output. Therefore, one may (carelessly) conclude that
IND-ID-CPA →NT UF-CMA as well. However, this is not true. Namely, even if Mb is correctly recovered
with non-negligible probability, this does not imply that M1−b is incorrectly and accidentally recovered
with only negligible probability. Hence, the above reasoning for IND-ID-CPA→NT UF-CMA is invalidated.

Certainly, if the plaintext space is large, i.e., 1/|M| is negligible, indistinguishability always implies
one-wayness, which leads to an immediate corollary. Note that the condition that 1/|M| is negligible is
exactly what we defined as L-PTXT.

Corollary 4.1 (IND-ID-CPA ∧ L-PTXT →NT UF-CMA ) If an IBE scheme Π is (t+O(τ), q, ǫ−γ
2−2γ )-IND-

ID-CPA secure and γ-L-PTXT, then NT (Π) is (t, q, ǫ)-UF-CMA secure. Here, τ is the upper bound of time
for one decryption operation.

Up to now, the curious reader may wonder in order to build a secure signature NT (Π) from semantically
secure IBE Π that is not L-PTXT, whether one has to first enlarge the plaintext space, e.g., by adopting
interactive verifications. However, this is sometimes unnecessary. We show if Π meets L-CTXT, NT (Π)
is always UF-CMA secure, namely,

Theorem 4.2 (L-CTXT →NT UF-CMA) If an IBE scheme Π is (t, q, ǫ)-L-CTXT, then NT (Π) is (t, q, ǫ)-
UF-CMA secure.
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The proof to Theorem 4.2 is given in Appendix B. We then show the following theorem, which implies
L-CTXT is a “properly correct” condition for IBE schemes to derive secure signatures. More precisely,
L-CTXT ∨ L-PTXT is a necessary and sufficient condition for extracting UF-CMA secure signature from
IND-ID-CPA secure IBE.

Theorem 4.3 If an IBE scheme Π is GOAL-ID-ATK secure (GOAL∈{OW,IND}, ATK∈{CPA,CCA}) and
NT (Π) is UF-CMA secure, then Π always satisfies L-PTXT or L-CTXT.

Theorem 4.3 in fact overlaps some of the previous results, namely Theorem 4.1 and Corollary 4.1.
However, we adopt this complicated statement because we believe it explains precisely our entire under-
standing on relations among security definitions of IBE and corresponding signature schemes. We want
to demonstrate the following: Assuming Π is IND-ID-CPA secure but not OW-ID-CPA secure, to make
NT (Π) UF-CMA secure, Π should meet L-CTXT. Then combining the above claims with this new claim,
we immediately get the statement of Theorem 4.3. The details are given below.

Proof of Theorem 4.3. From Theorem 4.1, it is easy to see that Π being OW-ID-ATK secure implies
both NT (Π) is UF-CMA secure and Π meets L-PTXT. Then it suffices to prove that when NT (Π) is
UF-CMA and Π is IND-ID-ATK secure, Π should also meet L-PTXT or L-CTXT. On the other hand, from
Corollary 4.1, if Π is IND-ID-ATK secure and Π meets L-PTXT, NT (Π) is UF-CMA secure. It remains to
show that if Π is IND-ID-CPA secure (CCA implies CPA) but Π is not L-PTXT, Π must meet L-CTXT.
Regarding the last point, we present the following lemma:

Lemma 4.1 Suppose NT (Π) is (t, q, ǫs)-UF-CMA secure and Π is not γ-L-PTXT (i.e. 1/|M| > γ). If Π
is (t + O(τ), q, γǫ−ǫs

2−2γ )-IND-ID-CPA secure, it is also (t, q, ǫ)-L-CTXT. Here, τ is the upper bound of time
for one decryption operation.

The proof to Lemma 4.1 is given in Appendix C. In Lemma 4.1, we have that γǫ−ǫs

2−2γ is non-negligible if
ǫ and γ are non-negligible and ǫs is negligible, which proves Theorem 4.3. �

We have demonstrated that L-CTXT, together with L-PTXT, is necessary and sufficient to derive
secure signature from semantically secure IBE via NT. The following theorem shows L-CTXT is actually
a natural and sufficiently weak notion. Many weak IBE schemes in fact meet L-CTXT.

Theorem 4.4 There exists an IBE scheme Π such that Π and NT (Π) satisfy IND-ID-CPA ∧ ¬L-PTXT
and UF-CMA, respectively.

The proof of the above theorem is given in Appendix D. Basically, we present an example that is a simple
modification of (chosen-plaintext secure version of) Waters IBE scheme. Another example can be found
in Sec. 5.1. A similar modification as the one shown in the proof of Theorem 4.4 to Boneh-Franklin IBE
[BF01], Boneh-Boyen (fully secure) IBE [BB04b], or Gentry IBE [Ge06] also reaches the same conclusion
as Theorem 4.4. All these modified schemes meet ¬L-PTXT∧L-CTXT. On the other hand, we have,

Theorem 4.5 There exists an IBE scheme Π such that Π and NT (Π) satisfy IND-ID-CPA ∧ ¬L-CTXT
and UF-CMA, respectively.

Proof of Theorem 4.5. There exist a number of examples, e.g. the CPA secure scheme in [Wat05]. �
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5 Separation Results

In the previous section, we showed that UF-CMA signature schemes can be derived from considerably
weak IBE schemes, and especially, one-wayness of IBE plays an important role to provide secure sig-
natures. Here, we show impossibility of proving UF-CMA security of Naor-transformed signatures (with
a single verification) solely based on indistinguishability of underlying IBE. Especially, we demonstrate
counterexamples indicating IND-ID-CCA 9NT UF-CMA, which immediately implies IND-ID-CPA 9NT

UF-CMA as well. This result strongly supports that indistinguishability is not an essential requirement
to provide secure Naor-transformed signatures but one-wayness is. In addition, we also present separation
results on the relation among security notions for IBE and sUF-CMA security of signature.

5.1 IND-ID-CCA 9NT UF-CMA

Technical Hurdles. It is not difficult to show IND-ID-CPA 9NT UF-CMA since there exist natural
and simple counterexamples for this, e.g. Cocks IBE [Co01]. Therefore, one may think it is immediate to
build a chosen ciphertext secure counterexample from chosen plaintext secure one via generic methods
to acquire chosen ciphertext security, e.g. Fujisaki-Okamoto conversion [FO99b]. However, it is not true.
For example, suppose IND-ID-CCA secure Boneh-Franklin IBE [BF01] with one-bit message space. In this
scheme, it is hard to generate a fake decryption key which maps a valid ciphertext to either 0 or 1 since the
decryption algorithm returns only “⊥” without using a correct key due to validity checking functionality
of Fujisaki-Okamoto. Namely, this scheme satisfies L-CTXT, and can not be a counterexample.

Counterexamples. We show the separation result by demonstrating two IND-ID-CCA IBE schemes
with small message space whose validity check process is carried out without using a decryption key.
Starting from this idea, we propose two natural and reasonably efficient schemes by different means.
One is in the standard model, and the other is in the random oracle model. This implies that generally
IND-ID-CCA and UF-CMA are separated under “NT”.

Theorem 5.1 (IND-ID-CCA 9NT UF-CMA) There exists an IND-ID-CCA secure IBE scheme Π such
that NT (Π) is not UF-CMA secure.

Proof of Theorem 5.1. From Theorem 4.3, it is sufficient to construct an IND-ID-CCA secure IBE
scheme which satisfies neither L-PTXT nor L-CTXT. We present two such schemes whose security are
analyzed in Lemma 5.1, 5.2 and Lemma 5.3, 5.4, respectively. Combining Lemma 5.1 and 5.2 or combining
Lemma 5.3 and 5.4 leads to the theorem. �

Modified Waters-Canetti-Halevi-Katz IBE. Our first counterexample is based on Waters IBE
[Wat05]. More precisely, this is the same as the chosen-ciphertext secure version of Waters IBE mentioned
in [Wat05], where a technique from [CHK04] is used to achieve chosen-ciphertext security, except for a
slight modification. This scheme is provably secure in the standard model. In this scheme, we introduce
a (one-time) signature scheme Σ = (Gen,Sig,Ver).

Setup On input 1k, generate groups G1, G2 with prime order p, and a bilinear map e : G1 × G1 → G2.
Pick a random α ∈ Z

∗
p and set g1 = gα. Choose an injective mapping F which maps a verification

key of Σ onto Z
∗
p.

2 Choose g2, g3 ∈ G1 randomly, and set a hash function G : Z
∗
p → G1 as

G(x) = gx
2g3. Choose ui ∈ G1 for 0 ≤ i ≤ n randomly, and set a hash function H : {0, 1}n → G1

as H(x) = u0
∏n

i=1 ui
xi , where xi denotes i-th bit of x. Then, output public system parameter

〈G1, G2, e, p, g, g1, g2, g3, F,G,H〉 and master key gα
2 .

2If there exists no such a mapping, we can also use a collision-resistant hash function instead.
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Extraction For identity ID ∈ {0, 1}n, generate decryption key SKID = (d1, d2) as d1 = gα
2 H(ID)r and

d2 = gr, where r is randomly picked from Z
∗
p.

3

Encryption To encrypt message m ∈ {0, 1} for identity ID, generate a signature key pair as (SigK,VK)←
Gen(1k), pick a random s ∈ Z

∗
p, and compute c1 = gs, c2 = H(ID)s, c3 = F (VK)s and c4 =

e(g1, g2)
s+m. Then, output ciphertext C, where C = (c1, c2, c3, c4, σ,VK) and σ ← Sig(SigK, (c1, c2,

c3, c4),VK).

Decryption To decrypt ciphertext C ′ = (c′1, c
′
2, c

′
3, c

′
4, σ

′,VK′) for identity ID, if Ver(VK′, σ′, (c′1, c
′
2, c

′
3, c

′
4))

= reject or e(g, c′3) 6= e(c′1, F (VK)), output “⊥”. Else, output 1 if mes = e(g1, g2), 0 if mes = 1,
or a random bit m′ ∈ {0, 1} otherwise, where mes = c′4 · e(c

′
2, d2) · e(d1, c

′
1)

−1.

Lemma 5.1 The above scheme is (t, qe, qd, ǫ)-IND-ID-CCA secure, if the (t+O(ǫ−2 ln(ǫ−1)λ−1 ln(λ−1)+
qdτ), ǫ−ǫs

32(n+1)qe
)-DBDH assumption holds in (G1, G2), and Σ is (t, 1, ǫs)-sUF-CMA secure, where λ =

1
8(n+1)qe

and τ is the maximum time for decryption of the above scheme.

Notice that the above scheme is the same as the original (chosen-ciphertext version of) Waters IBE
scheme except for its encoding rule for plaintexts. Therefore, proof of Lemma 5.1 can be straightforwardly
done by the same proof methods of [Wat05] and [CHK04].

Lemma 5.2 Let Π denote the above IBE scheme. Then, NT (Π) is not UF-CMA secure.

The proof to Lemma 5.2 can be found in Appendix E.1.

Modified Boneh-Franklin IBE. Our second counterexample is based on Boneh-Franklin IBE [BF01].
The scheme is quite simple in form and provably secure in the random oracle model. We shall use a
strongly unforgeable (one-time) signature scheme Σ = (Gen,Sig,Ver).

Setup. On input 1k, generate groups G1, G2 with prime order p, and a bilinear map e : G1 × G1 →
G2. Choose two cryptographic hash functions G : {0, 1}∗ → {0, 1}, H : {0, 1}∗ → G1\{1}, and
a generator g of G1. Pick a random s ∈ Z

∗
p and set g1 = gs. The public system parameter

〈G1, G2, e, p, g, g1, G,H〉 and the master key is s.

Extraction. For identity ID ∈ {0, 1}∗, generate decryption key SKID as SKID = H(ID)s.

Encryption. To encrypt a plaintext M ∈ {0, 1} for identity ID, generate a signature key pair as
(SigK,VK)← Gen(1k), pick a random r ∈ Z

∗
p, and compute c1 = gr, c2 = m⊕G(e(g1,H(ID))r,VK, c1).

Then, output ciphertext C as C = (c1, c2, σ,VK) where σ ← Sig(SigK, (c1, c2),VK).

Decryption. To decrypt a ciphertext C ′ = (c′1, c
′
2, σ

′,VK′) for identity ID, if Ver(VK′, σ′, (c′1, c
′
2)) =

accept, output M ′, where M ′ = c′2 ⊕G(e(c′1,SKID),VK′, c′1). Else, output “⊥”.

Lemma 5.3 The scheme is (t, qe, qd, ǫ) IND-ID-CCA secure, if the sUF-CMA signature is (t, 1, ǫs) secure
and (O(t + (qG + qH) · τ), qd,

ǫ−ǫs

eqe
)-GBDH assumption holds, where e is the base of natural logarithm,

qG, qH are numbers of queries to random oracles G,H, respectively and τ is the maximum time of one
step of operation by B.

Lemma 5.4 Let Π denote the above IBE scheme. Then, NT (Π) is not UF-CMA secure.

The proof to Lemma 5.3 and 5.4 are given in Appendix E.2 and E.3, respectively.

3If an identity is an arbitrary bit string, one can use a collision-resistant hash function to map it onto {0, 1}n.
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5.2 IND-ID-CCA ∧ L-PTXT ∧ L-CTXT 9NT sUF-CMA

sUF-CMA security [ADR02] is stronger than UF-CMA, however, it is equivalent to UF-CMA, when the
signing algorithm is deterministic, i.e., for a message, there is only a unique signature under the given
public key. Thus, it is easy to see that a UF-CMA secure Naor-transformed signature scheme with a
unique signature is sUF-CMA secure at the same time. However, we show that this is not true in a
general sense, i.e. the most secure IBE does not always imply sUF-CMA secure signature via NT, even if
this IBE meets both L-PTXT and L-CTXT.

Theorem 5.2 (IND-ID-CCA ∧ L-PTXT ∧ L-CTXT9NT sUF-CMA) There exists IND-ID-CCA secure IBE
Π, such that Π is both L-PTXT and L-CTXT, but NT (Π) is not sUF-CMA secure.

Proof of Theorem 5.2. Here we briefly introduce the idea behind our proof. In fact, we need an IND-
ID-CCA secure IBE that has large plaintext space (L-PTXT) and is only privately verifiable (L-CTXT).
Towards this goal, we present the following scheme, which can be regarded as an instantiation of the
Boneh-Katz [BK05] methodology with the basic Waters IBE (combined with an sID secure IBE from
[BB04a]).

Waters-Boneh-Katz IBE. Now we instantiate the Boneh-Katz methodology [BK05] with a 2-level
HIBE with the first level being Waters IBE [Wat05] and the second level being sID secure IBE in [BB04a],
which is similar to the fully secure Waters IBE. Let Φ = (Mac,Vrfy) be a message authentication code
and Ψ = (Setup,S,R) be an encapsulation scheme, whose formal definitions are postponed to Appendix
F.

Setup. On input 1k, generate groups G1, G2 with prime order p, and a bilinear map e : G1 ×G1 → G2.
Pick a random α ∈ Z

∗
p and set g1 = gα. Choose an injective mapping F which maps {0, 1}k onto

Z
∗
p. Choose g2, g3 ∈ G1 randomly, and set a hash function G : Z

∗
p → G1 as G(x) = gx

2g3. Choose
ui ∈ G1 for 0 ≤ i ≤ n randomly, and set a hash function H : {0, 1}n → G1 as H(x) = u0

∏n
i=1 ui

xi ,
where xi denotes i-th bit of x. Run Setup(1k) to generate pub. Then the public system parameter
〈G1, G2, e, p, g, g1, g2, g3, F,G,H, pub〉 and master key gα

2 .

Extraction. For identity ID ∈ {0, 1}n, generate decryption key SKID = (d1, d2) as d1 = gα
2 H(ID)r and

d2 = gr, where r is randomly picked from Z
∗
p.

Encryption. To encrypt a message M for identity ID, first encapsulate a random value by running
S(1k, pub) to obtain (r, com, dec). Pick a random s ∈ Z

∗
p, and compute c1 = gs, c2 = H(ID)s,

c3 = G(F (com))s and c4 = (M ||dec) · e(g1, g2)
s. We require M ||dec is encoded as an element of

G2, and such encoding is efficiently invertible. Denote c = (c1, c2, c3, c4) and tag = Macr(c). The
ciphertext is C = 〈c, com, tag〉.

Decryption. To decrypt a ciphertext C ′ = 〈c′, com′, tag′〉 for identity ID, parse c = (c′1, c
′
2, c

′
3, c

′
4) and

compute (M ′||dec′) = c′4 · e(c
′
2, d2) · e(d1, c

′
1)

−1, especially, output “⊥” if this fails or e(g, c′3) 6=
e(c′1, G(F (com))). Run R(pub, com′, dec′) to obtain a string r′; outputs M ′ if r′ 6= ⊥ and Vrfy(c′, tag′)
= 1, otherwise “⊥”.

We base our proof on the following lemmas, whose proofs can be found in Appendix F.

Lemma 5.5 The above IBE scheme is IND-ID-CCA secure and L-PTXT.

Lemma 5.6 The above IBE scheme is L-CTXT.
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Lemma 5.7 Let Π denote the above IBE scheme. Then, NT (Π) is not sUF-CMA secure.

Combining Lemma 5.5, 5.6 and 5.7, Theorem 5.2 is proven. �

Analyses on the original Boneh-Franklin IBE (using FO conversion [FO99b] thus with random oracles)
and Gentry IBE [Ge06] (without random oracles but based on a stronger assumption) also support our
statement of Theorem 5.2. It is also worth repeating that the above examples show L-CTXT is a natural
security definition.
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A Waters IBE [Wat05]

Waters proposed the first efficient IND-ID-CCA secure IBE scheme without using random oracle. We
abstract their scheme in the following.

Setup On input 1k, generate groups G1, G2 with prime order p, and a bilinear map e : G1 × G1 → G2.

Pick up a secret α
R
← Zp. Compute g1 = gα from a random generator g of G1, and select g2

R
← G2.

Choose ui
R
← G1 for 0 ≤ i ≤ n, and set a hash function H : {0, 1}n → G1 as H(x) = u0

∏n
i=1 ui

xi ,
where xi denotes i-th bit of x. The public system parameter is 〈G1, G2, g, g1, g2,H〉, the master key
is gα

2 .
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Extraction For identity ID ∈ {0, 1}n, pick up r
R
← Zp, the private key SKID = (d1, d2) is produced by

computing d1 = gα
2 ·H(ID)r, d2 = gr.

Encryption On input message M and ID, choose s
R
← Zp, and output ciphertext as C = (c1, c2, c3) s.t.

c1 = gs, c2 = H(ID)s, c3 = M · e(g1, g2)
s.

Decryption Let C ′ = (c′1, c
′
2, c

′
3) be a ciphertext for ID. Use the SKID = (d1, d2) to recover message as:

M ′ = c′3 · e(c
′
2, d2) · e(c

′
1, d1)

−1 = c′3 · e(H(ID)s, gr) · e(g1, g2)
−s · e(H(ID)r, gs)

−1
.

B Proof of Theorem 4.2

The proof can be straightforwardly done. However, we properly address it. Towards a contradiction,
assuming that there exists a UF-CMA forger A against NT (Π) with running time t, q signature queries,
and succeeding probability ǫA > ǫ, we build an L-CTXT adversary B against Π with running time t+O(τ),
q key extraction queries, and succeeding probability ǫB ≥ ǫA.

For a given public system parameter PK, B passes it to A. When A asks a signing query on a
message mi for 1 ≤ i ≤ q, B1 queries its own key extraction oracle Oe on “identity” mi to get the
corresponding decryption key, and delivers it to A as the signature σi for mi. This simulation is, of
course, perfect. When A outputs (σ∗,m∗), B also outputs (ID∗,SK′

ID∗), where ID∗ = m∗ and SK′
ID∗ = σ∗.

Since Pr[M ′ = M |M
R
←M;C ← Enc(ID∗,M,PK);M ′ ← Dec(SK′

ID∗ , C,PK)] = ǫA and M ∈ M, we have
that ǫB ≥ ǫA. �

C Proof of Lemma 4.1

Towards a contradiction, assuming that there exists a L-CTXT adversary A against Π with running time
t, q key extraction queries, and succeeding probability ǫA > ǫ, we build an IND-ID-CPA adversary B
against Π with running time t + O(τ), q key extraction queries, and advantage ǫB ≥

γǫA−ǫs

2−2γ .
For a given public system parameter PK, B = (B1,B2) interacts A as follows:

Algorithm BOe

1 (PK)
(ID∗,SK′

ID∗)← AS(PK);

(M0,M1)
R
←M2;

s← (ID∗,SK′
ID∗ ,PK);

return (ID∗,M0,M1, s)

Algorithm BOe

2 (s,C∗)
(ID∗,SK′

ID∗ ,PK)← s;
M ′ ← Dec(SK′

ID∗ , C∗,PK);
if M ′ = Mβ for β ∈ {0, 1}, b′ ← 1− β;

else, b′
R
← {0, 1};

return b′

When A issues a key extraction query on identity “ID”, B queries its own key extraction oracle for the
same identity, and forwards the secret key SKID to A. This simulation is, of course, perfect. S denotes
the simulated signing oracle by B. For a challenge ciphertext C∗, B decrypts it with SK′

ID∗ which is A’s
output, and returns 1− b′ if the decryption result M ′ is identical to Mb′ for b′ ∈ {0, 1}, or a random bit
otherwise. Now, we estimate B’s advantage ǫB, that is,

ǫB = |Pr[M ′ = M1−b|Exp] +
1

2
Pr[M ′ 6∈ {M0,M1}|Exp]−

1

2
|,

where Exp denotes [(PK,msk)← Setup(1k); (ID∗,SK′
ID)← AS(PK); b

R
← {0, 1};C∗ ← Enc(ID∗,Mb,PK);M ′

← Dec(SK′
ID∗ , C∗,PK)]. SinceA breaks L-CTXT with probability ǫA, we have that Pr[M ′ ∈M|Exp] ≥ ǫA.
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Furthermore, since N(Π) is (t, q, ǫs)-UF-CMA, we have that Pr[M ′ = Mb|Exp] ≤ ǫs. Then, ǫB is estimated
as follows. Since M1−b is independent of both SK′

ID∗ and C∗, Pr[M ′ = M1−b|Exp] is estimated as

Pr[M ′ = M1−b|Exp] ≥
1

|M| − 1
Pr[M ′ ∈M\{Mb}|Exp]] ≥

ǫA − ǫs

|M| − 1
.

We also have that Pr[M ′ 6∈ {M0,M1}|Exp] + Pr[M ′ = M1−b|Exp] ≥ 1− ǫs, and consequently,

ǫB = |
1

2
Pr[M ′ = M1−b|Exp] +

1

2
(Pr[M ′ 6∈ {M0,M1}|Exp] + Pr[M ′ = M1−b|Exp])−

1

2
|

≥
1

2
(
ǫA − |M|ǫs

|M| − 1
) ≥

1

2
(
γǫA − ǫs

1− γ
).

We note that γ < 1/|M| since we assume Π does not satisfy γ-L-PTXT. The running time of B is t+O(τ),
and B asks exactly q key extraction queries, which are easily verified from the description of B. This
completes the proof of Lemma 4.1. �

D Proof of Theorem 4.4

We modify Waters IBE in the following way: the setup and key extraction algorithms are the same
as Waters IBE. Notations follow those addressed in Appendix A. To encrypt a message M ∈ {0, 1},
randomly selecting s ∈ Zp, we set its ciphertext as C = (c1, c2, c3), s.t. c1 = gs, c2 = H(ID)s, c3 =
e(g1, g2)

s+M . The decryption algorithm is also the same as Waters IBE except that it returns 1 if
mes = e(g1, g2), 0 if mes = 1, or “⊥” otherwise. Here mes is defined by mes = c′3 ·e(c

′
2, d2) ·e(c

′
1, d1)

−1 =
e(g1, g2)

s+M · e(H(ID)s, gr) · (e(g1, g2)
s · e(H(ID)r, gs))−1.

1. The scheme can be also proven to be IND-ID-CPA secure under the DBDH assumption. Note that
by setting M = e(g1, g2)

m as the plaintext for Waters IBE, we get the original scheme.

2. Since the message space is only one-bit, it does not meet L-PTXT (however, it meets L-CTXT!).

3. The Naor-transformed signature from the above IBE scheme is UF-CMA under the CBDH assump-
tion. Roughly speaking, if it is possible for an adversary to come with (ID∗,SK′

ID∗) such that
m = Dec(SK′

ID∗ ,Enc(ID∗,m,PK),PK), then for a given BDH instance (g1, g2, g
t), it is also possible

to extract e(g1, g2)
t by using SK ′

ID∗ .

Summarize all these points, we prove the theorem. �

E Proof of Theorem 5.1

E.1 Proof of Lemma 5.2

We prove the lemma by demonstrating a successful forgery of a signature. For a given verification key
〈G1, G2, e, p, g, g1, g2, g3, F,G,H〉, pick SK′

m = (d′1, d
′
2) ∈ G

2
1 randomly, and set it as a forged signature

for a message m. Then, verification process is carried out as follows. First, a verifier picks a random
M ∈ {0, 1} and encrypts it by using identity “m”. Let C = (c1, c2, c3, c4, σ,VK) denote the ciphertext.
If M is recovered from C by using SK′

m, the forgery is considered successful. First, the verifier tests
validity of σ and c3. Since σ and c3 are generated in a correct manner, the verifier decides it as a valid
ciphertext. Note that SK′

m is not used for the validity check, and consequently, “⊥” is never output in
this process. Then, the verifier calculates mes = c4 · e(c2, d

′
2) · e(d

′
1, c1)

−1. From the encoding rule, the
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recovered plaintext is 1 if mes = e(g1, g2), 0 if mes = 1, or a random bit m′ ∈ {0, 1} otherwise. This
means the verifier outputs accept with probability 1/2, which is non-negligible. �

We note that in the proof of Lemma 5.2, public verifiability of [CHK04] functions significantly. There-
fore, for example, Waters IBE with another transform in [BK05] for chosen-ciphertext security, cannot
be a counterexample for Theorem 5.1.

E.2 Proofs of Lemma 5.3

Proof of Lemma 5.3 B is an adversary that wants to either solves GBDH problem defined on (G1, G2),
or break the unforgeability of Σ. At first, B is given a random instance 〈g, ga, gb, gc〉, where g is a generator
of G1. B is also given the verification key VK∗, generated by Gen(1k). B can access two oracles: a DBDH
oracle O and a signing oracle Os. B then interacts an IND-ID-CCA adversary A as follows:

Setup B gives 〈G1, G2, e, p, g, g1, G,H〉, where G,H are random oracles controlled by B.

G-queries Let G-list be a list with 6-entries (Ti,VKi, c1i, ωi,Mi, c2i) (1 ≤ i ≤ qG), initially empty. On
a query (Ti,VKi, c1i), B searches G-list for (Ti,VKi, c1i, ωi,Mi, c2i) where (Ti,VKi, c1i, ωi) has been
defined already. If it has been queried before, B returns ωi. Otherwise, B checks if Mi and c2i are
already defined. If yes, B returns sets ωi = Mi ⊕ c2i and adds (Ti,VKi, c1i, ωi) to G-list. If no such
data is found, B randomly returns ωi ∈ {0, 1} and appends (Ti,VKi, c1i, ωi) to G-list.

H-queries B maintains a H-list with 4-entries (IDi, hi, βi, coini), (1 ≤ i ≤ qH), initially empty. where
IDi is the i-th query on H, hi is the response, βi is chosen at random, and coini is an internal coin
tossing that shows “0” with probability δ determined later. On a query on IDi, if IDi has appeared
in the H-list, returns hi. Otherwise, randomly pick βi from Z

∗
p, and flip a biased coin, which gets

0 with probability δ to be decided later. If coini = 0, then set hi = gβi ; if coini = 1, then set the
hi = (gb)βi as the response.

Extraction queries On key extraction query on IDi, B searches in H-list, if coini = 0, then returns

SKIDi
= (ga)βi ; otherwise reports failure and quits with an output T

R
← G2.

Encryption queries On the ID∗ chosen by A, without loss of generality, suppose it has appeared

somewhere in the H-list as IDi. B chooses M∗ R
← {0, 1} and c∗2

R
← {0, 1}, and asks the signing

oracle Os on signature of ((gc)1/β∗

, c∗2) with respect to VK∗, and gets a signature σ∗ from Os. B
then returns 〈(gc)1/β∗

, c∗2, σ
∗,VK∗〉 as the challenge ciphertext.

Decryption queries On a decryption query (c1j , c2j , σj,VKj), B checks if σj is a correct signature on
(c1j , c2j) with respect to VKj. If not, B returns ⊥. Otherwise, B searches G-list for (Tj ,VKj, c1j, ωj ,
Mj , c2j) such that (Tj ,VKj , c1j , ωj) has been defined already. If yes, B sets Mj = c2j⊕ωj. Otherwise,
B chooses Mj ∈ {0, 1} and sets ωj = Mj ⊕ c2j . In both cases, B appends c1j , c2j,Mj ,VKi to
G-list and returns Mj as required plaintext. If A submits a ciphertext (c1j, c2j , σj ,VK∗) with
Ver(VK∗, σj , (c1

∗
j , c2

∗
j)) = accept but σj 6= σ∗, B simply terminates simulation and returns σj as

the forgery to the signature scheme.

If A asks further queries after it gets the challenge, B interacts with A similarly as the above with the
only limitation that A may not ask decryption query on the challenge ciphertext.

After A outputs a guess b′ on bit b, B searches Ti in the G-list such that 〈g, ga, gb, gc, Ti〉 is a BDH-
tuple.

If B does not acquire a valid forgery on VK∗ via decryption queries, A can only get any advantage in
the game by querying T to G oracle, since the information of Mb is perfectly hidden because G’s output
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is always random. In this case, if B doesn’t abort, B always succeeds in outputting T = e(g, g)abc. Since
the H-oracle, G-oracle and decryption queries are perfectly simulated, B may only fail in replying the
challenge query or extraction queries. We have,

ǫB ≥ δqe(1− δ)(ǫA − ǫs) ≥ (ǫA − ǫs)/(eqe)

as claimed, where the probability δqe(1− δ) ≈ 1/(eqe) gets maximized at δ = qe/(qe +1) for large qe. The
claimed time bounds, queries to O and Os is easily verified as O(t + (qH + qG)τ), 1, qG respectively. �

E.3 Proof of Lemma 5.4

It is interesting that the signature is not even UF-CMA, though the underlying IBE builds on an sUF-
CMA signature. It is proven by showing a counterexample that there exists a forgery with non-negligible
probability. Namely, for a given public system parameter 〈G1, G2, e, p, g, g1, G,H〉, choose SK′

ID = s′ ∈ Z
∗
p

at random. Set it as a signature for certain message m. The verifier first chooses randomly a M ∈ {0, 1},
r ∈ Z

∗
p and obtains the verification key VK generated by one-time signature

∑
. Further, encrypts M

with the public key m, such as, C = (c1, c2,VK, σ), where c1 = gr, c2 = M ⊕ G(e(g1,H(m))r,VK, gr)).
If the same M could be recovered by SK′

ID, the forgery is considered successful. Since in decryption the
SK′

ID is only used for recovering the M , but not for checking the validity of the ciphertext, verifier will
finally get a message M ′ = c2 ⊕ G(e(c1,SK′

ID),VK, c1), s.t. M ′ ∈ {0, 1} without outputting ⊥. As G
is assumed a random oracle, the output will be uniformly distributed. Therefore, M ′ is also uniformly
distributed in {0, 1} no matter what SK′

ID is, which means the verifier outputs accept with probability
1/2, obviously non-negligible. �

F Proof of Theorem 5.2

We first review definition on message authentication code and encapsulation from [BK05] below.

Message Authentication Code. A message authentication code scheme consists of a pair of PPT
algorithms: Φ = (Mac,Vrfy). The authentication algorithm Mac takes as input a key sk and a message
M , and outputs a string tag. The verification algorithm Vrfy takes as input a key sk, a message M , and
a string tag and outputs either “0” or “1”. We require that for all sk and M , Vrfysk(M,Macsk(M)) = 1.
For simplicity, we assume that Mac and Vrfy are deterministic.

Definition F.1 (Secure MAC) A message authentication code Φ = (Mac,Vrfy) is secure, if for any

algorithm A, Pr[Expmac
A,Φ(k) = 1] is negligible, where Expmac

A,Φ(k) : [sk
R
← {0, 1}k ; (M,s) ← A(k); tag ←

Macsk(M); (M ′, tag′)← A(tag, s); return 1 if (M ′, tag′) 6= (M, tag)∧Vrfysk(M
′, tag′) = 1, or 0 otherwise].

Encapsulation. An encapsulation scheme is a triple of PPT algorithms Ψ = (Setup,S,R). The Setup
algorithm Setup takes as input the security parameter 1k and outputs a string pub. The encapsulating
algorithm S takes as input 1k and pub, and outputs (r, com, dec) with r ∈ {0, 1}k . We refer to com as the
public commitment string and dec as the de-commitment string. The reconstruction algorithm R takes
as input (pub,com,dec) and outputs an r ∈ {0, 1}k ∪ {⊥}. We require for pub output by Setup and for
all (r, com, dec) output by S(1k, pub), R(pub, com, dec) = r. For simplicity, we assume com and dec have
fixed lengths for any given value of security parameter.

An encapsulation scheme Ψ = (Setup,S,R) is ǫh-hiding if for any algorithm A,
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ǫh ≥ Pr[Exphiding
A,Ψ (k) = 1] − 1/2, where Exphiding

A,Ψ (k) : [pub ← Setup(1k); r0
R
← {0, 1}k ; (r1, com, dec) ←

S(1k, pub);

b
R
← {0, 1}; return 1 if A(1k, pub, com, rb) = b, or 0 otherwise].

An encapsulation scheme Ψ = (Setup,S,R) is ǫb-binding, if for any algorithmA, ǫb ≥ Pr[Expbinding
A,Ψ (k) =

1], where Expbinding
A,Ψ (k) : [pub← Setup(1k); (r, com, dec)← S(1k, pub); dec′ ← A(pub, r, com, dec);

return 1 if R(pub, com, dec′) /∈ {⊥, r}, or 0 otherwise].

Definition F.2 (Secure Encapsulation) An encapsulation scheme Ψ is secure if it is ǫh-hiding and
ǫb-binding where ǫh and ǫb are negligible.

Proof of Lemma 5.5. The IND-ID-CCA security can be straightforwardly proven by [Wat05] and
[BK05]. Denote M as the message space, from the above specification, 1/|M| is a negligible function of
the security parameter k. �

Proof of Lemma 5.6. Let Π denote the Waters-Boneh-Katz IBE scheme given in Section 5.2. Let
PK = 〈G1, G2, e, p, g, g1 , g2, g3, F,G,H, pub〉 be the public system parameter of Π. Assume that there
exists an adversary A such that Pr[Expl-ctxt

A,Π (k) = 1] is non-negligible, and that (ID∗,SK′
ID∗(= (d′1, d

′
2)))←

AOe(PK). Let C = 〈c, com, tag〉 be a ciphertext, where (r, com, dec) ← S(1k, pub), M
R
← M, and C is

generated under PK, identity “ID∗”, plaintext M , and encapsulation (r, com, dec). Let c = (c1, c2, c3, c4)
and (M ′||dec′) = c4 · e(c2, d

′
2) · e(d

′
1, c1)

−1. r′ ← R(pub, com, dec′). It is sufficient to show that assuming
Π is not L-CTXT leads to a contradiction to the security of Ψ.

Claim F.1 Suppose Π is IND-ID-CCA secure. If Pr[Expl-ctxt
A,Π (k) = 1] is non-negligible, Pr[R(pub, com, dec′)

= R(pub, com, dec) = r] is also non-negligible.

Proof of Claim F.1. Since Expl-ctxt
A,Π (k) = 1, in order to pass the verification of Mac, there should be

tag = Macr′(c) for some r′. We claim r′ = r. Assume this is not the case, then there exists dec′, using
which com can be opened to r′ other than r, which contradicts the binding property of the encapsulation.
So it must be r′ = r, i.e., Pr[R(pub, com, dec′) = R(pub, com, dec) = r] happens with non-negligible
probability. �

Claim F.2 If the above scheme is IND-ID-CCA, dec′ 6= dec with overwhelming probability.

Proof of Claim F.2. Without loss of generality, write SK′
ID∗ = (d1, d2) = (gα

2 H(ID)r1 , gr2). If r1 = r2,
the adversary has recovered the correct secret key for ID∗, thus is able to break IND-ID-CCA security. So
r1 6= r2, which implies r2−r1 6= 0. It is verifiable that this time, (M ′||dec′) = (M ||dec)e(H(ID), g)s(r2−r1).
This immediately leads to the claim that dec′ 6= dec with overwhelming probability, since s is chosen
randomly by the verifier. �

Finally, suppose for dec′ (computed from SK′
ID∗) where dec′ 6= dec, if R(pub, com, dec′) =

R(pub, com, dec) = r holds with non-negligible probability, Ψ is no longer hiding, which contradicts
the assumption that Ψ is a secure encapsulation scheme. This completes the proof of Lemma 5.6. �

Proof of Lemma 5.7. For any given signature σ = (s1, s2) on a message m, one can easily re-randomize

σ output a different signature σ′ = (s1 ·H(m)r
′

, s2 · g
r′) with r′

R
← Z

∗
p. It is easily verified this is a suc-

cessful forgery. �

Theorem 5.2 then follows Lemma 5.5, 5.6 and 5.7. �
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