
A NEW TYPE OF CIPHER: DICING_CSB

Li An-Ping

Beijing 100085, P.R.China

apli0001@sina.com

Abstract: In this paper, we will propose a new type of cipher named
DICING_CSB, which come from our previous a synchronous stream cipher
DICING. It applies a stream of subkeys and a encryption form of block ciphers,
so, it can be viewed a combinative of stream cipher and block cipher. Hence,
the new type of cipher has fast speed like a stream cipher and no need MAC.
.

Keywords: stream cipher, block cipher, LFSR, projector, finite field.

1. Introduction

In a synchronous stream cipher, the ciphertext is generally made by bitwise adding (XOR) the
plaintext with a binary sequence called keystream. Clearly, in this encryption form the plaintext is
easy to be falsified by other people. As a result, a synchronous stream cipher usually is equiped a
MAC (message authentication code) to protect the message from to be tampered. In our
algorithm DICING [1], one of candidates of eSTREAM (The ECRYPT STREAM Ciphers
Project), the combining function had mainly applied keyed-Sboxes, which are often used in the
block ciphers, we realize that it is possible to make a combinative of stream cipher and block
cipher (CSB mode), so will be able to omit MAC in this way. In the proposal cipher, the

component tu of DICING will be applied as a role of a stream of subkeys, and the encryption

means are mainly keyed-Sboxes, like one ordinary block cipher. The components are almost same
to the ones in DICING, for the completeness, which are repeated in this paper.

In the proposal cipher, we will apply the LFSR-like components called projector (Pr.). A projector

consists of an element tσ called state from some finite field)2(mGF and an updating rule. The

rule of updating states is that multiplying tσ with kx , k is an integer, namely,

t
k

t x σσ ⋅=+1 . (1.1)

The finite fields used in here are)2(mGF , 126,127,128 orm = . In other word, the operation

shift in LFSR now is replaced by multiplying kx in the field)2(mGF .

As same as DICING, the key sizes in DICING_CSB can be 128 bits or 256 bits, and the size of
initial value may be taken as large as 256 bits, and the size of output is 128 bits.

In this paper the finite field)2(GF is simply denoted as F , and []xF �is the polynomial ring

of unknown x over the field F. The symbols ⊕ , ⊗ will represent the bitwise addition XOR,

bitwise and, that is the operation & in C , and symbols >>, <<, | and ~ stand for the

operations right-shift, left-shift , concatenate and complement respectively.

Suppose that ζ is a binary string, denoted by biti][ζ and bitji],[ζ the i-th bit and the segment

from i-th bit to j-th bit respectively, and there are the similar expressions bytebyte jii],[,][ζζ and

wordword jii],[,][ζζ measured in bytes and 32-bits words respectively, and if the meaning is

explicit from the context, the low-index bit, byte and word will be omitted.

2. Construction

We will use two projectors 1Γ and 2Γ , the first one acts a controller to control the updating of

the second one, which will be used to form a stream of subkeys, or runkeys.

Denoted by tα and tω the states of 1Γ and 2Γ in time t respectively, which are based on

the finite fields 1E and 2�E , [] / (), 1, 2,i ix p x i= =E F)(1 xp and 2 ()p x are two primitive

polynomials with degree 127 and 128 respectively, which expressions are given in the List 1. The

state tα satisfy the simple recurrence equation

8
1 , 0,1, 2, .. .i ix iα α+ = ⋅ = . (2.1)

The integer of the last eight bits of tα is called the dice tD , denoted by (4) 1,td D= >> +

the states tω will be updated as

1 , 0.d
t tx for tω ω+ = ⋅ ≥ (2.2)

Besides, we use a memorizes tu to assemble tω ,

1 , 0t t tu u for tω−= ⊕ > , (2.3)

The initial values 0 0, ,α ω and 0u will be specified in the later.

Suppose that K is a finite field)2(8GF , [] / ()x p x=K F ,)(xp is an irreducible

polynomial of degree eight, which expression is given in the List 1. We define S-box 0 ()S x as

127
0 () 5 (3) ,S x x x= ⋅ ⊕ ∈K . (2.4)

We also adopt the representation)(0 ζS for a bytes string ζ to represent that S-box 0S

substitute each byte of the string ζ .

The startup includes two subprocesses keysetup and ivsetup, where the basic materials as the
secret key and key-size will be input and the internal states will be initialized. Besides, in the

keysetup we will make a key-defined two S-boxes 1()S x and 2 ()S x from 0 ()S x and a diffusion

transformation L . The process is as following.

For a string ρ of 8 bytes, we define a 8 8× matrix M ρ :

 u lM T J Tρ = ⋅ ⋅ . (2.5)

where 88,)(×= jiu aT and , 8 8()l i jT b ×= are the upper-triangular matrix and the lower-triangular

matrix respectively,

, ,

[8] , [8] ,
1 , 1 ,
0 , 0 ,

bit bit

i j i j

i j if i j i j if i j
a if i j b if i j

if i j if i j

ρ ρ+ < + >⎧ ⎧
⎪ ⎪= = = =⎨ ⎨
⎪ ⎪> <⎩ ⎩

 (2.6)

and J is a key-defined permutation matrix, for the simplicity, here take 1.J =

Suppose that K is the secret key, let [0,23] [8,31]c byte byteK K K= ⊕ if | | 256K = , else

[0,15] | ([0,7] [8,15]),cK K K K= ⊕ [(1) 8, 8 1] , 1, 2, 3,i c byteK i i iλ = − × − = and define

three affine ransformations on K ,

1 2 3

() (), () (), () (),A x M x B x M x C x M x xλ λ λ= = = ∈K , (2.7)

and a transformation L on 4K ,

A B A A B
B A A B A

L
A A B A B

A B A B A

⊕⎛ ⎞
⎜ ⎟⊕⎜ ⎟=
⎜ ⎟⊕
⎜ ⎟

⊕⎝ ⎠

. (2.8)

Denoted by
0 8

[] , 1, 2,3,i i byte
k

v k iλ
≤ <

= =⊕ and define two new S-boxes

1 0 1 2 2 0 2 3() () , () (()), .S x S x v v S x C S x v v x= ⊕ ⊕ = ⊕ ⊕ ∈K� (2.9)

Suppose that ζ is a string of n bytes, if 4n k= we also view it as a string of k words, and

write ()L ζ to represent that L takes on the each word of ζ . Simply, we denote

1() ()Q L Sζ ζ= ⋅ . (2.10)

In the ivsetup , the second step of the startup, the internal states will be initialized with the secret
key and the initial value.

For a 32-bytes string ζ we define a bytes permutation φ : ()φζ φ ζ= , [] [4 mod31]i iφζ ζ= ,

for 0 31i≤ < , and [31] [31]φζ ζ= . Let K K=� if 256K = else | ()K K K=� ∼ , denoted

by 0 ,K K=� � [8 ,31] | [0,8 1] , 1, 2,3,i byte byteK K i K i i= − =� � � define the functions recurrently

0 0 1() (()), () () , () (()) , 1, 2,3.i i iF Q F F K F F F K iζ φ ζ ζ ζ ζ ζ−= = ⊕ = ⊕ =� � (2.11)

Suppose that IV is the initial value of 32-bytes, e is the base of natural logarithm and c the

integral part of 57!e ⋅ , and , 0 3i iξ ≤ ≤ , are four 32-bytes strings defined as

0 3 3 1(), (), 1, 2.i iF IV c F c iξ ξ ξ −= ⊕ = ⊕ = (2.12)

In the encryption we will employ an array of 16 bytes η . The internal states are initialized
respectively as following

0 0 0 1 0 1 0 2[0,15] [16,31], [0,15], [128,254] , [0,15].bituη ξ ξ ξ α ξ ω ξ= ⊕ = = = (2.13)

If 2[0,15] 0,ξ = the states 0ω will be re-set as

0 0 2(,) [16,31]ω τ ξ= . (2.14)

.Note For a secret key, there is at most one IV such that 2 0.ξ =

In the proposal cipher DICING_CSB, the sequence { }tu will play a flow of subkeys. After

initialization, the process enters the recurrence part of encryption/decryption, in which including

the sub-process of updating states, namely, making the stream of subkeys{ }tu . Denoted by

0{ }t tx > and 0{ }t ty > the sequences of plaintext and ciphertext respectively, the encryption

function is defined as

2() (() ())t t t t ty Encrypt x S Q x u Q uη= = ⊕ ⊕ ⊕ . (2.15)

We have summarized the whole process in a sketch as Fig. 1.

List of the Primitive Polynomials used

Polynomials Expression

)(xp 1568 ++++ xxxx

)(1 xp 127 96 64 5(1)(1)x x x x+ + + +

2 ()p x 128 96 67 32 3(1)(1)x x x x x+ + + + +

List 1

The Sketch of Encryption Process

Initializing

 Updating states

 Plaintext tx Encrypting Ciphertext ty

Fig.1

3. Security analysis

The analysis for DICING_CSB as a stream cipher will be similar to the one for DICING, refer to
see paper [1]. Besides, as a block cipher, the encryption mode of DICING_CSB is not as usual
iterative one, so the traditional analyses for the block ciphers of iterative mode will not be feasible.
Although the proposal cipher is stronger than additive stream ciphers in plaintext-recovery attacks,
we have found there is such attack for DICING_CSB, if a IV’s value would be repeatedly used

more than 162 times for a secrete key K . So, it is suggested that the usage of a IV is best one

time one value. If intend to apply a IV many times, then in encryption function should be added a
more round in order to enlarge the range of diffusion, as a cost, the encrypting rate will be raised
about 2 cycles/byte.
It maybe should be mentioned that we have reduced two Pr.’s from DICING for we think that in

this encryption form the requirement for the period of the sequence { }tu may be relaxed, in this

place, the period of the sequence{ }tu is no less than 126 128(17 2 1)(2 1).⋅ − −

4. Implementation

In the platform of 32-bit Windows OS and Intel ® Celeron 2.66G, 64-bit processor, Borland C++
5.0, the performance of DICING_CSB is as following

This is the

recurrence part

Report of Performance

Encryption Decryption
Sub-processes Time Sub-processes Time
Keysetup 9890 cycles Keysetup 16400 cycles
IVsetup 2870 cycles IVsetup 2920 cycles
Encrypting rate 10.3 cycles/byte Decrypting rate 10.3 cycles/byte

List 2

Remark: There is an alternate updating rule for the states tα and tω as following:

16
1 , 0.t tx for tα α+ = ⋅ > (2.1’)

Denoted by 11 ([] &15), 0 16,i t byted i iα += + ≤ < the states tω are updated as

16 1 16 , 0 16, 0.id
t i t ix i for tω ω+ + += ⋅ ≤ < ≥ (2.2’)

With the updating rules above, the encrypting/decrypting rate will be as fast as 8.8 /cycles byte

in the case of larger size of message. We call the rule (2.1’) and (2.2’) as loting.

Besides, with the processors as Pentium-m, Pentium 4 or AMD-64, the implementation will be
faster about 20~30%.

5. Conclusion

The proposal cipher can be viewed as a combinative of a stream cipher and a block cipher. It
assimilates the good qualities of stream ciphers in the speed and block ciphers in the secure. It is
able to serve as a synchronous stream cipher or a block cipher, and there will not be need to equip
a MAC when it is applied as a synchronous stream cipher. While it is applied as block cipher, it
will still require a IV to initilize the internal states, however, this requirement is easy to be simply
satisfied, for example, the name or the date of files may be taken as the IV’values.

References

[1] A.P. Li, A New Stream Cipher: DICING, now available at
 eSTREAM - The ECRYPT Stream Cipher Project - Phase 2

