
Improved Security Analysis of PMAC

Avradip Mandal and Mridul Nandi
University of Waterloo, Canada

February 1, 2007

Abstract

In this paper we provide a simple and improved security analysis of PMAC [6], a Paralleliz-
able MAC (Message Authentication Code) defined over arbitrary messages. A similar kind of
result is shown by Bellare, Pietrzak and Rogaway [2] in Crypto-2005, where they have provided
an improved bound for CBC MACs [3, 9, 11]. Our analysis idea is much more simpler to un-
derstand and is borrowed from [4, 13]. It shows that the advantage for any distinguishing attack
for PMAC based on a random function is bounded by O(σq

2n ), where σ is the total number of
blocks in all q queries made by the attacker. In the original paper [6], the bound is O(σ2

2n ).

Keywords : MAC, PMAC, Distinguishing attack, random function, pseudo random function.

1 Introduction

PMAC is a parallelizable Message Authentication Code unlike Cipher Block Chaining or CBC
MACs [3] which are sequential based constructions. There are many literatures on CBC-MACs
improving efficiency in performance as well as in key size. Some of them are XCBC [5], TMAC [11],
OMAC [9]. Recently, Jutla [10] and Nandi [13] analyzed a wide class of tree based constructions,
some of them can be implemented in parallel. All these constructions are based on pseudo random
function or pseudo random permutation [12]. AES [7] is a believed to be a candidate of pseudo
random permutation as well as pseudo random function. There are other constructions of MAC
based on different universal hash families [8, 14, 15]. Now we provide definition of MAC and its
security notions.

1.1 Message Authentication Codes (MAC) and its Security Notions

Definition of MAC

Message Authentication Code or MAC is a secret key version of digital signature. It is used as an
authentication of a message. A MAC is a family of functions {Fk}k∈K where Fk : M → T , M is
the message space, T is the set of all tag space and k ∈ K is a secret key chosen uniformly from
a key space. If t = Fk(M) then t is called the tag of the message M . In this paper, we consider
T = {0, 1}n with a group addition + and the identity element 0 and M = {0, 1}≤L ∆= ∪i≤L {0, 1}i

for a sufficiently large integer L and a fixed integer n. A reasonable choice of parameters are
n = 128 and L = 264.

1



Security Notions of MAC

There are two popular security notions for Message Authentication Code. Those are secure against
distinguishing attack and secure against forgery attack. The distinguishing attack is a weaker
attack than forgery. In other words, if a construction is secure against distinguishing attack then
it is also secure against forgery attack with at least same security level. Thus, we mainly analyze
the distinguishing attack security for PMAC.

1. Distinguishing Attack : Let Adversary AO be an oracle algorithm where

• O = Fk, chosen uniformly from F = {Fk : M→ T ; k ∈ K} (k is uniform on K) or

• O = F , chosen uniformly from Func(M, T ) ∆= {F ; F : M→ T} (or Func only).

The adversary can make at most q queries adaptively consisting of at most σ many blocks and
runs in time at most t. Finally, it returns either 1 or 0. The advantage for distinguishing attack is
computed as follows :

AdvF , Func(A) ∆=
∣∣ Pr[AF = 1]−Pr[AFunc = 1]

∣∣.

AdvF ,Func(q, σ, t) ∆= maxA AdvF , Func(A : q, σ, t)

where the maximum is taken over all distinguisher A with runtime at most t making at most
q queries consisting of at most σ many blocks. For simplicity, we also denote AdvF (A) and
AdvF (q, σ, t) in the places of AdvF , Func(A) and AdvF ,Func(q, σ, t) respectively.

The definition of block is given later when we define PMAC. Intuitively, it is the number of
n-bits in a padded message. A random function is a probability distribution on Func(M, T ). If
the distribution is uniform then we say that it is an uniform random function. Note that, the
uniform distribution on K induces a probability distribution on Func. Intuitively, if the advantage
is high then the attacker A can distinguish the uniform random function and the random function
F with high probability. If it is negligible, we sometimes say that the family F is a pseudo random
function family.

2. MAC-forgery : In case of a MAC-forgery attack, an attacker makes successive queries Mi’s
for the oracle Fk (where k is secret and chosen uniformly from K) and obtains responses Fk(Mi)’s.
Let (M1, t1 = Fk(M1)), · · · , (Mq, tq = Fk(Mq)) be all query-responses. If attacker can return a pair
(M, t) such that (M, t) 6= (Mi, ti) for all i and t is a valid tag (i.e., t = Fk(M)) then we say that
the attacker forges successfully. The probability for forging successfully a message-tag pair is the
advantage for MAC-forgery attack.

If one can forge a message (say (M, t)) using this forgery attacker one can make a distinguishing
attack (same as the forgery attacker except at the end it will submit the query M and checks whether
the response is t or not). Thus a forgery attacker is much stronger, or equivalently secure against
distinguishing attack is more stronger.

1.2 Known Results and Our Results

In [6], authors have shown that AdvPMAC(q, σ, t) ≤ 2(σ+1)2

N . In this paper we show that the
advantage AdvPMAC(q, σ, t) ≤ 11σ(q−1)

2N . When an attacker is making uniform message block
queries the bound can be written as 11`q(q−1)

2N which is similar to the bound given in Crypto-05 [2]

2



for CBC MACs. Note that, when an attacker has restriction on the total number of message blocks
σ, then the upper bound of advantage is more if q is as large as possible. q can be at most σ, (that
is, all message queries are single block length query) and in this case order of our bound is same as
the order of original bound. The same thing we can say about the improved result in CBC-MACs
in Crypto-05 [2]. The main results of this papers are the following theorems.

Theorem. Let M1, · · · ,M q are distinct messages from M and y1, · · · , yq ∈ T (not necessarily
distinct) then Pr[Pf (M1) = y1, · · · , Pf (M q) = yq] ≥ 1−ε

Nq = (1− ε)×Pr[F (M1) = y1, · · · , F (M q) =
yq] where ε = 11(q−1)σ

2N and F is an uniform random function on Func({0, 1}≤L, {0, 1}n).

Theorem. AdvPMAC(q, σ, t) ≤ 11(q−1)σ
2N .

Organization of this paper

We have explained the MAC and it’s security notions in this Section. We describe a slightly
modified definition of PMAC in Section 2. Then we characterize a wide class of distinguishers in
Section 3. Next, we give a detail security analysis of PMAC in Section 4. Finally we conclude.

2 Definition of PMAC

In this section we will describe PMAC. Later we will analyze the security of it. Before we define
we would like to make the following important comments to the reader. The definition of PMAC
we provide has a slight modification over the original definition. In the original definition, length
of the message (possibly) with 10s (for a suitably chosen s) is appended at the end of the message
(this is called the padding and the message after padding is called padded message). In this paper,
we consider a different (in fact, a simpler) padding which does not pad the length of the message.
All other rules of padding and the definitions of PMAC are exactly same as the original one. There
are some advantages in considering the modified definition.

1. First of all, it is more efficient as we may need one less invocation of underlying pseudo
random function.

2. We do not have to keep the length of the messages. It reduces the internal memory require-
ment.

3. Finally, (and most importantly) it can be defined for any arbitrary messages. So, our definition
of PMAC is defined over {0, 1}∗. But for simplicity of our security analysis we will take
{0, 1}≤L as a domain where L can be any large integer. Note that in the original definition L
should be less than n2n. Definitely, this choice of L is reasonably large enough in the current
time. But it is always advantageous if we know that the same construction can be used to
any arbitrary messages.

Let f : {0, 1}n → {0, 1}n be a random function for some positive integer n. We write N = 2n.
Let M = {0, 1}≤L for a sufficiently large integer L and T = {0, 1}n. Now we define a random
function, known as PMAC function, Pf : M → T based on f . We first define a padding rule
which makes message size a multiple of n if it is not so.

pad(M) = M ‖ 10s if n 6 | |M |
= M otherwise

}
(1)

3



where s = nd(|M |+ 1)/ne − |M | − 1. If n 6 | |M | then |pad(M)| = |M |+ s + 1 = nd(|M |+ 1)/ne,
which is the smallest multiple of n strictly bigger than the size of |M |. Suppose for M1 6= M2,
pad(M1) = pad(M2), then exactly one of these has size multiple of n (say n | |M2| and n 6 | |M1|)
and M2 = pad(M1) = M1 ‖ 10s.

Algorithm PMAC : Y = Pf (M)

step-1 Write pad(M) = x1 ‖ · · · ‖ x` ‖ z, where ` ≥ 0 and |x1| = · · · |x`| = |z| = n. \\ We say these
xi’s and z as blocks. If ` = 0, then pad(M) is nothing but z. Thus, ` + 1 is the total number
of message blocks for pad(M).

step-2 Compute w = f(0). \\ Since f is a random function and kept secret the value of f(0) has
some distribution and can be used as a part of the key of the algorithm.

step-3 Compute vi = xi + ci ·w, 1 ≤ i ≤ `. \\ ci’s are some fixed distinct nonzero constants as given
in [6]. For our security analysis, we only need that ci 6= 0 and they are distinct. ({0, 1}n, +, ·)
is any Galois field GF (2n). One can think + as ⊕ as it is the simplest operation in both
hardware and software.

step-4 Compute wi = f(vi), 1 ≤ i ≤ `.

step-5 Compute v = z + ∆ +
∑

1≤i≤` wi, where ∆ = c · w if |M | is multiple of n, otherwise we set
∆ = 0. \\ Again, c is a nonzero fixed constant which is different from c1, c2, · · · , and it is
given in [6].

step-6 Finally, Y
∆= Pf (M) = f(v).

v1

v2

vl f

f

f

f

f

w1

w2

wl

z

0 w

v
Y

Figure 1: PMAC

3 Distinguishing Families of Functions or Random Functions

Suppose A distinguishes two random functions f and g which are probability distributions on
Func(M, T ). The distinguisher A is an oracle algorithm and hence it can make several queries
adaptively. The oracle can be either chosen from the distribution f or from the distribution g.
Distinguisher is behaving as follows.

4



• First it chooses a random string r with some distribution (not necessarily uniform) on R.

• Based on r it makes query x1 := x1(r) ∈ M and obtains y1 ∈ T . Then it makes queries
x2 = x2(r, y1) ∈M and obtains y2 ∈ T and so on.

• Based on all query-responses it outputs either 1 or 0.

Denote Ar as the distinguishing algorithm same as A after choosing the random string r. Thus,
Ar is a deterministic algorithm.

Advf,g(A) =
∣∣ ∑

r∈R
(Pr[Af

r = 1]− Pr[Ag
r = 1])× Pr[r]

∣∣

≤ maxr∈R
∣∣Pr[Af

r = 1]− Pr[Ag
r = 1]

∣∣ = Advf,g(Ar∗),

where the maximum takes place at r = r∗. So, now onwards we can assume that the distinguisher
A is deterministic. We can also assume that all queries are distinct. This assumption is reasonable
as if any attacker is making same query which has been asked before the response is determined
with probability one for both oracles. Thus we can modify the attacker which skips the repetition
query.

Any tuple ((M1, y1), · · · , (M q, yq)) is said to be a transcript of the attackerA if M1 = x1(·),M2 =
x2(M1, y1), · · · ,M q = xq(M1, y1, · · · ,M q−1, yq−1). Now we state a theorem which would be used
to obtain an upper bound of the advantage. Different versions of the theorem have been proven
in [4, 13].

Theorem 1. Suppose Pr[f(M1) = y1, · · · f(M q) = yq] ≥ (1− ε)× Pr[g(M1) = y1, · · · g(M q) = yq]
for each distinct M1, · · · ,M q ∈ M and any y1, · · · , yq ∈ T . Then for any attacker A making at
most q queries has advantage Advf,g(A) ≤ ε.

Proof. Let S1 be the set of all tuples ((M1, y1), · · · , (M q, yq)) such that it is a transcript and A
outputs 1. Note that the set S1 does not depend on f and g. Only the probability distribution the
transcript appears when A interacts with the oracle f or g depends on f or g respectively. Thus,

Advf,g(A) = |
∑

((M1,y1),··· ,(Mq ,yq))∈S1

Pr[f(M1) = y1, · · · , f(M q) = yq]

−
∑

((M1,y1),··· ,(Mq ,yq))∈S1

Pr[g(M1) = y1, · · · , g(M q) = yq] |

≤ ε×
∑

((M1,y1),··· ,(Mq ,yq))∈S1

Pr[g(M1) = y1, · · · , g(M q) = yq] ≤ ε.

The inequality holds due to the given condition.

5



4 Improved Security Analysis of PMAC

We are interested in computing the probability

Pr[Pf (M1) = y1, · · · , Pf (M q) = yq], yi ∈ {0, 1}n, M i are distinct .

The probability is computed under the probability distribution of f , an uniform random function,
and it is known as interpolation probability. DenoteM = {M1, · · · ,M q} and `j = ‖ pad(M j) ‖
(the number of message blocks), 1 ≤ j ≤ q. For each 1 ≤ j ≤ q, we denote all variables in the
computation of Pf (M j) with a superscript j, that is, xj

i , z
j , vj

i , w
j
i , ∆

j , vj , Y j , 1 ≤ i ≤ `j . Among
them, xj

i and zj (sometimes ∆j when |M j | is not multiple of n) are not random variables and
fixed. All other variables are random variables with a distribution induced from the distribution of
uniform random function. Sometime we also write them as w[f ], vj

i [f ], wj
i [f ], vj [f ],∆j [f ], Y j [f ] to

show the dependency with f . We call

• 0, vj
i as intermediate inputs and vj as a final input,

• w, wj
i as intermediate outputs and Y j as a final output.

Note that, intermediate and final inputs are really inputs of f while computing Pf (M j) and in-
termediate and final outputs are outputs of f . We will show that for some small ε, the interpolation
probability Pr[Pf (M1) = y1, · · · , Pf (M q) = yq] ≥ (1−ε)

Nq .

Definition 2. An m-tuple (a1, a2, . . . , am) is new in an r-tuple (b1, b2, . . . , br) if for all 1 ≤ i ≤ m
and 1 ≤ j ≤ r we have ai 6= bj and ai’s are distinct. Note that m can be equal to one and in this
case, we say that a1 is new in (b1, b2, . . . , br).

Let us denote the event D that all final inputs are distinct and different from all other inter-
mediate inputs. More precisely, (v1, · · · , vq) is new in (0, v1

1, · · · , v1
`1

, v2
1, · · · , vq

`q
). Now we prove

that the interpolation probability conditioned on D is 1/N q. Intuitively, it is clear that the value
of (f(v1), · · · , f(vq)) follows uniform distribution condition on that vj ’s are not occurred as an
intermediate inputs which is assured by the event D. Now we have a more precise proof of the
above statement.

Lemma 3. Pr[Pf (M1) = y1, · · · ,Pf (M q) = yq | D] = 1
Nq .

Proof. Let FD denotes the set of all functions from F which satisfies the event D.

FD = {f0 ∈ F : (v1[f0], · · · , vq[f0]) is new in (0, v1
1[f0], · · · , vq

`q
[f0])}.

Let FD1 = {f0 ∈ F : (v1[f0], · · · , vq[f0]) is new in (0, v1
1[f0], · · · , vq

`q
[f0]) ∧ Y j [f0] = yj , 1 ≤ j ≤ q}.

Thus, Pr[Pf (M1) = y1, · · · ,Pf (M q) = yq | D] = |FD1 |/|FD|. Now consider the mapping α from
FD to FD1 as follows,

α(f0)(x) = f0(x) if x 6= vj [f0] for all j
= yj if x = vj [f0] for some j

}
(2)

Now α is an N q onto one mapping. That is, for every f1 ∈ FD1 , there exists exactly N q many f0’s
such that α(f0) = f1. Given f1, f0’s are exactly same as f1 except that it can take any N q possible

6



values on vj [f1]’s. This is well defined since the values of f1((vj [f1])’s do not have any effect on
the whole computations of Pf1(M

j)’s except the final output. Thus, |FD| = N q|FD1 | and hence,
Pr[Pf (M1) = y1, · · · , Pf (M q) = yq | D] = 1

Nq .

Now we would give a lower bound of Pr[D], equivalently, an upper bound of Pr[D]. Let Dj1,j2

be the event that (vj1 , vj2) is new in (0, vj1
1 , · · · , vj1

`j1
, vj2

1 , · · · , vj2
`j2

), j1 6= j2. Now it is easy to check

that D = ∪1≤j1<j2≤q Dj1,j2 . Thus if Pr[Dj1,j2 ] ≤ δ for some δ and all choices of j1 < j2, then
Pr[D] ≥ (1− (

q
2

)
δ). Without loss of generality, we compute Pr[D1,2] for the message M1 and M2.

We have several cases depending on the messages M1 and M2.

Lower bound of Pr[D1,2]

Case-1 : `1 = `2 = ` (say) and x1
1 = x2

1, · · · , x1
` = x2

` , z
1 6= z2.

Let us denote v1 = v1
1 = v2

1, · · · , v` = v1
` = v2

` and w1 = w1
1 = w2

1, · · · , w` = w1
` = w2

` . We choose
the (` + 1)-tuple (w, w1, · · · , w`) such that (v1, v

1, v2) is new in (0, v2, · · · , v`).

• Let A be the event such that v1 is new in (0, v2, · · · , v`) and ∆1 + z1 6= ∆2 + z2. Hence, for
2 ≤ i ≤ `, w 6= −x1

1
c1

,−x1
1−x1

i
c1−ci

, z2−z1

c (assume that |M1| is a multiple of n and |M2| is not, if both
are multiple or not multiple of n then always ∆1+z1 6= ∆2+z2). So Pr[A] = N−`−1

N = 1− `+1
N .

• Let B be the event such that (v1, v2) is new in (0, v1, · · · , v`). So,

– w1 + z1 + (w2 + · · ·+ w`) + ∆1 6= vi, 0,

– w1 + z2 + (w2 + · · ·+ w2
` ) + ∆2 6= vi, 0 and

– w1 + z1 + (w2 + · · · + w`) + ∆1 6= w1 + z2 + (w2 + · · · + w2
` ) + ∆2. This is always true

given that A is true.

Thus, we get Pr[B | A] ≥ N−2`−2
N = (1 − 2`+2

N ). Note that w1 is the output of v1 which is
new in (0, v2, · · · , v`).

• Now, A ∩B ⊆ D1,2 and hence Pr[D1,2] ≥ (1− `+1
N )(1− 2`+2

N ) ≥ 1− 3`+3
N .

Case-2 : `1 = `2 = ` (say) and x1
1 = x2

1, · · · , x1
` = x2

` , z
1 = z2.

This case can happen only if pad(M1) = M1 = M2 ‖ 10s = pad(M2) (there is one more similar
case where |M2| is a multiple of n and |M1| is not). We denote v1 = v1

1 = v2
1, · · · , v` = v1

` = v2
`

and w1 = w1
1 = w2

1, · · · , w` = w1
` = w2

` . We choose the (` + 1)-tuple (w, w1, · · · , w`) such that
(v1, v

1, v2) is new in (0, v2, · · · , v`).

• Let A be the event such that v1 is new in (0, v2, · · · , v`) and ∆1 + z1 6= ∆2 + z2. Hence, for
2 ≤ i ≤ `, w 6= −x1

1
c1

,−x1
1−x1

i
c1−ci

, z2−z1

c . So Pr[A] = N−`−1
N = 1− `+1

N .

• Let B be the event such that (v1, v2) is new in (0, v1, · · · , v`). So,

– w1 + z1 + (w2 + · · ·+ w`) + ∆1 6= vi, 0,

– w1 + z2 + (w2 + · · ·+ w2
` ) + ∆2 6= vi, 0 and

7



– w1 + z1 + (w2 + · · · + w`) + ∆1 6= w1 + z2 + (w2 + · · · + w2
` ) + ∆2. This is always true

given that A is true.

Thus, we get Pr[B | A] ≥ N−2`−2
N = (1 − 2`+2

N ). Note that w1 is the output of v1 which is
new in (0, v2, · · · , v`).

• Now, A ∩B ⊆ D1,2 and hence Pr[D1,2] ≥ (1− `+1
N )(1− 2`+2

N ) ≥ 1− 3`+3
N .

Case-3: x1
1x

1
2 . . . x1

` 6= x2
1x

2
2 . . . x2

` .

Without loss of generality we can assume x1
1 6= x2

1. Choose (w, w1
1, w

2
1, . . . , w

1
` , w

2
` )-tuple (some of

them may be equal), such that (v1
1, v

2
1, v

1, v2) is new in (0, v1
2, v

2
2, . . . , v

1
` , v

2
` ).

• Let A denote the event that (v1
1, v

2
1) is new in (0, v1

2, v
2
2, . . . , v

1
` , v

2
` ).

Hence w 6= x1
1−x1

i
ci−c1

,
x2
1−x2

i
ci−c1

,
x1
1−x2

j

cj−c1
,

x2
1−x1

j

cj−c1
,−x1

1
c1

,−x2
1

c1
for 2 ≤ i, j ≤ `. So Pr[A] ≥ (1− 4`−2

N )

• Let B1 denote the event that v1 is new in (0, v1
1, v

2
1, . . . , v

1
` , v

2
` ). Hence w1

1 6= −(z1 + w1
2 +

· · ·w1
` ),−(z1+w1

2+· · ·w1
` )+v1

i ,−(z1+w1
2+· · ·w1

` )+v2
i for 1 ≤ i ≤ `. So Pr[B1 | A] ≥ (1− 2`+1

N )

• Let B2 denote the event that v2 is new in (0, v1
1, v

2
1, . . . , v

1
` , v

2
` , v

1). Hence w2
1 6= −(z2 + w2

2 +
· · ·w2

` ),−(z2 + w2
2 + · · ·w2

` ) + v1
i ,−(z2 + w2

2 + · · ·w2
` ) + v2

i , −(z2 + w2
2 + · · ·w2

` ) + w1
1 + (z1 +

w1
2 + · · ·+ w1

` ) for 1 ≤ i ≤ `. So Pr[B2 | B1 ∩A] ≥ (1− 2`+2
N ).

• Now, A ∩B1 ∩B2 ⊆ D1,2 and hence Pr[D1,2] ≥ (1− 4`−2
N )(1− 2`+1

N )(1− 2`+2
N ) ≥ 1− 8`+1

N .

Case-4 : `1 6= `2.

Assume `2 > `1. Choose (w, w1
1, · · · , w1

`1
, w2

1, · · · , w2
`2

)-tuple (some of them may be equal), such
that (v1

1, v
2
`2

, v1, v2) is new in (0, v1
2, · · · , v1

`1
, v2

1, · · · , v2
`2

) (if x1
1 6= x2

1) or (0, v1
2, · · · , v1

`1
, v2

2, · · · , v2
`2

)
(if x1

1 = x2
1, in this case v1

1 = v2
1). We assume that x1

1 6= x2
1. The other case is very similar to this.

• Let A denote the event that (v1
1, v

2
`2

) is new in (0, v1
2, · · · , v1

`1
, v2

1, v
2
2, · · · , v2

`2−1). Hence w 6=
x1
1−x1

i
ci−c1

,
x1
1−x2

j

cj−c1
,−x1

1
c1

for 2 ≤ i ≤ `1, 1 ≤ j ≤ `2 and w 6= x2
`2
−x1

i

ci−c`2
,

x2
`2
−x2

j

cj−c`2
,−x2

`2
c`2

for 1 ≤ i ≤ `1, 1 ≤
j ≤ `2 − 1. So Pr[A] ≥ (1− 2(`1+`2)

N ).

• Let B1 denote the event that (v1
1, v

2
`2

, v1) is new in (0, v1
2, · · · , v1

`1
, v2

1, v
2
2, · · · , v2

`2−1). Hence
we have w1

1 6= −(z1 + w1
2 + · · ·+ w1

`1
),−(z1 + w1

2 + · · ·+ w1
`1

) + v1
i ,−(z1 + w1

2 + · · ·+ w1
`1

) + v2
j

for 1 ≤ i ≤ `1, 1 ≤ j ≤ `2. So Pr[B1|A] ≥ (1− `1+`2+1
N ).

• Let B2 denote the event that (v1
1, v

2
`2

, v1, v2) is new in (0, v1
2, · · · , v1

`1
, v2

1, v
2
2, · · · , v2

`2−1). Hence
we have w2

`2
6= −(z2 + w2

1 + · · · + w2
`2−1),−(z2 + w2

1 + · · · + w2
`2−1) + v1

i ,−(z2 + w2
1 + · · · +

w2
`2−1) + v2

j ,−(z2 + w2
1 + · · ·+ w1

`2−1) + w1
1 + (z1 + w1

2 + · · ·+ w1
` ) for 1 ≤ i ≤ `1, 1 ≤ j ≤ `2.

So Pr[B2|A ∩B1] ≥ (1− `1+`2+2
N ).

• Now, A ∩ B1 ∩ B2 ⊆ D1,2 and hence Pr[D1,2] ≥ (1 − 2(`1+`2)
N )(1 − `1+`2+1

N )(1 − `1+`2+2
N ) ≥

1− 4(`1+`2)+3
N .

8



Theorem 4. Let M1, · · · ,M q are distinct messages from M and y1, · · · , yq ∈ T (not necessarily
distinct) then Pr[Pf (M1) = y1, · · · , Pf (M q) = yq] ≥ 1−ε

Nq = (1− ε)×Pr[F (M1) = y1, · · · , F (M q) =
yq] where ε = 11(q−1)σ

2N and F is an uniform random function on Func({0, 1}≤L, {0, 1}n).

Proof. From the above four cases we can say that for any two messages M j1 and M j2 , Pr[Dj1,j2 ] ≤
4(`j1

+`j2
)+3

N . Thus, Pr[D] ≤ ∑
1≤j1<j2≤q

4(`j1
+`j2

)+3

N =
4(q−1)

P
j `j

N + 3q(q−1)
2N ≤ 11(q−1)σ

2N .

Corollary 5. AdvPMAC(q, σ, t) ≤ 11(q−1)σ
2N .

5 Conclusion

This paper provides a simpler and improved upper bound O(qσ/N) for the distinguishing advantage
of PMAC. We have used the proof idea taken from [4, 13]. This idea has unifying nature in proving
indistinguishability. The security analysis is made on a slight modification of PMAC (without
length padding). The security analysis holds for the original PMAC definition also. So, one can
use PMAC for arbitrary length messages also. As a future research work, we hope our security
analysis can be extended to have an improved bound on a general class given in [10, 13].

References

[1] M. Bellare, A. Boldyreva, L. Knudsen and C. Namprempre. On-Line Ciphers and the Hash-CBC
constructions. Advances in Cryptology - CRYPTO 2001. Lecture Notes in Computer Science,
Volume 2139, pp 292-309.

[2] M. Bellare, K. Pietrzak and P. Rogaway. Improved Security Analysis for CBC MACs. Advances
in Cryptology - CRYPTO 2005. Lecture Notes in Computer Science, Volume 3621, pp 527-545.

[3] M. Bellare, J. Killan and P. Rogaway. The security of the cipher block chanining Message
Authentication Code. Advances in Cryptology - CRYPTO 1994. Lecture Notes in Computer
Science, Volume 839, pp 341-358.

[4] Daniel J. Bernstein. A short proof of the unpredictability of cipher block chaining (2005). URL:
http://cr.yp.to/papers.html#easycbc.

[5] J. Black and P. Rogaway. CBC MACs for arbitrary length messages. Advances in Cryptology
- CRYPTO 2000. Lecture Notes in Computer Science, Volume 1880, pp 197-215.

[6] J. Black and P. Rogaway. A Block-Cipher Mode of Operations for Parallelizable Message
Authentication. Advances in Cryptology - Eurocrypt 2002. Lecture Notes in Computer Science,
Volume 2332, pp 384-397.

[7] J. Daemen and V. Rijmen. Resistance Against Implementation Attacks. A Comparative Study
of the AES Proposals. In Proceedings of the Second AES Candidate Conference (AES2), Rome,
Italy, March 1999. Available at http://csrc.nist.gov/encryption/aes/aes home.htm.

9



[8] H. Krawczyk. LFSR-based hashing and authenticating. Advances in Cryptology, CRYPTO
1994, Lecture Notes in Computer Science, Volume 839, pp 129-139, Springer-Verlag 1994.

[9] T. Iwata and K. Kurosawa. OMAC : One-Key CBC MAC. Fast Software Encryption, 10th
International Workshop, FSE 2003. Lecture Notes in Computer Science, Volume 2887, pp 129-
153.

[10] C. S. Jutla. PRF Domain Extension using DAG. Theory of Cryptography: Third Theory
of Cryptography Conference, TCC 2006. Lecture Notes in Computer Science, Volume 3876 pp
561-580.

[11] K. Kurosawa and T. Iwata. TMAC : Two-Key CBC MAC. Topics in Cryptology - CT-RSA
2003: The Cryptographers’ Track at the RSA Conference 2003. Lecture Notes in Computer
Science, Volume 2612, pp 33-49.

[12] M. Luby and C. Rackoff. How to construct pseudo-random permutations from pseudo-random
functions. Advances in Cryptology, CRYPTO’ 85, Lecture Notes in Computer Science, Volume
218, pp 447, Springer-Verlag 1985.

[13] M. Nandi. A Simple and Unified Method of Proving Indistinguishability. Indocrypt 2006,
Lecture Notes in Computer Science, Volume 4329, pp 317-334.

[14] P. Rogaway. Bucket Hashing and Its Application to Fast Message Authentication. Advances
in Cryptology, CRYPTO 1995, Lecture Notes in Computer Science, Volume 963, pp 29-42,
Spronger-Verlag, 1995.

[15] D. R. Stinson. On the connections between universal hashing, combinatorial designs and
error-correcting codes. Congressus Numerantium 114, 1996, pp 7-27.

10


