
Improved Security Analysis of PMAC

Mridul Nandi and Avradip Mandal

University of Waterloo, Canada

Abstract. In this paper we provide a simple, concrete and improved
security analysis of PMAC, a Parallelizable Message Authentication
Code. We show that the advantage of any distinguisher for PMAC based

on a random permutation is at most 5qσ−3.5q2

2n , where σ is the total
number of message blocks in all q queries made by the distinguisher. In
the original paper by Black and Rogaway in Eurocrypt-2002, the bound

was (σ+1)2

2n−1 . Very recently, Minematsu and Matsushima in FSE-2007,

have provided a bound 10`q2

2n where ` is the maximum block length of
all messages queried by the distinguisher. Our new bound is better than
both original and recently proposed bound and guarantees much more
security of PMAC. We also have provided a complete, independent and
simple combinatorial proof. This proof idea may help us to find a similar
result for other MAC algorithms.

Keywords : MAC, PMAC, Distinguishing attack, pseudo random function,
random permutation.

1 Introduction

Modes of operation is an important tool in defining arbitrary length pseudo ran-
dom functions (PRF), pseudo random permutation (PRP) and MAC algorithms.
Intuitively, it is a method which extends a PRF (or PRP) of small and fixed size
domain into a PRF (or PRP) of arbitrary domain. Thus, it is also called as
a domain extension. The first modes of operation is Cipher Block Chaining or
CBC [3] which is a sequential construction. There are many literatures on im-
proving runtime and key size over CBC. Some of them can be found in XCBC [6],
TMAC [12], OMAC [10]. All these constructions are CBC type, sequential and
reducing key size mainly.

Black and Rogaway [7] in Eurocrypt-2002 proposed a parallelizable modes
of operation called as parallelizable Message Authentication Code or PMAC. It
would be more suitable and efficient where a parallel environment is possible. At
the same time it can be implemented in sequential with almost same performance
as CBC types modes of operations. Thus, it would be worthwhile to have an
improved security analysis of PMAC. Besides PMAC and all CBC-type modes
of operations, we have a wide class of DAG based modes of operations provided
by Jutla [11] and Nandi [16]. There are other modes of operations based on
different universal hash families [9, 17, 18]. Any secure modes of operation can

provide a MAC algorithm since any PRF is proven to be a secure MAC. Thus,
in this paper we mainly consider PRF security analysis of PMAC based on a
small domain PRP.

Intuitively, if a keyed family of functions is known as pseudo random func-
tion if it is hard to distinguish from an ideal keyed family of functions or random
function1. Here, we consider a distinguisher which can make at most q queries
altogether having at most σ many blocks with ` as the maximum block length
among all queries. Advantage of a distinguisher is roughly measures the success
probability to distinguish a keyed family of functions and arbitrary domain uni-
form random function. In all original papers of all known modes of operations,
the advantages are O(σ2

2n) (sometimes a weaker bound O(`2q2

2n)). Bellare, Pietrzak
and Rogaway [2] in Crypto-2005 provided an improved bound 12`q2

2n + o(`q2

2n) for
CBC. Recently, Minematsu and Matsushima [15] in FSE-2007 have provided
a bound 10`q2

2n for PMAC. Even if they have claimed that these are improved
bound, we would like to mention that these bound can be weaker for some at-
tackers. In particular, if an attacker makes only one query of large block length
` = q and all other queries have block length one then the original bound [7] for
PMAC is 8q2

2n whereas the recent bound is 10q3

2n [15].

Our work : In this paper we provide an improved bound for PMAC based
on a random permutation for all possible distinguishers. We show that the ad-
vantage for any distinguisher of PMAC is at most 5qσ−3.5q2

2n which is always less
than the original bound [7] as well as the recent bound [15]. We have used a
purely combinatorial approach to prove this bound. In this paper we have pro-
vided a concrete proof. In the original paper [7] one step in the proof of the
main theorem has been intuitively justified which needs rigorous analysis. In
particular, the authors of [7] stated that the advantage is bounded by probabil-
ity of some “bad” event defined in [7]. A similar type of argument was popularly
used in distinguishing pseudo random function and pseudo random permutation
which was later found to be wrong [4]. Thus, a detail argument on this state-
ment is required to understand the proof. On the other hand the proof of the
recent bound of PMAC [15] does not use the same argument, instead it is based
on Maurer’s methodology [14]. Here, we provide a counting based, completely
independent and concrete proof for our proposed improved bound.

Organization of the paper : In section 2 we briefly state MAC and its
related security notions. Then we provide some basic results and terminologies in
section 3 which would be used in this paper. In section 4, we provide a complete
definition of PMAC. An improved security bound is proved in section 5 and
finally we conclude with possible future works in section 6.

1 we also call it an uniform random function

2 Message Authentication Codes (MAC) and its Security
Notions

MAC or Message Authentication Code. A MAC is a family of functions
{Fk}k∈K where Fk : M→ T , M is a message space, T is a set of all tag space
and k ∈ K is a secret key chosen uniformly from a key space. If t = Fk(M) then
t is called the tag of the message M . In this paper, we assume the following :

1. T = F2n , the finite field of size 2n. We can represent F2n by {0, 1}n with
field addition + (or ⊕, XOR) and field multiplication ∗ (for a suitably chosen
primitive polynomial of degree n). In this paper the choice of the polynomial
is not important and hence we fix a primitive polynomial and the multipli-
cation ∗ on {0, 1}n is defined based on the polynomial. We denote 0 = 0n

for the additive identity.

2. M = {0, 1}≤L = ∪i≤L{0, 1}i (for a sufficiently large integer L). For example,
L = 264.

3. K = {0, 1}KeyLen. The value of KeyLen or key size depends on the construc-
tion. For example, PMAC based on AES has key size 128 with n = 128.

A distinguisher and its advantage. Func(M, T) is the set of all functions
from M to T . Let {Fk}k∈K be a keyed function family whose security is to be
considered. Let K be the uniform random variable on K and f = fK is the
induced random variable taking values on Func(M, T). Any random variable
taking values on Func(M, T) is called as a random function. Let u denote the
uniform random variable on Func(M, T) known as uniform random function.

A distinguisher AO is an oracle algorithm where O is an oracle from
Func(M, T). A distinguisher can make at most q queries adaptively consist-
ing of at most σ many “blocks” (the definition of block will be given later).
Finally, it returns either 1 or 0. Advantage for a distinguisher AO is computed
as follows :

Advf,u(A) ∆= Advf (A) ∆=
∣∣ Pr[Af = 1]−Pr[Au = 1]

∣∣.
Advf,u(q, σ) ∆= Advf (q, σ) ∆= maxA Advf (A)

where the maximum is taken over all distinguishers A making at most q queries
consisting of at most σ many blocks. Since we consider the distinguisher with
out any time restriction it is enough to consider a deterministic algorithm. A
random function f is said to be (q, σ, ε)-PRF if Advf (q, σ) ≤ ε. MAC forgery
security is also a popular security notion for MAC algorithms. In this paper we
only consider PRF security as it is a stronger security notion than the MAC
forgery security.

3 Some useful Results and Terminologies

In this section we state two interpolation theorems. The strong version of the
theorem would be used to provide our improved security analysis. We also present
some related terminologies on tuples and permutations.

3.1 Interpolation Theorem

We say that M = (M1, · · · ,Mq) is q-distinct if M i’s are distinct where M i ∈
M. Suppose f ′ ∈ Func(M, {0, 1}n) and M is q-distinct. We write f ′(q)(M) ∆=
(f ′(M1), · · · , f ′(Mq)) and call as an q-interpolation of f ′. Now we describe our
main tool which says that if the q-interpolation probability for f is close to
that of u then the advantage for any distinguisher is also small. We denote
||M ||n = d |M |

n e and called it as the number of blocks of M .

Theorem 1. (interpolation theorem)
Suppose for each q-distinct M = (M1, · · · ,Mq) with

∑q
i=1 ||M i||n ≤ σ and any

y = (y1, · · · , yq) ∈ ({0, 1}n)q we have

Pr[f (q)(M) = y] ≥ (1− ε)× Pr[u(q)(M) = y]

then Advf (q, σ) ≤ ε where f is a random function and u is an uniform random
function on Func(M, {0, 1}n).

For any y ∈ {0, 1}nq, and any distinct M, Pr[u(q)(M) = y] = 1
Nq where

N = 2n. Thus above theorem says that if

∀y ∈ ({0, 1}n)q, and ∀ q-distinct M, Pr[f (q)(M) = y] ≥ 1− ε

Nq

⇒ Advf (q, σ) ≤ ε.

This theorem has been proved in [16] and a variant of the theorem has been
proved in [5]. In [16], a strong version of the theorem has been proved. In this
paper we need the strong version of the theorem to prove our improved bound.

Theorem 2. (strong interpolation theorem)

∀y ∈ ({0, 1}n)q \ Bad, and ∀ q-distinct M, Pr[f (q)(M) = y] ≥ 1− ε1
Nq

⇒ Advf (q, σ) ≤ ε1 + ε2 where
|Bad|
Nq

≤ ε2.

3.2 Some more results and terminologies

We denote P(m, r) = m(m − 1) · · · (m − r + 1) where r ≤ m are nonnegative
integers. The number of ways we can choose distinct a1, · · · , ar from a set of size
m is P(m, r). We denote P(N, q) = Nq(1− δN,q). Thus, δN,q = 1− P(N,q)

Nq .
Consider a s-tuple a = (a1, · · · , as). We call the size of the tuple, denoted

as |a| by the number of distinct elements. For example, |(1, 2, 2, 3, 5, 1, 3)| = 4.
Two s-tuples a and b are said to be matching (or a is matching tuple with

respect to b) if ai = aj if and only if bi = bj . For example, (x, y, y, z, w, x, z)
is matching tuple w.r.t. (1, 2, 2, 3, 5, 1, 3). Trivially, for any two matching tuples
a and b, |a| = |b|. Now we have following simple and useful lemma. We leave
readers to verify the lemma by themselves.

Lemma 1. Given a tuple a of size r, the total number of matching tuples w.r.t.
a whose elements are from a set of size m is P(m, r).

Suppose a and b are matching tuples with elements from S. Then the total
number of permutations π on S such that π(a1) = b1, · · · , π(as) = bs is (|S| −
|a|)!. The conditions π(a1) = b1, · · · , π(as) = bs actually restrict on outputs
of |a| inputs. Outputs of remaining (|S| − |a|) many inputs can be defined in
(|S| − |a|)! ways.

Now we state some elementary results which would be used in this paper
frequently.

Lemma 2. 1. Suppose a ≤ b, c are positive integers then a
b ≤

a+c
b+c .

2. For 0 < a1, a2, · · · as < 1, (1−a1)(1−a2) · · · (1−as) ≥ (1−a1−a2 · · ·−as).

4 Definition of PMAC

In this section we will describe PMAC. Later we will analyze the security of it.
Let π : {0, 1}n → {0, 1}n be a permutation. Now we define an extended function,
known as PMAC function, Pπ : M → {0, 1}n. We first define a padding rule
which makes message size a multiple of n if it is not so.

pad(M) = M ‖ 10s if n 6 | |M |
= M otherwise

}
(1)

where s is the smallest nonnegative integer such that s + 1 + |M | is a multiple
of n.

Algorithm PMAC : Y = Pπ(M)

step-1 Write pad(M) = x1 ‖ · · · ‖ x` ‖ z, where ` ≥ 0 and |x1| = · · · |x`| = |z| = n.
\\ We say these xi’s and z as blocks. If ` = 0, then pad(M) is nothing but
z. Thus, ` + 1 is the total number of message blocks for pad(M).

step-2 Compute w = π(0). \\ Since π is a random permutation and kept secret the
value of π(0) has some distribution and can be used as a part of the key of
the algorithm.

step-3 Compute vi = xi + ci ∗ w, 1 ≤ i ≤ `. \\ ci’s are some fixed distinct nonzero
constants as given in [7]. For our security analysis, we only need that ci 6= 0
and they are distinct. ({0, 1}n,+, ∗) is any Galois field GF (2n). One can
think + as ⊕ as it is the simplest operation in both hardware and software.

step-4 Compute wi = π(vi), 1 ≤ i ≤ `.

Fig. 1. PMAC Algorithm : pad(M) = x1 ‖ · · · ‖ x` ‖ z, vi = xi + ci ∗ w and ∆ = c ∗ w
if n

�
� |M | otherwise ∆ = 0. Pf (M) = Y .

step-5 Compute v = z + ∆ +
∑

1≤i≤` wi, where ∆ = c ∗ w if |M | is multiple of n,
otherwise we set ∆ = 0. \\ Again, c is a nonzero fixed constant which is
different from c1, c2, · · · , and it is given in [7].

step-6 Finally, Y
∆= Pπ(M) = π(v).

0 and vi’s are intermediate inputs, w and wi’s are intermediate outputs
and v is the final input. The final input v is said to be new if v 6= 0 and v 6= vi,
1 ≤ i ≤ `. Given a message M , all these intermediate inputs, intermediate
outputs, final inputs depend only on the underlying permutation π. If v is new
then we also say that π is new for M . We can define similarly for q distinct
messages M1, · · · ,Mq.

1. We say final inputs are new if all q final inputs are distinct and different
from all intermediate inputs.

2. The underlying permutation π is said to be new for M = (M1, · · · ,Mq) if
the final inputs are new.

3. A new permutation π is said to be a good permutation for M with respect
to a q-distinct y = (y1, · · · , yq) if the set of all intermediate outputs are
disjoint from the set {y1, · · · , yq}.

5 Improved Security Analysis of PMAC

Now we give a lower bound of size of the set Iy = {π : Pπ(M1) = y1, · · · ,Pπ(Mq) =
yq} for q-distinct M = (M1, · · · ,Mq) and q-distinct y = (y1, · · · , yq). This esti-
mation provide a lower bound of interpolation probability and hence we can use
strong interpolation theorem.

Let ||M i||n = `i and write M i = M i
1 ‖ · · ·M i

`i
‖ zi, where |M i

j | = |zi| = n,
1 ≤ i ≤ q and 1 ≤ j ≤ `i. We write σ′ =

∑q
i=1 `i and σ = σ′ + q and N = 2n.

Let ∆ = c ∗ w if n
∣∣ |M | otherwise ∆ = 0. Given a permutation π,

1. w[π] = π(0), vi
j [π] = ci ∗ w[π] + M i

j ,
2. wi

j [π] = π(vi
j [π]).

3. vi[π] = zi + ∆i +
∑

1≤j≤`i
wi

j [π].

Definition 1. Given w ∈ F2n , we define vi
j = ci ∗ w + M i

j and denote Vw =
(0, v1

1 , · · · , v1
`1

, · · · , vq
1, · · · v

q
`q

). Given a tuple W = (w,w1
1, · · · , w1

`1
, · · · , wq

1, · · · , wq
`q

)
we define a corresponding input tuple VW = (Vw, v1, · · · , vq) where vi =
zi + ∆i +

∑
1≤j≤`i

wi
j.

Given π, we define W[π] = (w[π], w1
1[π], · · · , w1

`1
[π], · · · , wq

1[π], · · · , wq
`q

[π]).
We denote V[π] = (0, v1

1 [π], · · · , v1
`1

[π], · · · , vq
1[π], · · · vq

`q
[π], v1[π], · · · , vq[π]) Note

that V[π] is the corresponding input tuple of W[π] and hence V[π] = VW[π].

Let Ts denote the set of s-tuples whose elements are from F2n . We define a
mapping

W : Perm(F2n) → Tσ′+1 : W(π) = W[π].

A tuple W = (w,w1
1, · · · , w1

`1
, · · · , wq

1, · · ·w
q
`q

) is said to be permutation compat-
ible if W and V′

w are matching tuples and we denote the set of all permutation
compatible tuples by T perm

σ′+1 ⊂ Tσ′+1.

Lemma 3. W(Perm(F2n)) = T perm
σ′+1 and for any tuple W ∈ T perm

σ′+1 of size s
there are (N − s)! permutations π such that W(π) = W.

Proof. Given any permutation W[π] and Vπ(0) are matching tuples. Thus,
W(Perm(F2n)) ⊆ T perm

σ′+1 . Conversely, if W = (w,w1
1, · · · , wq

`q
) and V′

w =
(0, v1

1 , · · · , vq
`q

) are matching tuples then for any permutation π such that π(0) =
w, π(vi

j) = wi
j , W(π) = W. Thus, W(Perm(F2n)) ⊇ T perm

σ′+1 . Since |W| = s, we
can choose the above permutations in (N − s)! ways.

Two tuples are said to be disjoint if they do not have any common elements.
A tuple W = (w,w1

1, · · · , w1
`1

, · · · , wq
1, · · · , wq

`q
) is said to be y-disjoint if W and

y are disjoint. Thus, a permutation π is said to be new if (v1[π], · · · , vq[π]) is
disjoint from Vπ(0) = (0, v1

1 , · · · , vq
`q

). For a q-distinct y, a good permutation π
satisfies two conditions :

1. (v1[π], · · · , vq[π]) is disjoint from Vπ(0) and
2. W and y are disjoint.

Proposition 1. The number of permutations π such that W[π] is y-disjoint is
at least N !(1− qσ−q2−σ+2q

N).

Proof. let S = {0, 1}n \ {y1, · · · , yq}. Write S = ti≥1Si (disjoint union) where
Si = {a ∈ S : |V′

a| = i}. For a fixed choice of a ∈ Si, the number of matching
tuples W = (a,w1

i , · · · , wq
`q

) with respect to Va where the elements are chosen
from S is P(N − q, i − 1) since we can choose (i − 1) distinct elements from
the set of size N − q. For any such W, there are (N − i)! many permutations π

such that W[π] = W. Hence we have
∑σ′+1

i=1 |Si| × (N − i)! × P(N − q, i − 1)
permutations π such that W[π] is y-disjoint. Now for each 1 ≤ i ≤ σ′ + 1,

P(N−q, i−1) ≥ P(N−1, i−1)×(1− q − 1
N

)i−1 ≥ P(N−1, i−1)×(1−σ′(q − 1)
N

).

and hence,

σ′+1∑
i=1

|Si| × (N − i)!×P(N − q, i− 1) ≥ N !(1− q

N
)(1− σ′(q − 1)

N
)

≥ N !(1− qσ − q2 − σ + 2q

N
).

Proposition 2. The number of new permutations for 2-distinct (M1,M2) is at
least N !(1 − 4`1+4`2+3

N). Thus, the number of new permutations for q-distinct
M = (M1, · · · ,Mq) is at least N !(1− 4(q−1)σ′+1.5q(q−1)

N).

Proof of the proposition is given at the end of the section. It needs several
cases. The second part of the proposition directly follows from the first part.
Since a permutation is new for M implies the permutation is new for M i1 ,M i2

for all choices of i1 and i2. Note that
∑

i `i = σ′. From Proposition 1 and
Proposition 2, we can say that the total number of good permutations is at least
N !(1− 5qσ−3.5q2

N). Let IG be the set of all good permutations.

Lemma 4. For q-distinct y, |Iy ∩ IG| ≥ |IG|
P(N,q) .

Proof. Consider the restricted function W : IG :→ Tσ′+1. Now for any W ∈
W(IG) with |W| = i we have (N−i)! permutations π such thatW(π) = W. Since
all these permutations are good (that is, final inputs are new and intermediate
outputs are disjoint from {y1, · · · , yq}) there are (N− i−q)! many permutations
π such that W(π) = W and π(vi) = yi, 1 ≤ i ≤ q. Let mi be the number of
tuples from W(IG) with size i. Thus, |IG| =

∑
i mi(N − i)! and |IG ∩ Iy| =∑

i mi(N − i− q)! ≥ 1
P(N,q)

∑
i mi(N − i)! ≥ |IG|

P(N,q) .

|Iy|
N !

≥ |IG|
P(N, q)×N !

≥ 1
Nq

×
(1− 5qσ−3.5q2

N)
1− δN,q

≥ (1− ε1)
Nq

where ε1 = 5qσ−3.5q2

N − δN,q. Let Bad = {y : y is not q-distinct }. So, |Bad|Nq = 1−
P(N,q)

Nq = δN,q. By using strong interpolation theorem, we have AdvPΠ
(q, σ) ≤

5qσ−3.5q2

N .

Theorem 3. (Improved security bound for PMAC)
Let Π be a random function taking uniform distribution on Perm({0, 1}n). Let
PΠ be the PMAC random function based on the uniform random permutation
Π. Then for any distinguisher A making at most q many queries having at most
σ many blocks in total, has distinguishing advantage less than 5qσ−3.5q2

2n . Thus,

AdvPπ (q, σ) ≤ 5qσ − 3.5q2

2n
.

This is indeed an improved bound.

Bellare, Pietrzak and Rogaway [2] have shown that AdvCBC(q, `) ≤ 12`q2

2n +
64`4q2

22n where CBC is the cipher-block-chaining MAC algorithms and ` is the
maximum block length among all q queries. The original bound of CBC [3] is
`2q2

2n . Bellare, Pietrzak and Rogaway [2] have claimed their new bound as an
improved bound. But it is easy to see that if we choose ` ≤ 3 then the original
bound [3] is better than the new bound [2].

In this paper we consider PMAC. Let us write down all the bounds till now
we have for PMAC. In the original paper by Black and Rogaway [7], the bound
is (σ+1)2

2n−1 . Very recently, Minematsu and Matsushima [15] in FSE-2007, have
provided a bound 10`q2

2n . Again, the authors have claimed this recent bound as
an improvement bound over the original bound. For example, an adversary is
making (q−1) queries of block length one and one query of block length q. Then,
σ = 2q − 1, ` = q and hence original bound becomes 8q2

2n , whereas the recent
bound is 10`3

2n which is not at all an improved bound. So, we should be careful
when we are looking for improved (in real sense) bounds.

In this paper, we have provided a bound 5σq−3.5q2

2n . It is easy to see that for
1 ≤ q ≤ σ =

∑q
i=1 `i, and ` = maxi`i,

(1)
5qσ − 3.5q2

N
<

2(σ + 1)2

N
.

(2)
5qσ − 3.5q2

N
<

10`q2

N
.

Thus our bound is better than all previously known bounds for PMAC. The
analysis we have used can also be used for other constructions like OMAC which
does not have any improved security analysis yet.

Proof of the Proposition 2

We first assume that `1, `2 > 0. We have four possible cases.

Case-1 : `1 = `2 = ` (say), x1
1 = x2

1, · · · , x1
` = x2

` , z1 = z2.

This case can happen only if pad(M1) = M1 = M2 ‖ 10s = pad(M2) (or in
other way). Let S = {w ∈ F2n : (v1

1 , v2
1) is disjoint from (0, v1

2 , · · · , v1
` , v2

2 , · · · , v2
`)

and ∆1 + z1 6= ∆2 + z2}. Clearly, |S| ≥ N − `− 1 since

S = {0, 1}n \ ({
x2

j − x2
1

c1 − cj
: 2 ≤ j ≤ `} ∪ {−x2

1

c1
} ∪ {z2 − z1

c
}).

We write S = tiSi (disjoint union) where Si = {a ∈ S : |Va| = i}. Now for each
a ∈ Si, there are P(N − 1, i− 2) tuples W1 = (a,w1

2, · · · , w1
`1

, w2
2, · · · , w2

`2
) such

that W1 is matching with V1 = (0, v1
2 , · · · , v1

`1
, v2

2 , · · · , v2
`2

).

1. For each such tuple we have at least (N −2`−2− i) choices of w1
1 = w2

1 such
that W = (a,w1

1, · · · , w1
`1

, w2
1, · · · , w2

`2
) is matching with Va and (v1, v2) is

disjoint from Va. This is true since we can choose

w1
1 ∈ {0, 1}n\({w1

j : 2 ≤ j ≤ `}∪{a}∪{w : v1 = 0, v1
j }∪{w : v2 = 0, v1

j , v1})

The size of the above set is at least N−(i−1)−(`+1)−(`+2) = N−2`−2−i.
2. For each such tuple W, there are (N − i)! many permutations such that
W(π) = W. Hence, the number of new permutations is at least∑

i

|Si|P(N − 1, i− 2)(N − 2`− i− 2)(N − i)!

≥ N !× N − `− 1
N

× N − 2`− i− 2
N − i + 1

≥ N !(1− 3` + 4
N

)

Case-2 : `1 = `2 = ` (say) and x1
1 = x2

1, · · · , x1
` = x2

` , z1 6= z2.

A similar analysis like Case-1 shows that there are at least N !(1 − 3`+5
N) many

permutations generating new final inputs. Thus, we ignore the detail proof of
this case. Now we assume that x1

1 · · ·x1
`1
6= x2

1 · · ·x2
`2

. Thus, we have either
x1

1 = x2
1, · · · , x1

`1
= x2

`2
or x1

1 6= x2
1 (without loss of generality).

Case-3 : `2 > `1 : x1
1 = x2

1, · · · , x1
`1

= x2
`2

.

We want to choose W = (w,w1
1, · · · , w1

`1
, w2

1, · · · , w2
`2

)-tuple, such that (v1
1 , v2

`2
, v1, v2)

is 4-distinct tuple and disjoint from (0, v1
2 , · · · , v1

`1
, v2

2 · · · , v2
`2−1). Note that, here

we choose W such that w1
1 = w2

1, · · · , w1
`1

= w2
`1

.

1. Let S denote the the set of all w such that (v1
1 , v2

`2
) is 2-distinct and disjoint

from (0, v1
2 , · · · , v1

`1
, v2

2 · · · , v2
`2−1).

Hence, w 6= x1
1−x2

j

cj−c1
,

x2
`2
−x2

j

cj−c`2
,−x1

1
c1

,−x2
`2

c`2
for 2 ≤ j ≤ `2 − 1. Thus, |S| ≥ (N −

2`2 + 2).
We write S = tiSi, where Si = {a ∈ S : |Va| = i}. Now for each a ∈ Si,
there are P(N − 1, i− 3) tuples W1 = (a,w1

2, · · · , w1
`1

, w2
2, · · · , w2

`2−1) such
that W1 is matching with V1 = (0, v1

2 , · · · , v1
`1

, v2
2 , · · · , v2

`2−1).

2. We choose w1
1 6∈ (a,w1

2, · · · , w1
`1

, w2
2, · · · , w2

`2−1) such that v1 6= 0, v2
j : 1 ≤

j ≤ `2. Thus, total number of choices of w1
1 is at least (N − i + 2− `2− 1) =

(N − i− `2 + 1). Similarly, we can choose w2
1 in (N − i− `2 − 1) ways (here

we have two more restrictions that w2
1 6= w1

1 and v2 6= v1).
3. For each such tuple W, there are (N − i)! many permutations such that
W(π) = W. Hence, the number of new permutations is at least∑

i

|Si|P(N − 1, i− 3)(N − i)!(N − i− `2 − 1)(N − i− `2 + 1)

≥ N !× N − 2`2 + 2
N

× N − i− `2 − 1
N − i + 1

× N − i− `2 + 1
N − i + 2

≥ N !(1− 4`2 + 1
N

)

Case-4 : x1
1 6= x2

1.

We want to choose (w,w1
1, · · · , w1

`1
, w2

1, · · · , w2
`2

)-tuple (some of them may be
equal), such that (v1

1 , v2
1 , v1, v2) is 4-distinct tuple and disjoint from (0, v1

2 , · · · , v1
`1

, v2
2 · · · , v2

`2
).

1. Let S denote the the set of all w such that (v1
1 , v2

1) is 2-distinct and disjoint
from (0, v1

2 , · · · , v1
`1

, v2
2 · · · , v2

`2
).

Hence, w 6= x1
1−x1

i

ci−c1
,

x2
1−x2

i

ci−c1
,

x1
1−x2

j

cj−c1
,

x2
1−x1

j

cj−c1
,−x1

1
c1

,−x2
1

c1
for 2 ≤ i ≤ `1, 2 ≤ j ≤ `2.

Thus, |S| ≥ (N − 2`1 − 2`2 + 2).
We write S = tiSi, where Si = {a ∈ S : |Va| = i}. Now for each a ∈ Si,
there are P(N − 1, i − 3) tuples W1 = (a,w1

2, · · · , w1
`1

, w2
2, · · · , w2

`2
) such

that W1 is matching with V1 = (0, v1
2 , · · · , v1

`1
, v2

2 , · · · , v2
`2

).
2. We choose w1

1 6∈ (a,w1
2, · · · , w1

`1
, w2

2, · · · , w2
`2

) such that v1 6= 0, v1
i , v2

j : 1 ≤
i ≤ `1, 1 ≤ j ≤ `2. Thus, total number of choices of w1

1 is at least (N −
i + 2− `1 − `2 − 1) = (N − i− `1 − `2 + 1). Similarly, we can choose w2

1 in
(N − i− `1− `2− 1) ways (here we have two more restrictions that w2

1 6= w1
1

and v2 6= v1).
3. For each such tuple W, there are (N − i)! many permutations such that
W(π) = W. Hence, the number of new permutations is at least∑

i

|Si|P(N − 1, i− 3)(N − i)!(N − i− `1 − `2 − 1)(N − i− `1 − `2 + 1)

≥ N !× N − 2`1 − 2`2 + 2
N

× N − i− `1 − `2 − 1
N − i + 1

× N − i− `1 − `2 + 1
N − i + 2

≥ N !(1− 4`1 + 4`2 + 1
N

)

We note that in all these cases we have assumed that `1, `2 ≥ 1. Now we
prove the statement for other two possible cases where `1 or `2 can be zero.

1. Let `1 = 0 = `2. Thus, v1 = c∗w+z1 or v1 = z1 (depending on the padding).
Similarly for v2. It is easy to see that there are at least (N − 3)(N − 1)! =
N !(1− 3

N) new permutations.
2. The last remaining case is `1 = 0, but `2 > 0. We choose w such that (v1, v2

1)
is disjoint from (0, v2

2 , · · · , v2
`2

). There are at least (N − 2`2) such choices of
w. Now for each such choice w ∈ Si (as defined in case-3 or case-4), we
have (N − `2 − 1 − i) choices of w2

`2
such that v2 6∈ (0, v2

1 , · · · , v2
`2

, v1) and
w2

1 6∈ (w,w2
2, · · · , w2

`2
). Thus, the number of new permutations is at least∑

i

|Si|P(N − 1, i− 2)(N − i)!(N − i− `2 − 1)

≥ N !× N − 2`2
N

× N − i− `2 − 1
N − i + 1

≥ N !(1− 3`2 + 2
N

)

Thus, the number of new permutations is at least N !(1− 4`1+4`2+3
N).

6 Conclusion

This paper provides a simpler and improved upper bound 5qσ−3.5q2

2n for the dis-
tinguishing advantage of PMAC. This bound is always better than the recent as
well as the original bound in a true sense. We have provided a purely combina-
torial approach which seems to be a strong tool in this areas of cryptography.
As a future research work, we hope our improved security analysis can be ex-
tended to have an improved bound on a general class given in [11, 16] and other
constructions such as XCBC, TMAC and possibly OMAC.

References

1. M. Bellare, A. Boldyreva, L. Knudsen and C. Namprempre. On-Line Ciphers and
the Hash-CBC constructions. Advances in Cryptology - CRYPTO 2001. Lecture
Notes in Computer Science, Volume 2139, pp 292-309.

2. M. Bellare, K. Pietrzak and P. Rogaway. Improved Security Analysis for CBC
MACs. Advances in Cryptology - CRYPTO 2005. Lecture Notes in Computer Sci-
ence, Volume 3621, pp 527-545.

3. M. Bellare, J. Killan and P. Rogaway. The security of the cipher block chanining
Message Authentication Code. Advances in Cryptology - CRYPTO 1994. Lecture
Notes in Computer Science, Volume 839, pp 341-358.

4. M. Bellare and P. Rogaway. Code-Based Game-Playing Proofs and the Security of
Triple Encryption. Available in http://eprint.iacr.org/2004/331.pdf

5. Daniel J. Bernstein. A short proof of the unpredictability of cipher block chaining
(2005). URL: http://cr.yp.to/papers.html#easycbc.

6. J. Black and P. Rogaway. CBC MACs for arbitrary length messages. Advances in
Cryptology - CRYPTO 2000. Lecture Notes in Computer Science, Volume 1880, pp
197-215.

7. J. Black and P. Rogaway. A Block-Cipher Mode of Operations for Parallelizable
Message Authentication. Advances in Cryptology - Eurocrypt 2002. Lecture Notes
in Computer Science, Volume 2332, pp 384-397.

8. J. Daemen and V. Rijmen. Resistance Against Implementation Attacks.
A Comparative Study of the AES Proposals. In Proceedings of the Second
AES Candidate Conference (AES2), Rome, Italy, March 1999. Available at
http://csrc.nist.gov/encryption/aes/aes home.htm.

9. H. Krawczyk. LFSR-based hashing and authenticating. Advances in Cryptology,
CRYPTO 1994, Lecture Notes in Computer Science, Volume 839, pp 129-139,
Springer-Verlag 1994.

10. T. Iwata and K. Kurosawa. OMAC : One-Key CBC MAC. Fast Software Encryp-
tion, 10th International Workshop, FSE 2003. Lecture Notes in Computer Science,
Volume 2887, pp 129-153.

11. C. S. Jutla. PRF Domain Extension using DAG. Theory of Cryptography: Third
Theory of Cryptography Conference, TCC 2006. Lecture Notes in Computer Science,
Volume 3876 pp 561-580.

12. K. Kurosawa and T. Iwata. TMAC : Two-Key CBC MAC. Topics in Cryptology
- CT-RSA 2003: The Cryptographers’ Track at the RSA Conference 2003. Lecture
Notes in Computer Science, Volume 2612, pp 33-49.

13. M. Luby and C. Rackoff. How to construct pseudo-random permutations from
pseudo-random functions. Advances in Cryptology, CRYPTO’ 85, Lecture Notes in
Computer Science, Volume 218, pp 447, Springer-Verlag 1985.

14. U. Maurer. Indistinguishability of Random Systems. Advances in Cryptology-
EUROCRYPT02, LNCS 2332, pp. 110-132, 2002.

15. K. Minematsu and T. Matsushima. New Bounds for PMAC, TMAC, and XCBC.
to be published in FSE 2007.

16. M. Nandi. A Simple and Unified Method of Proving Indistinguishability. In-
docrypt 2006, Lecture Notes in Computer Science, Volume 4329, pp 317-334.

17. P. Rogaway. Bucket Hashing and Its Application to Fast Message Authentication.
Advances in Cryptology, CRYPTO 1995, Lecture Notes in Computer Science, Volume
963, pp 29-42, Spronger-Verlag, 1995.

18. D. R. Stinson. On the connections between universal hashing, combinatorial de-
signs and error-correcting codes. Congressus Numerantium 114, 1996, pp 7-27.

