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Abstract

In this note we remark that the inversion-based selective-ID secure identity-based en-
cryption (IBE) scheme from Boneh and Boyen can be bootstrapped to full-ID security using
a technique by Waters.
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1 Introduction

An Identity-Based Encryption (IBE) scheme is a public-key (asymmetric) encryption scheme
where any string such as email addresses, server names or phone numbers, can be used as
public keys. The ability to use identities as public keys largely reduces the need for public key
certificates and certificate authorities to distribute public key certificates.

After Shamir proposed the concept of IBE in 1984 [Sha85] it remained an open problem
for almost two decades to come up with a satisfying construction for it. In 2001, Boneh and
Franklin [BF03] proposed an IBE scheme using bilinear maps and proved its security in the
idealized random oracle model. Boneh and Boyen proposed two IBE schemes without random
oracles [BB04a]. However, security could only be proved in the restricted selective-ID security
model where an adversary has to commit to the “attack-identity” before even seeing the public
key. Waters [Wat05] modified the first (BDDH-based) scheme of Boneh and Boyen to obtain a
practical IBE scheme which is secure in the full-ID model.

In this paper we remark that Waters’ technique can also be applied to the second (inversion-
based) IBE scheme of Boneh and Boyen to obtain an alternative IBE scheme secure in the full-ID
model. A second IBE scheme is obtained by applying a different randomization technique due
to Gentry [Gen06]. The resulting IBE schemes are slightly more efficient than Waters’ IBE
whereas security is based on a stronger security assumption, the q-BDDHI assumption.

Even though we mostly combine known results from [BB04a, Wat05, Gen06] to obtain
our schemes we hope our exposition helps understanding available “inversion-based” IBE tech-
niques.

2 Preliminaries

2.1 Identity Based Encryption

An identity-based encryption (IBE) scheme [Sha85, BF03] IBE = (Kg, Extract, Enc, Dec) con-

sists of four polynomial-time algorithms. Via (pk , sk)
$← Kg(1k) the randomized key-generation
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algorithm produces master keys for security parameter k ∈ N; via usk [id ]
$← Extract(sk, id)

the master computes the secret key for identity id ; via C
$← Enc(pk , id , m) a sender creates

a ciphertext C with respect to message m and identity id ; via m ← Dec(sk ,C ) the posses-
sor of secret key sk decrypts ciphertext C to get back a message m. For consistency, we

require that for all k ∈ N, all identities id , all messages m and all C
$← Enc(pk , id), we

have Pr[Dec(Extract(sk , id),C ) = K] = 1, where the probability is taken over the choice of

(pk , sk)
$← Kg(1k), and the coins of all the algorithms in the expression above.

We now define security against chosen-plaintext attacks (IND-CPA) by associating to an
adversary A the following experiment.

Experiment Exp
ind-cpa
IBE ,A (k)

(pk , sk)
$← Kg(1k)

(id∗, m0, m1,St)
$← AExtract(sk ,·)(find , pk)

b
$← {0, 1} ; C ∗ $← Enc(pk , id∗, mb)

b′
$← AExtract(sk ,·)(guess,C ∗,St)

If b 6= b′ then return 0 else return 1

The oracle Extract(sk , id) returns sk [id ]
$← Extract(sk , id) with the restriction that A is not

allowed to query oracle Extract(sk , ·) for the target identity id∗. The variable St represents some
internal state information of adversary A and can be any (polynomially bounded) string. We
define the advantage of A in the chosen-plaintext experiment as

Adv
ind-cpa
IBE ,A (k) =

∣

∣

∣

∣

Pr
[

Exp
ind-cpa
IBE ,A (k) = 1

]

− 1

2

∣

∣

∣

∣

.

An IBE scheme IBE is said to be indistinguishable against chosen-plaintext attacks (IND-CPA

secure) if the advantage functions Adv
ind-cpa
IBE ,A (k) is a negligible function in k for all polynomial-

time adversaries A.
We remark that our security definition is given with respect to “full-identity” attacks, as

opposed to the much weaker variant of “selective-identity” attacks where the adversary has to
commit to its target identity id∗ in advance, even before seeing the public key.

2.2 Pairings and complexity assumption

All pairing based schemes will be parameterized by a pairing parameter generator. This is a
PTA G that on input 1k returns the description of an multiplicative cyclic group G of prime
order p, where 2k < p < 2k+1, the description of a multiplicative cyclic group GT of the same
order, and a non-degenerate bilinear pairing ê: G × G → GT . See [BF03] for a description of
the properties of such pairings. We use G

∗ to denote G \ {1}, i.e. the set of all group elements
except the neutral element. Throughout the paper we use PG = (G, GT , p, ê, g) as shorthand
for the description of bilinear groups, where g is a generator of G.

We require that in PG the q-BDDHI (q-Bilinear Decisional Diffie-Hellman Inversion) [BB04a]
problem is computationally hard which is captured by defining the q-bddhi-advantage of an
adversary B as

Adv
q−bddhi
PG,B (k) = Pr[B(g, gx, . . . , gxq

, ê(g, g)1/x) = 1]− Pr[B(g, gx, . . . , gxq
, W ) = 1],

where g, W
$← GT and x

$← Z
∗
p. We say that the q-BDDHI assumption holds in PG if the advan-

tage functions Adv
q−bddhi
PG,B (k) is a negligible function in k for all polynomial-time adversaries B.
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3 Identity-Based Encryption

3.1 The IBE scheme

Our starting point is the second IBE scheme from Boneh and Boyen [BB04a] which can only
proved to be selective-ID IND-CPA secure. We apply a hashing technique (or “implicit Chameleon
hash”) due to Waters [Wat05] to make it full-ID IND-CPA secure.

Let PG be a bilinear group. The following IBE scheme IBE = (Kg, Extract, Enc, Dec) en-
crypts messages m ∈ GT to arbtrary identities id = (id1, . . . , idn) ∈ {0, 1}n.

Kg(PG, 1k)

For 0 ≤ i ≤ n: xi
$← Zp ; Xi ← gxi

y
$← Zp ; Y ← gy

pk = (X0, . . . , Xn, Y ) ; sk = (x0, . . . , xn, y)
Return (sk , pk)

Extract(sk , id)

s
$← Zp

d← g
1

x0+
P

xiidi+ys

sk [id ]← (d, s)
Return sk [id ]

Enc(pk , id , M)

r
$← Zp

c1 ← (X0
∏n

i=1 X idi
i )r ; c2 ← Y r

K ← ê(g, g)r ; e← K ·m
Return C = (c1, c2, e) ∈ G×G×GT

Dec(usk [id ], id ,C )
Parse C = (c1, c2, e)
Parse usk [id ] = (d, s)
K ← ê(c1c

s
2, d)

Return m← e ·K−1

We remark that in practice one would hash key K ∈ GT to a bit string and use it as a binary
key to perform symmetric encryption. To allow arbitrary identities id ∈ {0, 1}∗ one can apply
a collision-resistant hash function.

To show correctness consider the KEM part (c1 = (X0
∏n

i=1 X idi
i )r, c2 = Y r) of a correctly

generated ciphertext. Decryption with respect to a correct user secret key (d = g
1

x0+
P

xiidi+ys , s)
yield the symmetric key

K = ê(c1c
s
2, d)

= ê((X0

n
∏

i=1

X idi
i )r · Y s, g

1
x0+

P

xiidi+ys )

= ê(g(x0+
Pn

i=1 xiidi+ys)r, g
1

x0+
P

xiidi+ys )

= ê(g, g)r ,

as in encryption.

3.2 Security

Theorem 3.1 The IBE scheme is IND-CPA secure under the q-BDDHI assumption. In par-
ticular, given an adversary A attacking the chosen-plaintext security of the IBE scheme with
advantage εA = Adv

ind-cpa
IBE ,A and running time TimeA(k) we construct an adversary B breaking

the q + 1-BDDHI assumption with advantage εB = Adv
q−bddhi
PG,B (k) and running time TimeB(k)
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with

εB(k) ≥ εA(k)

8(n + 1)q

TimeB(k) ≤ TimeA + Õ(nq · ε−2
A

(k)),

where q is an upper bound on the number of key derivation queries made by adversary A.

A proofsketch will be given in Section 3.5.

3.3 Another IBE variant

We present yet another IBE variant that uses a different “randomization technique” for gener-
ating the user secret key which is due to Gentry [Gen06]. Like Gentry’s scheme [Gen06] it has
the advantage that it is anonymous in the sense that a ciphertext does not leak any information
about the recipients’ identitiy [ABC+05].

Let PG be a bilinear group. The following IBE scheme IBE = (Kg, Extract, Enc, Dec) en-
crypts messages m ∈ GT to arbtrary identities id = (id1, . . . , idn) ∈ {0, 1}n.

Kg(PG, 1k)

For 0 ≤ i ≤ n: xi
$← Zp ; Xi ← gxi

z
$← Zp ; Z ← ê(g, g)z

pk = (X0, . . . , Xn, Z) ; sk = (x0, . . . , xn, z)
Return (sk , pk)

Extract(sk , id)

s
$← Zp

d← g
z−s

x0+
P

xiidi

sk [id ]← (d, s)
Return sk [id ]

Enc(pk , id , M)

r
$← Zp

c1 ← (X0
∏n

i=1 X idi
i )r ; c2 ← Zr

K ← ê(g, g)r ; e← K ·m
Return C = (c1, c2, e) ∈ G×GT ×GT

Dec(usk [id ], id ,C )
Parse C = (c1, c2, e)
Parse usk [id ] = (d, s)
K ← ê(c1, d) · cs

2

Return m← e ·K−1

Under the q-BDDHI assumption the IBE scheme is IND-CPA secure and anonymous. The proof
(which is omitted here) uses Cramer-Shoup techniques and combines ideas from the proof of
Theorem 3.1 with techniques from [Gen06].

Unfortunately the scheme is not very practical since in practice the element in c2 ∈ GT (GT

is usually an order p subgroups of Zqα and hence vulnarable to sub-exponential discrete log
attacks) needs very large representation. For example, for for 128 bits security one element in
GT requires at least 3072 bits.

3.4 Comparison

We compare our IBE schemes with the ones from Waters [Wat05] and Gentry [Gen06].

Scheme Enc Dec Delegation Ciphertext pk Assumption Anon?
#pairings + #exps Overhead (bits)

Waters 0 + 3 2 + 0 0 + 2 2|G| (512) n + 2 BDDH —
Gentry 0 + 3 1 + 1 0 + 1 |G|+ |GT | (3.328) 3 q-ABDHE

√

Ours §3.1 0 + 3 1 + 1 0 + 1 2|G| (512) n + 2 q-BDDHI —
Ours §3.3 0 + 3 1 + 1 0 + 1 |G|+ |GT | (3.328) n + 2 q-BDDHI

√
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We remark that the term (X0
∏n

i=1 X idi
i )r can be computed as efficient as one (multi-)exponentiation.

In terms of security assumptions, we remark that q-ABDHE implies q-BDDHI implies BDDH,
i.e. q-ABDHE is the strongest and BDDH is the weakest security assumption.

3.5 Proof of Theorem 3.1

As a technical tool we first introduce the following complexity assumption which is implied by
the q-BDDHI assumption but already closer to the proposed IBE scheme. The q-RBDDH (q-
Randomized Bilinear Decisional Diffie-Hellman) assumption in PG is captured by defining the
q-rbddh-advantage of an adversary B as

Adv
q−rbddh
PG,B (k) = Pr[B(g, gx, t1, g

1/(x+t1), . . . , tq, g
1/(x+tq), gy, ê(g, g)y/x) = 1]

−Pr[B(g, gx, t1, g
1/(x+t1), . . . , tq, g

1/(x+tq), gy, W ) = 1],

where g, W
$← G and x, y, t1, . . . , tq

$← Z
∗
p. The proof of the following simple implication is

postponed to Appendix A.

Lemma 3.2 For any polynomial q(k) ≥ 1, q + 1-BDDHI ⇒ q-RBDDH

Proof of Theorem 3.1: (Sketch) Suppose there exists a polynomial time adversary A that
breaks the IND-CPA security of the IBE scheme and makes at most q key derivation queries.
We use the following notation. For a given secret key, we define the function h : {0, 1}n → Zp as

h(id) = x0 +
∑n

i=1 xiid i. That means user secret keys are of the form usk [id ] = (g
1

h(id)+ys , s) and
correctly generated IBE ciphertexts of the form C = (c1, c2, e) = ((gh(id))r, (gy)r, ê(g, g)r ·m).

Let B be an adversary against the q-RBDDH problem, i.e. B inputs (g, X = gx, t1, T1 =
g1/(x+t1), . . . , tq, Tq = g1/(x+tq), Z = gz, T ). B’s goal is to decide if T = ê(g, g)z/x or if T ∈ GT

is random. We show now how B can use A as a subroutine to successfully break the q-RBDDH
assumption. By Lemma 3.2 this proves the theorem.

Adversary B is defined as follows.

Setup Adversary B picks b0, . . . , bn
$← Zp and the values a0, . . . , an according to the following

probability distribution A on (a0, . . . , an).

k
$← {0, . . . , n} ; a′0, a1, . . . , an

$← {0, . . . , 2q − 1} ; a0 ← −k2q + a′0 . (1)

Furthermore, a random c ∈ Zp is picked and the public key pk = (X0, . . . , Xn, Y ) is
computed as

X0 = ga0Xb0 , . . . , Xn ← ganXbn , Y ← Xc.

Note that this does not change the distribution of pk . Since this implicitly defines the
secret values xi as xi = ai + bix, for each identity id ∈ {0, 1}n we have

h(id) = a(id) + b(id)x, (2)

with b(id) = b0 +
∑n

i=1 id ibi and a(id) = a0 +
∑n

i=1 id iai only known to the simulator.

B runs A on pk answering A’s key derivation queries as follows.
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Key Derivation Queries. Suppose A makes a user secret key query for identity id ∈ {0, 1}n
and id = id (i) is the ith distinct identity A has queried, for i ∈ {1, . . . , q}. Adversary B
hopes that

a(id) 6= 0 mod p . (3)

Using the tuple (Ti, ti) from it’s input, adversary B returns a user secret key usk [id ] = (d, s)
for identity id as

d = T
ti

a(id)

i , s =
a(id)/ti − b(id)

c
,

This is a correct user secret key since s ∈ Zp is a uniform random element (since ti is) and
by ti/a(id) = 1/(b(id) + cs) we have

d = T
ti

a(id)

i = (g
1

ti+x )
1

b(id)+cs = (g
1

a(id)/(b(id)+cs)+x )
1

b(id)+cs = g
1

a(id)+(b(id)+cs)x = g
1

h(id)+ys

If a(id) = 0 mod p then adversary B terminates and returns a random bit b′.

Challenge Suppose A wants to be challenged on identity id∗ and the two messages m0, m1.
Adversary B hopes that

a(id∗) = 0 mod p . (4)

In that case B creates that challenge ciphertext as

c∗1 = Zb(id) ; c∗2 = Zc ; e∗ = T ·md,

where d is a random bit chosen by B. We claim that if T = ê(g, g)z/x, then (c∗1, c
∗
2, e

∗) is
a correct IBE ciphertext created with randomness r = z/x ∈ Zp. Since a(id∗) = 0 mod p,
we have

c∗1 = (u0

∏

u
id

∗

i
i )r = (gh(id∗))z/x = (gb(id)x)z/x = Zb(id),

c∗2 = (gy)r = (gcx)z/x = Zc .

Furthermore, since T = ê(g, g)z/x the key K∗ = T is the correct key with randomness
r = z/x. On the other hand, if T is a random element then the target ciphertext is clearly
independent of the bit d.

If a(id) 6= 0 mod p then adversary B terminates and returns a random bit b′.

Output Eventually A outputs a bit d′ and B returns b′ = 1 (meaning T = ê(g, g)z/x) if d = d′

and b′ = 0 (meaning T is random) otherwise, and terminates the game.

This completes the description of B.

We now sketch an analysis of B’s success probability. Let good be the event that Equation (3)
and Equation (4) hold. In case good holds it is easy to see that B perfectly simulates the view
of A and B can use A’s output to break the q-RBDDH assumption.

Fix a public-key pk. The central argument in the proof is that for any possible set of appearing
identities id∗, id (1), . . . , id (q), the probability µ(id∗, id (1), . . . , id (q)) that event good happens
is lower bounded by 1/4(n + 1)q, where the probability space is A, i.e, over all redundant
randomness in the generation of the public-key. This claim will be formally proved in Lemma 3.3.

One technical problem that arises in the formal analysis is that adversary B aborts (and outputs
a random bit b′) in case good does not happen. Now it may happen that adversary A’s output
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bit d′ is correlated with B’s abortion. To overcome this problem Waters used a technique called
“artificial abort” in his original analysis [Wat05] to make B’s abortion independent of A’s output
bit. The idea is that B, after receiving A’s output bit, tosses a coin. With some probability ν ′,
B aborts, and with probability 1− ν ′, B continues as before. It can be shown that for the right
choice of ν ′ (depending on the queried identities) the output of adversary B can be made quasi
independent of the event good. However, B needs about Õ(nq · ε−2

A
(k)) time units to sample

the right value ν ′. For details we refer to the original proof by Waters [Wat05] or a game-based
proof in [KG06].

It leaves to prove the following information-theoretic lemma that is implicitly contained
in [Wat05].

Lemma 3.3 Fix integers n, q. For a string id = (id1, . . . , idn) ∈ {0, 1}n and (a0, . . . an) ∈ Z
n+1

we define the function a : {0, 1}n → Z, a(id) := a0 +
∑n

i=1 aiid i. Consider the probability
distribution A on (a0, . . . , an) as defined in Equation (1). Then, for arbitrary q + 1 pairwise
distinct binary strings id (i) ∈ {0, 1}n (0 ≤ i ≤ q), we have that for the probability µ over A that
a(id (0)) = 0, and a(id (i)) 6= 0, for i = 1, . . . , q,

µ ≥ 1

4(n + 1)q
.

Proof: Let m = 2q. Fix the strings id (0), . . . , id (q). We want to show that

η = Pr
A

[

q
∧

i=1

(

a(id (i)) 6= 0
)

∧ a(id (0)) = 0] ≥ 1

4(n + 1)q
. (5)

We have that a(id (0)) = −km+a′0 +
∑n

i=1 id
(0)
i ai, where 0 ≤ a′0 +

∑n
i=1 id

(0)
i ai < (n+1)m. This

shows that if a(id (0)) = 0 mod m, then there is a unique 0 ≤ k < n + 1 such that a(id (0)) = 0
over the integers. On the other hand, if a(id (i)) 6= 0 mod m then this in particular implies
a(id (i)) 6= 0 over the integers. Since k is uniformly and independently distributed between 0 and
n, we have that :

η ≥ 1

n + 1
· Pr
Ak

[

q
∧

i=1

(a(id (i)) 6= 0 mod m) ∧ a(id (0)) = 0 mod m] ,

where Ak is the distribution implied by Equation (1) for a fixed k.

Let id 6= id ′ and b, b′ ∈ Z. We collect some simple observations on a(·) which essentially show
that the a(·) mod m are pairwise independent.

Pr
Ak

[a(id) = b mod m] = 1/m (6)

Pr
Ak

[a(id) = b mod m | a(id ′) = b′ mod m] = 1/m (7)

Equation (6) follows since for any choice of a1, ..., an there is a single choice of a′0 that will make
the condition hold. To show Equation (7) assume there exists an index 1 ≤ i ≤ n such that
id i = 1 and id ′

i = 0. Then fix all aj ’s for j 6= i except ai so that a(id ′) = b′. Then there is a
single choice of ai such that a(id) = b and therefore Pr[a(id) = b | a(id ′) = b′] = 1/m. If there
is no such i then we can use Bayes to reverse roles of id and id ′.
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We continue to bound η with

η ≥ 1

n + 1
· Pr
Ak

[

q
∧

i=1

a(id (i)) 6= 0 mod m | a(id (0)) = 0 mod m] · Pr[a(id (0)) = 0 mod m]

(6)
=

1

(n + 1)m
· Pr
Ak

[

q
∧

i=1

a(id (i)) 6= 0 mod m | a(id (0)) = 0 mod m]

=
1

(n + 1)m
· (1− Pr

Ak

[

q
∨

i=1

a(id (i)) = 0 mod m | a(id (0)) = 0 mod m])

≥ 1

(n + 1)m
· (1−

q
∑

i=1

Pr
Ak

[a(id (i)) = 0 mod m | a(id (0)) = 0 mod m])

(7)
=

1

(n + 1)m
· (1−

q
∑

i=1

1

m
)

=
1

(n + 1)m
· (1− q

m
)

=
1

4(n + 1)q
,

where the last equation follows by our choice of m = 2q which minimizes the term.

4 Short signatures

4.1 The signature scheme

Moni Naor noted [BF03] that every IBE scheme directly implies a signature scheme unforgeable
against adaptively chosen message attacks [GMR88]. Applying some simplifications we get
the following signature scheme SIG = (Kg, Sign, Vfy), where Kg is the same as in the IBE
scheme. The scheme sign arbitrary messages m = (m1, . . . , mn) ∈ {0, 1}n, arbitrary bitstrings
m′ ∈ {0, 1}∗ can be signed by applying a collission-resistant hash function.

Sign(sk , m)

s
$← Zp

d← g
1

x0+
P

ximi+ys

Return sig ← (d, s)

Vfy(pk , m, sig)
Parse sig = (d, s)
If ê(d, Y sX0

∏n
i=1 Xmi

i ) 6= ê(g, g) then reject

Else accept

For efficiency one may add the element ê(g, g) to the public-key. The signature size is one group
element plus one element in Zp. Using asymmetric pairings it is hence possible to get signatures
with 256 bits (for 128 bits security).

4.2 Security

Analog to the proof of Theorem 3.1 security can be reduced to the q-Computational Diffie-
Hellman Inversion (q-CDHI) assumption in pairing groups which states that given g, gx, . . . , gxq

,
it is infeasible to compute g1/x.

Theorem 4.1 Under the q+1-CDHI assumption the signature scheme is (strongly) unforgeable
against adaptively chosen message attacks.
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4.3 Comparison

The short signature scheme from Boneh and Boyen [BB04b] (which is in fact the signature
scheme implied by the second Boneh Boyen IBE scheme [BB04a]) is quite similar to ours, i.e. a
message m is signed by computing (d, s) where s ∈ Zp is a random element and d = g1/(x0+m+ys).
Whereas our scheme has a larger public/secret keys (n + 2 compared to 2 elements), security
relies on a weaker assumption. To be more precise, the Boneh-Boyen signature scheme can only
be proved under the q-strong CDHI assumption which states that (given the same imput as
q-CDHI), it is infeasible to compute the tuple (c, g1/(c+x)), where c is an arbitrary element from
Zp.

Scheme Sign Verify Signatures pk Assumption
#pairings + #exps Size (bits)

Boneh/Boyen 0 + 1 1 + 1 |G|+ |p| (512) 2 q-strong CDHI
Ours 0 + 1 1 + 1 |G|+ |p| (512) n + 2 q-CDHI
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A Proof of Lemma 3.2

Proof: We show q-BDDHI ⇒ q − 1-RBDDH. Suppose A is given the values (g, gx, . . . , gxq
, T ).

A’s task is to decide if T = ê(g, g)1/x or if T ∈ GT is random.

Note that A can efficiently compute all the values gq(x) for any explicily known polynomial q(x)
of degree at most q. For 1 ≤ i ≤ q − 1, A picks at random uniform values ti ∈ Zp, defines the

polynomial p(x) =
∏q−1

i=1 (x−ti) =
∑q−1

i=0 pix
i of degree q−1, and sets h = gp(x). Note that A can

compute h = gp(x), hx = gxp(x), and all the x+tith roots h1/(x+ti) = gp(x)/(x+ti), for 1 ≤ i ≤ q−1.
ThenA picks a random y and calls B on the values (h, hx, t1, h

1/(x+t1), . . . , tq−1, h
1/(x+tq−1) , hy, T̃ ),

where T̃ = ê(h, h)y/x = ê(gp(x)/x, gp(x))y = (ê(g, g)1/x · ê(gp′(x), gp′′(x)))y for some polynomials
p′, p′′ of degree ≤ q. This value T̃ can be computed using the value T = ê(g, g)1/x from A’s
input.
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