
An improved collision probability for CBC-MAC and PMAC

Avradip Mandal and Mridul Nandi
University of Waterloo, Canada

February 1, 2007

Abstract

In this paper we compute the coliision probability of CBC-MAC [3] for suitably chosen
messages. We show that the probability is Ω(`q2/N) where ` is the number of message block, N
is the size of the domain and q is the total number of queries. For random oracle the probability
is O(q2/N). This improved collision prbability will help us to have an efficient distinguishing
attack and MAC-forgery attack. We also show collision probability for PMAC with collision
probability Ω(q2/N) (strictly more than birth day bound). We have used a purely combinatorial
approach to obtain this bound. The similar analysis can be made for other MAC like XCBC [5],
TMAC [9], OMAC [7] etc. We hope this apporach will help us to calculate related probabilties.

Keywords : MAC, CBC-MAC, PMAC, Distinguishing attack, random function.

1 Introduction

1.1 Message Authentication Codes (MAC) and its Security Notions

Definition of MAC

Message Authentication Code or MAC is a secret key version of digital signature. It is used as
authentication of a message. A MAC is a family of functions {Fk}k∈K where Fk : M → T , M is
the message space, T is the set of all tag space and k ∈ K is a secret key chosen randomly from a
key space. If t = Fk(M) then t is called the tag of the message M .

In this paper we consider T = D, a group with addition + and identity element 0 and M = D`

for fixed integer ` ≥ 2. In practice, D = {0, 1}128 and M = {0, 1}≤264
. In this case, we need

some padding rule or preprocessing of a message (which can make message size multiple of 128
bits). We ignore details about padding in this paper. Here we are going to introduce and analyze
some attacks on CBC-MAC (Cipher Block-Chaining) [3] and PMAC [6] (Parallelized Message
Authentication Code) defined over a fixed length message block, namely D`.

Security Notions of MAC

There are two popular security notions. Those are distinguishing attack and forgery attack. There
are some other variants.

1. Distinguishing Attack : Let Adversary AO be an oracle algorithm where O = Fk chosen
randomly from F = {Fk : k ∈ K} or O = F chosen randomly from Func := {F : M→ T}.

1

The adversary can make q queries adaptively and runs in time at most t. It returns either 1
or 0. The advantage for distinguishing attack is computed as follows :

Advpf (A : q, t) = |Pr[AF = 1]−Pr[AFunc = 1|

Intuitively, if the advantage is high then the attacker A can distinguish the random function
class and MAC family of functions with high probability. If it is low, we sometimes say that
the family F is a pseudo-random function family.

2. MAC forgery : The MAC forgery attackers make successive queries for Fk obtain responses.
Let (M1, t1), · · · , (Mq, tq) be all query-responses of the oracle. If attacker can return a pair
(M, t) such that (M, t) 6= (Mi, ti) for all i and t = Fk(M), then we say that the attacker forges.
The probability for forging a message-tag pair is the advantage for MAC-forgery attack.

In general, if one can forge a message (say (M, t)) using this forgery attacker one can make a
distinguishing attack (same as the forgery attacker except at the end it will submit the query M
and checks whether the response is t or not). Thus, forgery attacker is much stronger. In this paper
we will present forgery attacker and automatically it induces a distinguishing attack.

Examples of MAC

In this section we will briefly describe CBC-MAC and PMAC. Later we will analyze attacks on
them.

1. CBC-MAC : Let f be a function on a group (D,+) (i.e, from (D, +) to (D,+)) where
|D| = N . For a fixed ` ≥ 1, define the iterated functions recursively as follow :

f+(x1, · · · , x`) :=: f+
` (x1, · · · , x`) := f(f+

`−1(x1, · · · , x`−1) + x`),

where xi ∈ D, f+
0 () :=: f+

0 (λ) := 0 and λ is the empty string. We denote f+(x1, · · · , x`) by
CBCf (x1, · · · , x`).

2. PMAC : We define PMAC for fixed length. In this paper we will give an attack for message
block length two. For general definition of PMAC (for any size message input) see [6]. Let
(x1, · · · , x`−1, x`) ∈ D` where each xi ∈ D and ` > 1. Compute w =

∑`−1
i=1 f(xi + ci · f(0))

where c1, · · · , c`−1 are known constants from D. The output of PMAC is f(w+x`). For ` = 2,
the value of PMAC at (x1, x2) and

PMAC(x1, x2) = f(x2 + f(x1 + c1f(0))).

In this paper we consider ` = 2 when we analyze the collision probability for suitable messages.

1.2 Known Results and Our Results

The only known attack on CBC-MAC is based on collision. Suppose we know a collision, CBC(X1) =
CBC(X2) then we know that CBC(X1, x) = CBC(X2, x) for any x ∈ D. Thus we have the fol-
lowing forgery attack. Make query (X1, x) and obtains the response t. Then ((X2, x), t) is a valid
message-tag pair. For distinguishing attack one can use this information to distinguish. Similar
thing holds for PMAC or many other MAC like XCBC, TMAC, OMAC etc.

2

In this paper we will show how efficiently (in terms of the number of queries) one can obtain a
collision for CBC-MAC. We will estimate the collision probability more closely for suitably chosen
messages and we can use the similar calculation for PMAC and any other CBC-like construction
also.

Our Attack Algorithm for CBC

Let Xi = (xi, 0, · · · , 0) ∈ D` be `-tuples such that each xi ∈ D’s are distinct, 1 ≤ i ≤ q. Clearly,
CBCf (xi, 0, · · · , 0) = f (`)(xi). The function f (i)(x) is defined as follows for i ≥ 0:

i ≥ 1, f (i)(x) =

i times︷ ︸︸ ︷
f ◦ · · · ◦ f (x) and f (0)(x) = x i.e., f (i)(x) = f(f (i−1)(x)).

We want to find a lower bound of collision probability that is

Prf [CBCf (Xi) = CBCf (Xj) for some i 6= j]

= Prf [f (`)(xi) = f (`)(xj) for some i 6= j]

= Prf [
⋃

1≤i<j≤q

Ci,j]

≥
∑

i<j

Prf [Ci,j]− 3
∑

i<j<k

Prf [Ci,j,k]− 1
2

∑

i<j,k<m

{i,j}∩{k,m}=∅

Prf [Ci,j ∩ Ck,m] (1)

where Ci,j denotes the event that f (`)(xi) = f (`)(xj) and Ci,j,k denotes the event that f (`)(xi) =
f (`)(xj) = f (`)(xk). The last inequality follows from Principle of Inclusion and Exclusion. Now for
any event E,

Prf [E] =
|{f : D → D : E is true }|

NN
.

Note that NN is the total number of f : D → D. Thus, this is the probability that a uniform
random function on D (or a function chosen uniformly from the set of all functions) satisfies the
event E. To have an estimate in Equation 1, we are interested to compute the following bounds

• |Fi,j,k := {f : f (`)(xi) = f (`)(xj) = f (`)(xk)}| ≤ 2`2NN−2 + 6`6NN−3 where xi, xj and xk are
distinct.

• |Fi,j,k,m := {f : f (`)(xi) = f (`)(xj), f (`)(xk) = f (`)(xm)}| ≤ NN−2`2 + NN−3(6`3 + 2`5) +
28`8NN−4 where xi, xj , xk and xm are distinct.

• |Fi,j := {f : f (`)(xi) = f (`)(xj)}| ≥ NN−1 exp(−4`2

N) where xi and xj are distinct and
1 ≤ ` ≤ N

4 + 1
2 .

To prove above three bound we will use the notions of directed graphs. If y = f(x) then (x, y)
will be considered as an edge of a graph. The above event could be translated into a counting
problem in graph theory. Mainly to compute the number of non-isomorphic graphs in a special
class. We will describe these in more detail later. Now, we have the following main theorem of this
paper (by using Equation 1 and three bounds obtained above).

3

Theorem : The collision probability, Prf [CBCf (Xi) = CBCf (Xj) for some i 6= j], is at least

∆ :=

(
q

2

)
`

n
exp(−4`2

N
)− 3

(
q

3

)
(
2`2

N2
+

6`6

N3
)− 1

2

(
q

2

)(
q − 2

2

)
(
28`8

N4
+

6`3 + 2`5

N3
+

`2

N2
)

For large N , the above expression is Ω(q2`
N)−c(q, `, N), when q2`

N < 8
3 and ` = o(N

1
3). Also c(q, `, N)

goes to zero when q2` = O(N), ` = o(N
1
3) and N is large.

Remark 1 Bellare [1] proved that the CBC-MAC based on random permutation is secure and the
advantage is bounded by O(`q2/N) provided ` = o(N1/3). Here we show that there is an attack for
CBC based on random function with advantage Ω(`q2/N). Our idea of the attack algorithm can
not be easily extended to CBC based on random permutation. It seems that CBC based on random
permutation is more secure than that is based on random function.

Our Attack Algorithm for PMAC

We provide an analysis of collision probability for PMAC of two block message, that is ` = 2. We
choose messages (x1, 0), · · · (xq, 0) ∈ D2 and want to compute a lower bound for collision probability
for these messages. Note that, for ` = 2, PMAC acts very similar to CBC-MAC with ` = 2. We
have the following main results for PMAC.

Theorem : When ((x1, 0), (x2, 0), ..., (xq, 0)) are queried (xi’s are distinct and not equal to
zero) to a PMAC oracle, the advantage with respect to a random oracle is at least Ω(q2

N)− q
N , when

q2

N ≤ c for some d > 0 such that q ≥ 1
d , c ≤ N

3(1+d) , and q ≤ N
4 .

2 A Note on Graph Theory

Directed Graph

• Let G = (D, E) be a directed graph where E ⊂ D ×D and |D| = N . Denote the number of
edges by e(G).

• A degree of a vertex v (denoted as deg(v)) is the sum of out-degree (or degout(v)) and
in-degree (or degin(v)) of the vertex where

degout(v) = |{u : (v, u) ∈ E}| and degin(v) = |{u : (u, v) ∈ E}|.

• Define V (G) = {v : deg(v) > 0}. Denote the number of vertices with positive degree by
r(G) i.e., |V (G)| = r(G). We denote ∆(G) = r(G)− e(G). It is an important parameter of a
graph. The corresponding undirected graph of a directed graph is the graph considering all
directed edges as undirected. So, it may contain a self loop and at most two parallel edges.
For a connected undirected graph G, G is tree if and only if ∆(G) = 1 and G contains exactly
one cycle if and only if ∆(G) = 0. We term them as unicycle graphs.

• In this paper we are interested in some special directed graphs. They are the following :

– A straight line path of length k is a directed graph G = (D, E) where E = {(x0, x1), (x1, x2),
· · ·, (xk−1, xk)} and x0, x1, · · · , xk are distinct. Here x0 is the source node and xk is the
end points of the straight line path. Here ∆(G) = 1.

4

– A cycle is a directed graph G = (D, E) where E = {(x0, x1), (x1, x2), · · · , (xk−1, xk =
x0)} and x0, x1, · · · , xk−1 are distinct. Here k can be 1. In this case, the cycle consists
of a single self loop (x0, x0) (note that x1 = x0). Here ∆(G) = 0.

– A s-unicycle is a directed graph G = (D, E) where E is union of cycle C and s1(≤ s)
distinct straight line paths P1, · · · , Ps1 where the end points of Pi’s are vertices of the
cycle C. The paths Pi may not be disjoint. Each straight line path contributes at most
one node in V (G) with in-degree zero. Thus there are at most s nodes in V (G) with
in-degree zero. Here ∆(G) = 0.

• Let G1 = (D, E1) and G2 = (D, E2) be two directed graphs. A function α : D → D is an
isomorphism from G1 to G2 if α is bijection and (x, y) ∈ E1 if and only if (α(x), α(y)) ∈ E2.
In this case, we write G1

∼= G2. Moreover for A ⊂ D, if α is identity on A then α is called
A-isomorphism and we write G1

∼=A G2. G1 and G2 are said to be A-isomorphic. If there
is no such A-isomorphism then they are non A-isomorphic. The notion of A-isomorphism is
not standard and we need this notion in this paper.

Example 1 In the Figure 1 all graphs are isomorphic but G1 and G2 are not A-isomorphic where
A = {1, 2, 4, 5}. Clearly, G1 and G3 are A-isomorphic.

Lemma 1 The number of graphs isomorphic to a given graph G = (D, E) is at most N(N −
1) · · · (N − r + 1) (which is less than N r). If A ⊂ V (G) with size s then the number of graphs
A-isomorphic to G is at most (N − s)(N − s + 1) · · · (N − r + 1) (which is less than N r−s).

Proof. If α : G → G′ = (D, E′) is an isomorphism for an isomorphic copy of G. The graph
is completely determined by V (G′) and α (α determines uniquely the edge set E′). Now we can
choose V (G′) in

(N
r

)
ways. For each choice there are at most r! isomorphisms. Thus we have at

most
(N

r

)× r! isomorphic copies of G. Similarly, we can prove for the second part. Note that if G′

is an A-isomorphic copy of G and A ⊂ V (G) then A ⊂ V (G′). Thus, we can choose V (G′) in
(N
r−s

)

ways and each choice there are exactly (r − s)! isomorphisms.

Function Graph

• A directed graph G = (D, E) is called a function graph if (x, y1), (x, y2) ∈ E then y1 = y2. A
partial function f on D can be uniquely characterized by a function graph and vice versa by
the following rule :

f(x) = y if and only if (x, y) ∈ E.

• Define domain of a function graph as Dom(G) = {v : degout(v) > 0}. Since it is a function
graph Dom(G) = {v : degout(v) = 1} and it is the domain of the corresponding partial
graph. Clearly, |Dom(G)| = e(G) (map an edge (v, w) ∈ E to v ∈ Dom(G)).

Example 2 The graphs in Figure 1 are function graphs that is there is no node with out-
degree more than one. The partial function corresponding to G1 is f(1) = 3, f(3) = 7, f(7) =
8, f(8) = 9, f(9) = 9, f(2) = 3, f(4) = 6, f(6) = 7, f(5) = 7. The domain of the graph G1

Dom(G1) = {1, 2, 3, 4, 5, 6, 7, 8, 9}.

5

1

4
6

2

11

10

5

3 8

1

2

6

4
3

7

5

9 8
1

2
3

4

6

7

5

8 9

G1 = (V1, E1) G2 = (V2, E2) G3 = (V3, E3)

Figure 1: Tree or Unicycle Function Graph

• A function f is called compatible with a function graph G = (D,E) if f(x) = y whenever
(x, y) ∈ E. Note that for a given function graph G there are NN−e compatible functions
f : D → D with G where e = |e(G)| = |Dom(G)|

f(x) = y if (x, y) ∈ E (in other words x ∈ Dom(G))
= ∗ otherwise

}
(2)

Here “ * ” means that the function is defined arbitrarily. Now we know that, given a s-set
A ⊂ Dom(G) there are at most N r−s many A-isomorphic graphs where r = |V (G)|. Thus,
|FG = {f : D → D : f is compatible with some G′ ∼=A G}| ≤ NN−e × N r−s = NN−s+∆

where ∆ = ∆(G).

• Main trick of this paper : Suppose we want to find an upper bound of Pr[E] where E is
some event related to uniform random function and probability is computed with respect to
the uniform random functions (recall that, each function f ∈ Func(D, D), set of all functions
f : D → D}, has equal probability that is 1

NN). To do so, we count the number (or give an
upper bound) of f ∈ Func(D, D) such that the event E is true. Let F = {f : E is true }.
Then Pr[E] = |F|

NN . We do the following main steps

1. Associate each function f ∈ F to a function graph G ∈ G such that f is compatible with
G where G is some classes of function graphs.

2. Now for a suitable choice of s-set A, partition G by A-isomorphism that is G =
⊔L

i=1 Gi

where all elements within Gi are A-isomorphic and graphs between two classes are non-
A-isomorphic. Let ∆i = ∆(G) where G ∈ Gi.

3. Now we can give an upper bound as follows. We know that |FG| ≤ NN−s+∆i for
G ∈ Gi. We denote FG by FGi . Note that, this is well defined. F ⊆ ⊔L

i=1FGi and hence
|F| ≤ ∑L

i=1 NN−s+∆i . If we know that there are Li many classes such that ∆ value is
i ≥ 0 then

|F| ≤
∑

i≥0

Li ·NN−s+i. (3)

4. So it would be enough if one can suitably associate a function to a function graph, choose
a suitable set A and compute Li for all possible values of i.

• Now we consider a special class of function graphs called (`, A)-iterated function graph where
A ⊂ D is a s-set. A function graph G is called (`, A)-iterated graph (or function graph) if
there exists a function f such that the domain of the graph Dom(G) = {y : f (i)(x) = y, x ∈

6

A, 0 ≤ i ≤ ` − 1}. We denote G`,A[f] by the (`, A)-iterated function graph for the function
f (this is unambiguous since the graph is completely determined the tuple (`, A, f)). For
A = {x}, we sometimes write G`,x[f]. Thus G`,A[f] is union (may not be disjoint) of G`,x[f].
Now G`,x[f] can be one of the following :

1. f (0)(x) = x, f (1)(x) = f(x), · · · , f (`)(x) are distinct. In this case the graph is a straight
line path.

2. f (0)(x) = x = w0, f
(1)(x) = f(x) = w1, · · · , w` = f (`)(x) are not distinct that is

w0, · · · , wi are distinct and wi+1 = wj , j ≤ i < `. This is a 1-unicycle (or sometimes
called ρ straight line path as the structure looks like ρ).

7-Unicycle Tree

Figure 2: Tree or Unicycle Function Graph

Theorem 2 G`,A[f] is union of unicycles or straight line paths. More particularly, it is disjoint
union of tree or unicycle paths where the number of nodes in V (G`,A[f]) with zero out-degree is at
most s = |A|.

Proof. We skip the proof as it is straightforward and needs some more notations. One can see
this by looking different examples (for example Figure 2).

3 A Lower Bound of Probability for Collision Events

Now we prove the bounds for |Fi,j |, |Fi,j,k| and |Fi,j ∩ Fk,m|.

Upper Bound of |Fi,j,k|

First consider Fi,j,k and define A = {xi, xj , xk} and associate each f ∈ Fi,j,k to the function
graph G`,A[f] ∈ G where G = {G`,A[f] : f ∈ Fi,j,k}. Now note that G ∈ G is either a tree (in
which case ∆ = 1) or 3-unicycle (in this case ∆ = 0). Now we have to count Li, the number of
non-A-isomorphic graphs for ∆ = i, i = 0, 1.

1. ∆ = 1 : Let x be the collision node, that is f (`)(x1) = f (`)(x2) = f (`)(x3) = x. Each tree is
determined by the point of intersection of x2 and x1 paths (` choices) and point of intersection
of x3 and x1, x2 path (2` choices). Thus, L1 ≤ 2`2.

7

2. ∆ = 0 : Each 3-unicycle graph is determined by the length of the cycle, distance distance
from xi’s to the circle, location of the point of intersection of x2 path and union of x1 path
and cycle and location of point of intersection of x3 and union of x1, x2 path and cycle. Each
choice is at most ` except the location of point of intersection (for x3) has 2` choices. Thus
L0 ≤ 6`6.

Thus, |Fi,j,k| ≤ 2`2NN−2 + 6`6NN−3.

Upper Bound of |Fi,j,k,m|

We define A = {xi, xj , xk, xm} and associate each f ∈ Fi,j,k,m to the function graph G`,A[f] ∈ G
where G = {G`,A[f] : f ∈ Fi,j,k}. Now we have the following cases :

note that G ∈ G is either a tree (in which case ∆ = 1) or 3-unicycle (in this case ∆ = 0). Now
we have to count Li, the number of non-A-isomorphic graphs for ∆ = i, i = 0, 1. We can make
similar analysis here as follows. We skip all detail.

1. ∆ = 2 : Disjoint union of two trees consisting two paths each. Let f (`)(x1) = f (`)(x2) = x
and f (`)(x3) = f (`)(x4) = y. Each tree is determined by the point of intersection of x2 and x1

paths (` choices) and point of intersection of x3 and x1, x2 path (2` choices). Thus, L1 ≤ 4`4.
L2 ≤ `2.

2. ∆ = 1 : G is either a tree or union of 2-unicycle and a tree consisting two paths. L1 ≤ 6`3+2`5.

3. ∆ = 0 Either G is 4-unicycle graph or union of two disjoint 2-unicycle graphs. Similar
analysis. L0 ≤ 28`8.

Thus, |Fi,j,k,m| ≤ NN−2`2 + NN−3(6`3 + 2`5) + 28`8NN−4.

Lower Bound of |Fi,j |

Let Fi,j = {f : f (`)(xi) = f (`)(xj)} for distinct xi, xj ∈ D. Let Fk
i,j = {f ∈ Fi,j : f (k)(xi) = f (k)(xj)

and f (k1)(xi), f (k2)(xj) are distinct 1 ≤ k1, k2 ≤ k − 1} where 1 ≤ k ≤ `. That is it is the set
where all intermediate outputs are distinct before k round and at kth round we have a collision.
Clearly they are disjoint sets and Fi,j ⊇

⊔`
k=1Fk

i,j . So, |Fi,j | ≥
∑`

k=1 |Fk
i,j |. The following lemma

is a straightforward counting so we skip the proof.

Lemma 3 For 2 ≤ k ≤ `, |Fk
i,j | = (N − 2)(N − 3)...(N − 2k + 1)NN−2k+1 and |F1

i,j | = NN−1.

Lemma 4 For 1 ≤ ` ≤ N
4 + 1

2 ,Prf [Ci,j] ≥ `
N exp(−4`2

N)

Proof. From above Lemma we have |F| ≥ NN−1(1 +
∑`

i=2(1− 2
N)(1− 3

N)...(1− 2k−1
N)).

Prf [Ci,j] ≥ (1 +
∑̀

k=2

(1− 2
N

)(1− 3
N

)...(1− 2k − 1
N

))
1
N

≥ `

N

2`−1∏

k=1

(1− k

N
)

8

≥ `

N
exp(−4`2

N
)

In the last step we have used the inequality 1− x ≥ exp(−2x). Which is true for 0 ≤ x ≤ 0.5 and
hence we need that ` ≤ N/4 + 1/2.

Theorem 5 The collision probability is at least

δ =

(
q

2

)
`

n
exp(−4`2

N
)− 3

(
q

3

)
(
2`2

N2
+

6`6

N3
)− 1

2

(
q

2

)(
q − 2

2

)
(
28`8

N4
+

6`3 + 2`5

N3
+

`2

N2
)

For large N , the above expression is Ω(q2`
N) − c(q, `, N), when q2`

N < 8
3 and ` = o(N

1
3). Also

c(q, `, N) goes to zero when q2` = O(N), ` = o(N
1
3) and ` ≤ N/4 + 1/4 is large.

Proof.

δ ≥ q2`

3N
exp(

−4`2

N
)− q3

2
(
2`2

N2
+

6`6

N3
)− q4

8
(
28`8

N4
+

6`3 + 2`5

N3
+

`2

N2
).

Now putting α = q2`
N and c(q, `, N) = 1

2(q2`
N)1.5(2`0.5

N0.5 + 6`4.5

N1.5) + 1
8(q2`

N)2(28`6

N2 + 6`+2`3

N) we get,

δ ≥ α(
1
3
− α

8
)− c(q, `, N),

when ` = o(N
1
3) and N is large. Thus,

δ ≥ dα− c(q, `,N),

when α ≤ 8
3 − d and hence

δ ≥ Ω(
q2`

N
)− c(q, `, N),

as long as q2`
N < 8

3 . Also c(q, `,N) goes to zero when q2` = O(N), ` = o(N
1
3) and N is large.

Exact computation of collision probability

We can use this to have a distinguishing attack and MAC-forgery. Here we will see how this bound is
practically meaningful. We will compute the collision probability numerically for a suitable choices
` and q. This calculation is important as sometimes the constant can make a real difference.

Example 3 MAC forgery for 64 bit.

Taking q = c1N
1
3 and ` = c2N

1
3 , α = c2

1c2 we get,

δ ≈ α
2 − α2

8 − (3α
3
2 c

9
2
2 + 7

2α2c6
2 + 1

4α2c3
2)

So for small c2, δ ≈ α
2 − α2

8 To maximize δ we take α = 2, and we get δ ≈ 0.5.
Hence taking q =

√
20 · 2 64

3 , ` = 0.1× 2
64
3 , we get δ = 0.499.

Example 4 MAC forgery for 128 bit.

Taking q =
√

20 · 2 128
3 , ` = 0.1 · 2 128

3 , we get δ = 0.499.

9

4 Collision Probability for PMAC

Let ((x1, 0), (x2, 0), ..., (xq, 0)) be the q queries to the PMAC oracle. Let yi = xi + cf(0), wi =
f(yi), zi = f(wi), for 1 ≤ i ≤ q.

Property I: (0, y1, y2, ..., yq) is a non collision q + 1-tuple and (w1, w2, ..., wq) is a collision
q-tuples, wi 6= 0. In other words, (0, wi)and (0, xi + cf(0)) are non collision 2-tuple for 1 ≤ i ≤ q,
(w1, w2, ..., wq) is a collision q-tuple. As xi’s are distinct.We call a (q+1)-tuple (f(0), w1, w2, ..., wq)
as kind-I (q + 1)-tuple if it satisfy the above property.

Property II: Similarly, we call a (2q + 1)-tuple (f(0), w1, w2, ..., wq, z1, z2, ..., zq) as kind-II
(2q + 1)-tuple if (0, y1, y2, ..., yq, w1, w2, ..., wq) is a non collision 2q + 1-tuple and (z1, z2, ..., zq) is a
collision q-tuple.

Now corresponding to each kind-I (q + 1)-tuple there are NN−q−1 collision functions. We call
such functions as kind-I collision function. And corresponding to each kind-II (2q + 1)-tuple there
are NN−2q−1 collision functions. We call such functions as kind-II collision function.

• There are (N − q)((N q − (N − 1)(N − 2)...(N − q)) kind-I (q + 1)-tuples.

• There are (N − q)(N − q − 1)(N − q − 2)...(N − 2q)(N q − N(N − 1)...(N − q + 1)) kind-II
(2q + 1)-tuples.

Hence we get the following result, which we mention as Lemma 6.

Lemma 6 There are at least (N − q)((N q − (N − 1)(N − 2)...(N − q))NN−q−1 + (N − q)(N − q−
1)(N − q − 2)...(N − 2q)(N q −N(N − 1)...(N − q + 1))NN−2q−1 many collision functions.

Theorem 7 When ((x1, 0), (x2, 0), ..., (xq, 0)) are queried to a PMAC oracle The advantage with
respect to a random oracle is at least Ω(q2

N)− q
N , when q2

N ≤ c for some d > 0 such that q ≥ 1
d , c ≤

N
3(1+d) and q ≤ N

4 .

Proof. From Lemma 6 we get collision probability is at least δ. Where,
δ = (1− q

N)(1− (1− 1
N)...(1− q

N)) + (1− q
N)...(1− 2q

N)(1− (1− 1
N)...(1− q−1

N)).

δ ≥ (1−(1− 1
N

)...(1− q − 1
N

))− q

N
(1−(1− 1

N
)...(1− q

N
))+(1− q

N
)...(1−2q

N
)(1−(1− 1

N
)...(1− q − 1

N
))

Hence, Adv ≥ (1 − q
N)...(1 − 2q

N)(1 − (1 − 1
N)...(1 − q−1

N)) − q
N (1 − (1 − 1

N)...(1 − q
N)) So When

1
d ≤ q ≤ N

4 , we get Adv ≥ exp(−3(1+d)q2

N)(1− exp(−(1−d)q2

2N)− q
N)

When q2 ≤ N
3(1+d) , the above expression is

≥ (
1− d

2
)(

q2

N
)(1− 3(1 + d)(

q2

N
))(1− (

1− d

4
)(

q2

N
)− q

N
)

Now if there exist constant c such that q2

N ≤ c ≤ 1
3(1+d) then Adv ≥ Ω(q2

N)− q
N

Example 5 PMAC forgery for 128 bit.

Writing α = q2

N , we get Adv ≈ α
2 (1− 3α

2)(1− α
4) This expression attains maximum value 0.083 at

α = 0.3183. Hence if we make
√

(0.3183) · 264 queries we get at least 0.083 advantage.

10

5 Conclusion

In this paper we study collision probability for CBC-MAC and PMAC for suitably chosen mes-
sages. The calculation is made purely combinatorially and the idea of counting can be adopted to
other similar calculation. We have found that CBC-MAC based on random function has collision
probability Ω(q2`/N) for `-block messages. We can have similar collision probability for XCBC ,
TMAC, OMAC etc. (in fact, all constrcution similar to CBC). For PMAC, it is not easy to have
similar bound, but we can do same thing for ` = 2 and we have better collision probability than
that of random oracle.

All these calculation are for MAC based on random function. Thus, it would be interesting to
see a similar probability analysis for MAC based on random permutation.

References

[1] M. Bellare, K. Pietrzak and P. Rogaway. Improved Security Analysis for CBC MACs. Advances
in Cryptology - CRYPTO 2005. Lecture Notes in Computer Science, Volume 3621, pp 527-545.

[2] M. Bellare, A. Boldyreva, L. Knudsen and C. Namprempre. On-Line Ciphers and the Hash-CBC
constructions. Advances in Cryptology - CRYPTO 2000. Lecture Notes in Computer Science,
Volume 2139, pp 292-309.

[3] M. Bellare, J. Killan and P. Rogaway. The security of the cipher block chanining Message
Authentication Code. Advances in Cryptology - CRYPTO 1994. Lecture Notes in Computer
Science, Volume 839, pp 341-358.

[4] Daniel J. Bernstein. A short proof of the unpredictability of cipher block chaining (2005). URL:
http://cr.yp.to/papers.html#easycbc. ID 24120a1f8b92722b5e1 5fbb6a86521a0.

[5] J. Black and P. Rogaway. CBC MACs for arbitrary length messages. Advances in Cryptology
- CRYPTO 2000. Lecture Notes in Computer Science, Volume 1880, pp 197-215.

[6] J. Black and P. Rogaway. A Block-Cipher Mode of Operations for Parallelizable Message
Authentication. Advances in Cryptology - Eurocrypt 2002. Lecture Notes in Computer Science,
Volume 2332, pp 384-397.

[7] T. Iwata and K. Kurosawa. OMAC : One-Key CBC MAC. Fast Software Encryption, 10th
International Workshop, FSE 2003. Lecture Notes in Computer Science, Volume 2887, pp 129-
153.

[8] C. S. Jutla. PRF Domain Extension using DAG. Theory of Cryptography: Third Theory
of Cryptography Conference, TCC 2006. Lecture Notes in Computer Science, Volume 3876 pp
561-580.

[9] K. Kurosawa and T. Iwata. TMAC : Two-Key CBC MAC. Topics in Cryptology - CT-RSA
2003: The Cryptographers’ Track at the RSA Conference 2003. Lecture Notes in Computer
Science, Volume 2612, pp 33-49.

11

