
Cryptanalysis of white box DESimplementationsLouis Goubin Jean-Mihel Masereel Mihaël QuisquaterVersailles St-Quentin-en-Yvelines University45 avenue des Etats-Unis78035 Versailles CedexFrane{Louis.Goubin,Jean-Mihel.Masereel,Mihael.Quisquater}�uvsq.frJanuary 31st, 2007AbstratObfusation is a method onsisting in hiding information of someparts of a omputer program. Aording to the Kerkhof priniple, aryptographial algorithm should be kept publi while the whole seu-rity should rely on the knowledge of the key. The goal of obfusation ofblok iphers is therefore to produe programs ontaining the key thatould not be extrated by someone having aess to the soure ode.This paper deals with the ryptanalysis of suh methods of obfusa-tion, in partiular for the DES. Suh methods, alled the �naked DES�and �non standard DES�, were proposed by Chow et al. [4℄ in 2002.Some methods for the ryptanalysis of the �naked DES� were proposedby Chow et al. [4℄, Jaob et al. [5℄, and Link and Neuman [6℄. Intheir paper, Link and Neuman [6℄ proposed an other method for theobfusation of the DES.In this paper, we propose a general method that applies to allshemes. Moreover, we provide a theoretial analysis. We imple-mented our method with a C ode and applied it to some instanes ofobfusations of the DES. So far, our results are suessful and moresystematial tests are in progress.1 IntrodutionIn 2002, Chow et al. [3, 4℄ suggested two di�erent obfusations, one for theAES, the other for the DES. The AES obfusation was ryptanalysed byBillet et al. [1, 2℄ in 2004. Also Chow et al. [4℄ gived an attak on their�rst DES obfusation version (alled �naked DES�). Jaob et al. [5℄ and Linkand Neuman [6℄, proposed two others attaks on the �naked DES�. A seond1



version of DES obfusation, alled �non standard DES�, was given by Chowet al. [4℄. This version seems not to have been ryptanalysed yet.In Setion 2, we give an overview of the obfusation methods given byChow et al. and by Link and Neumann. Setion 3 is devoted to our attakon the �naked DES�. In Setion 4, we adapt our attak to the �non standard�DES, whih was not ryptanalysed so far. Finally, we onlude in Setion 5.2 DES obfusation methodsChow et al. [4℄ proposed two types of DES obfusation. The �rst one,alled �naked DES�, produes a real DES. The seond one, alled the �nonstandard DES�, is a slight modi�ation of the standard DES algorithm. Thislast version is the one they reommend.Let's desribe the naked DES. The obfusation starts with an a�ne fun-tion M1, wih is the omposition of the initial permutation and the expan-sion. This funtion is linear, so we an parsed it in a lever way, in manytables. Eah round is then the onatenation of 12 T-boxes (derived fromthe S-boxes of the DES) followed by an a�ne funtion M2 (derived from Pand the xor operation). The last round of the obfusation is followed by ana�ne funtion M3 whih is the �nal permutation. This funtion takes forarguments the outputs of the a�ne funtion M2 of the last round and returnsthe ipher text. We will denote by Ai, one of these omponents (T-box or
Mi).Eah omponents Ai are obfusated between random non linear permu-tations P1 and P2, i.e. P1◦Ai◦P2 (it is what Chow et al. [4℄ refers to io-blokenoding). The resulting funtions are stored in arrays in order to be usedin the obfusated program. Permutations P1 and P2 are hosen suh thatthe omposition of onseutive obfusated omponents is the obfusation ofthe omposition of the omponents.This obfusation was ryptanalysed by the authors themselves [4℄. Inorder to avoid this attak, they propose the �non standard DES�. It onsistsin adding two a�ne bijetions M0 and M4 in front and after the naked DES,respetively. It is not spei�ed by Chow et al. [4℄ whether M0 and M4 areblok enoded (i.e. respetively preeded and followed by non linear randompermutations). In this paper, we onsider that M0 and M4 are not blokenoded.On the other hand, Link and Neumann [6℄ improved the attak on the�naked DES�, and suggested another solution whih onsists in merging theT-boxes and the a�ne funtion M2 of eah round. This way, we do not haveaess to the T-boxes outputs. Moreover, the M2 of the di�erent rounds areblok enoded in an other way.As far as we know, no one has published an attak neither on the �nonstandard DES�, nor on the improved �naked DES�. We adress this issue in2



this paper.3 Attak on the naked DES3.1 The prinipleAs mentioned before, the naked DES proposed by Chow et al. [4℄ was al-ready ryptanalysed in the papers [4, 5, 6℄. In this setion, we show how toryptanalyse the improved version of the naked DES proposed by Link andNeumann [6℄. Note that our method works also for the naked DES proposedby Chow et al. [4℄. In what follows, we will denote by �regular DES�, theone desribed in the standard [8℄ (without PC1), and we will use the samenotations.Our attak is divided into two phases and is based on a trunated di�er-ential attak. Roughly speaking, the �rst phase onsists in generating pairsof messages (X,X ′) suh that the right part of the images throught IP andthe �rst round of a regular DES, are equal (for a given key). The seondphase onsists in evaluating those pairs of messages (X,X ′) on the nakedDES, and in heking a ondition that we speify below. The pairs thatsatisfy the test provide a key andidate.Let's go into the details. Remember that f(., k) denotes the funtion ofthe regular DES, we will also denote it as fk(.). (L0, R0) denotes the image ofthe initial message through IP , and (L1, R1) is the image of (L0, R0) throughthe �rst round, i.e. (L1, R1) = (R0, L0 ⊕ f(R0, k)). Consider a funtion f ,vetors X and ∆, the derivative f(x0) ⊕ f(X0 ⊕ ∆) will be denoted by
D∆f(X). Let's �rst motivate our algorithm. Let k be a �xed unknown key.Assume we want to �nd the �rst round 6-bit-subkey orresponding to Si(for the sake of larity, we will restrain ourself to i = 1). Therefore we willgenerate andidate keys suh that only the 6 key bits of S1 of the �rst roundare modi�ed. For eah of these keys, we ompute pairs of messages (X,X ′)suh that,1. ∆ = R0 ⊕ R′

0 is zero, exept for the bits index 2 and 3.2. L′
0 = L0 ⊕ D∆fk(R0)Observe that the bits of R0 index 2 and 3 only a�et the output of

S1. Therefore, f(R0, k) and f(R′
0, k) are idential exept for the 4 bitsorresponding to the output of S1.Under these onditions, in the next round we have R1 = R′

1 and L′
1(= R′

0)is idential to L1(= R0) exept for at most two bits. Consider now thesetwo messages X and X ′ applied to the �naked DES� with the orret keyandidate. We observe that these bits (non-zero bits of L′
1 ⊕ L1) in�ueneat most two io-blok enoding bijetions. If the key andidate is wrong, we3



will have R1 6= R′
1. Therefore many bits will hange at the output of M2of the �rst round, and we will be able to distinguish this situation from theorret key guess.Here is an overview of the attak:

• Choose a message X randomly.
• Compute (L0, R0) = IP (X) with IP publi.
• Choose ∆ suh that only bits index 2 and 3 are di�erent from 0.
• For all possible 6 bits of round subkey k:� Compute L′

0 = L0 ⊕ D∆fk(R0).� Compute X ′ = IP−1(L′
0, R0 ⊕ ∆).� Apply X and X ′ to the obfusated DES and save the values Yand Y ′ at the end of the �rst round.� Compare Y and Y ′ and ompute in how many io-blok enodingbijetions they di�er.� If this number is stritly greater than 2, then rejet the 6-bit-subkey, else the 6-bit-subkey are probably orret.This way, we an reover the 48 key-bit of the �rst round of the DES. The8 remaining bits are found by exhaustive searh.3.2 E�ienyThis algorithm an produe more than one andidate for the 6-bit-subkey.It will provide wrong 6-bit-subkeys in two situations.1. Due to the balane property of the S-boxes, and the fat they mapsix bits to four bits, four di�erent inputs produes the same output.Therefore for eah S-box, three wrong 6-bit-subkeys will produe thesame output as the orret key. To avoid this problem, we an launhthis algorithm with another random initial message, or simply another

∆. In fat, we only have to hange the values of the bits of R0 and ∆orresponding to the input of S1 (the bits index 32,1,. . . ,5). Atuallywe an hoose di�erents pairs (X,X ′) suh that the intersetion of thekey andidates assoiated to eah of them is the orret key.2. The seond one is due to a propagation phenomena. Suppose we have awrong 6-bit-subkey produing a wrong S1 output. It means that thereare more than three bits of di�erene between (L1, R1) and (L′
1, R

′
1).These di�erenes ould be mapped to the same io-blok enoding bi-jetion, leading to the �ipping of only two io-blok enoding bijetions4



at the output of M2. In this ase, we launh this algorithm with sev-eral values for R0. It leads to several lists of key andidates and theorret key belongs to the intersetion. This way, wrong keys will bedisarded.4 Attak on the �non standard DES�This setion is dediated to an attak on the �non standard DES�. Remindthat the �non standard DES� is a �naked DES� where the a�ne funtion
M1 is replaed by M1 ◦ M0, where M0 is a mixing bijetion (see Chowet al. [4℄). As mentionned before, we assume that the inputs of M1 ◦ M0(respetively the outputs of M4 ◦ M3) are not io-blok enoded. Note thatall the other funtions are io-blok enoded using 4× 4 bijetions (the samepriniple applies for the obfusation proposed by Link and Neuman [6℄ wherebijetions are from 8 to 8 bits). Moreover, we assume that the T-Boxes followthe same ordering in the di�erents rounds. In what follows, we will notonsider IP (inside M1) for the sake of larity. It does not hange anythingto the argument.Denote by F : F64

2 → F96
2 the obfusation of M1 ◦ M0. We summarizethe situation in the �gures below. The funtion φ : F96

2 → F96
2 is a bit-permutation (48 positions are determined by the regular DES operation andthe others 48 bits are hosen randomly).
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b0 b23. . . . . . . . . . .

F

Figure 1: F funtionIn what follows, the term preimage will impliitly refer to the preimagewith respet to the linear bijetion M0. Moreover, we say that a bit of avetor is touhing an io-blok enoding bijetion if this bijetion depends onthis bit. Similarly we will say that a vetor touhes an S-Box if non-zero bitstouh it.Our attak on the �non standard DES� is based on the one on the �nakedDES�. Our approah is based on a di�erential trunated attak. It onsistsin omputing the images of a random vetor X0 at di�erent levels in the5
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Figure 2: M1 funtionobfusated DES. We ompare these values (alled initial-entries) to the or-responding images of X0 ⊕ ∆, where ∆ satis�es some onditions dependingon the ontext. This approah allows to provide gradually informations onthe key and the matrix M−1
0 . Full key and the matrix M−1

0 are knownat the end. The way we store information on M−1
0 onsists in onsideringlists of andidates for preimages of unspei�ed anonial vetors. Lists ofandidates ontaining only one vetor are alled distinguished list.Note thatthese lists are atually vetor spaes and an be shared by several anonialvetors. In pratie, a list E will be shared by dim E anonial vetors (thatare not neessary spei�ed). Our algorithm works sequentially and onsistsin speifying these anonial vetors and in shortening the lists using sometriks. Our method an therefore be understood as a ��ltering proess�. Thedi�erent �lters are desribed below.Setion 4.1 desribes a preliminary step almost independant of the stru-ture of the blok ipher. It onsists in �nding vetor spaes assoiated to apartiular io-blok enoding bijetion at the output of F . This step allowsto get global information on M−1

0 .Setion 4.2 desribes a set of �lters intending to re�ne information on
M−1

0 . These steps are highly related to the studied blok ipher. The �rst�lter, desribed in Setion 4.2.1, allows to distinguish lists that are assoiatedto anonial vetors belonging either to right bits or left bits of the inputof the �rst round. The seond �lter, desribed in Setion 4.2.2, extratsall the lists (marked as �right� in the previous �lter) touhing a single S-box. The third �lter, desribed in Setion 4.2.3, gathers the lists (markedas �left� in the previous �lter) in sets assoiated to the output of S-boxes.Setion 4.2.4 links T-Boxes (obfusation of the keyed S-boxes) to S-Boxes.This information allows the last �lter, presented in Setion 4.2.5, to speifypreisely the 1-to-1 link between the lists (marked as �left�) and the (left)anonial vetors.Setion 4.3 explains how to extrat the key and how to reover the fullinvertible matries M−1
0 and M4. 6



4.1 Blo level analysis of M1 ◦ M0Denote by Kk the spae ({0}4k × F4
2 × {0}92−4k), and by Kk, the spae

(F4k
2 × {0}4 × F92−4k

2 ). In what follows, the vetor spae spanned by a setof vetors S will be denoted 〈S〉. Also, ei denotes the ith anonial vetor(the position of the �one is omputed from the left and start from one) ofthe vetor spae F64
2 . The sets {ei ∈ F64

2 | i = 1 . . . 32} and {ei ∈ F64
2 | i =

33 . . . 64} will be denoted by SL and SR, respetively.Ideally, we are looking for 24 vetor spaes suh their vetors in�ueneonly one io-blok enoding bijetion at the output of M1 ◦ M0. This wouldallow to at spei�aly on one partiular io-blok enoding bijetion. Unfor-tunately, due to the dupliation of the bits in M1 (beause of the expansion
E) this goal is impossible to ahieve. We will therefore try to approximatethis situation and deal with the drawbaks afterwards. First we will have togive some notations, de�nitions and properties.Let X a vetor in F96

2 , let k be an integer, k ∈ [0, 23], πk denotes theprojetion πk : (F4
2)

24 → F4
2 : X = (x1, . . . , x24) 7→ xk. Let bk be the

(k+1)th io-blok enoding bijetion at the output of M1 ◦M0. The funtion
F is written as
F (X) = (b0◦π0◦M1◦M0(X), b1◦π1◦M1◦M0(X), . . . , b23◦π23◦M1◦M0(X))De�nition 4.1 Let k be an integer, k ∈ [0, 23]. We denote by Bk the vetorspae {X ∈ F64

2 | πk ◦ M1(X) = 0}. In other words, it is the subspae ofvetor X suh that for any non-zero omponent ei of X, M1(ei) does nottouh bk, i.e. Bk = 〈ej | πk ◦ M1(ej) = 0〉.De�nition 4.2 Let k be an integer, k ∈ [0, 23]. We denote by Ek the sub-spae of vetor X suh that for any non-zero omponent ei of X, M1(ei)touhes bk, i.e. Ek = 〈ej | πk ◦ M1(ej) 6= 0〉.Remark: Note that F64
2 is the diret sum of Bk and Ek for any k; i.e.

F64
2 = Bk ⊕ EkWe wil denote by Bk the subspae M−1

0 (Bk), and by Ek the subspae
M−1

0 (Ek)Property 4.3 For all k integer, k ∈ [0, 23], Bk = {∆ ∈ F64
2 | D∆F (F64

2 ) ⊂
Kk}, the probability that ∆ belongs to Bk, when ∆ is randomly hosen, isgreater or equal to 1

24 = 1
16 , and 60 ≤ dim(Bk) < 64.Proof: Let E be the set {∆ ∈ F64

2 | D∆F (F64
2 ) ⊂ Kk}.

• Let ∆ be an element belonging to Bk. Let X be an element belongingto F64
2 .

D∆F (X) = (D∆(b0◦π0◦M1◦M0(X)), . . . ,D∆(b23◦π23◦M1◦M0(X)))7



Aording to the de�nitions, if ∆ ∈ Bk then M0(∆) ∈ Bk or equiva-lently πk ◦M1 ◦M0(∆) = 0. Let's ompute D∆(bk ◦πk ◦M1 ◦M0(X)) =
(1).
(1) = bk ◦ πk ◦ M1 ◦ M0(X) ⊕ bk ◦ πk ◦ M1 ◦ M0(X ⊕ ∆)

= bk ◦ πk ◦ M1 ◦ M0(X) ⊕ bk(πk ◦ M1 ◦ M0(X) ⊕ πk ◦ M1 ◦ M0(∆))
= bk ◦ πk ◦ M1 ◦ M0(X) ⊕ bk(πk ◦ M1 ◦ M0(X) ⊕ 0)
= bk ◦ πk ◦ M1 ◦ M0(X) ⊕ bk ◦ πk ◦ M1 ◦ M0(X) = 0This means that D∆F (X) belongs to Kk or equivalently ∆ belongs to

E. We onlude that Bk ⊂ E.
• Let ∆ be any element of E. Aording to the de�nition of E, we havein partiular D∆(0) ∈ Kk. This means that

bk(0) ⊕ bk ◦ πk ◦ M1 ◦ M0(∆) = 0or equivalently
bk(0) = bk ◦ πk ◦ M1 ◦ M0(∆).We dedue that πk ◦ M1 ◦ M0(∆) = 0 beause bk is a bijetion. A-ording to the de�nitions, it means that M0(∆) ∈ Bk or equivalently

∆ belongs to Bk. Therefore E ⊂ Bk. We onlude that E = Bk.
• Note that in fat Bk is the kernel of πk ◦ M1 ◦ M0. Sine rank(πk ◦

M1 ◦ M0) is less or equal to 4, and greater or equal to 1, we havesimultaneously 60 ≤ dim(Bk) ≤ 63 and the probability that ∆ belongsto Bk when ∆ is randomly hosen, is equal to dim(Bk)
264 . The resultsfollows.

�Combining De�nition 4.2 and Property 4.3, the vetor spae Ek an bedesribed as the set of vetors ∆ suh that for any vetor X0 ∈ F64
2 M0(X0)⊕

M0(X0 ⊕∆) has in total less than four non-zero omponents ei, all of themtouhing the (k + 1)th io-blok enoding bijetion through M1. Due to theProperty 4.3, it is easier to reover a basis for Bk's, than for Ek's. That'swhy we will �rst reover all the Bk's. Using Property 4.3, we only have toompute D∆F (X0) for random ∆ ∈ F64
2 and determine to whih spae Kkit belongs. Using Bk's, we will reover Ek's, or at least, 24 vetor spaes Êkontaining Ek with minimal dimension.Let's now explain how to reover Êk. First, let's remark that for all

X ∈ F64
2 and for all ∆ ∈ F64

2 , we have D∆F (X) ∈ Kk if and only if D∆πk ◦
M1 ◦ M0(X) ∈ Kk. Let's introdue the following lemma.8



Lemma 4.4 Let k be an integer belonging to [0, 23]. If Ej ∩Ek = {0} for allinteger j distint from k belonging to [0, 23], then
Ek =

⋂

j 6=k

Bj.Proof: The proof is available in the appendix.
�Sine M0 is a bijetion, this lemma means that if Ej ∩Ek = {0} for all integer

j ∈ [0, 23] di�erent from k, then Ek =
⋂

j 6=k

Bj . Nevertheless, due to the bit-dupliation, there exist indexes k and j suh that Ej ∩ Ek 6= {0} (and then
Ej ∩Ek 6= {0}). Denote by Jk the set {j | Ej ∩Ek = {0}}, by Êk the subspae⋂
j∈Jk

Bj, and by Êk the subspae ⋂
j∈Jk

Bj where k is an integer belonging to
[0, 23].Property 4.5 For all integer k ∈ [0, 23], Ek ⊆ Êk.Proof: The proof is available in the appendix.

�Let's introdue a property that will allow us to give another haraterizationof Jk.Property 4.6 For all integer i ∈ [0, 23] and for all integer j ∈ [0, 23]

dim(Ei ∩ Ej) = 64 + dim(Bi ∩ Bj) − dim(Bj) − dim(Bi)Proof: The proof is available in the appendix.
�A straight forward appliationof this property to the de�nition of Jkleads to Jk = {j ∈ [0, 23] | 64 = dim(Bj) + dim(Bi) − dim(Bi ∩ Bj)}.This haraterization will be useful in order to ompute Êk. If dim(Êk) +

dim(Bk) < 64 then Ek ( Êk, and we have found a vetor spae ontainingstritly the one we searhe. Note that when dim(Êk) + dim(Bk) = 64, Ek =
Êk. This ase is partiularly interesting beause it redues the omplexityof the full ryptanalysis.4.2 Bit level analysis of M

−1
0In the previous setion, we were looking for di�erenes ∆ assoiated to aspei�ed io-blok enoding bijetion. It allowed us to get some informationon M−1

0 . In this setion, we re�ne our searh and this will allow us to getenough information on M−1
0 in order to apply our method on the �nakedDES� to �non standard DES�. Our algorithm works sequentially and onsistsin a ��ltering proess�. The di�erent �lters are desribed below.9



4.2.1 Searh for andidates for preimages of elements belongingto the sets SL and SRConsider ∆ be an element of F64
2 suh that M0(∆) = ei and ei ∈ SL. Theonly non-zero bit of M1 ◦ M0(∆) touhes only one io-blok enoding bije-tion. Therefore, ∆ belongs to a single Êk. Assume now that ∆ ∈ F64

2 suhthat M0(∆) = ei and ei ∈ SR then M1 ◦ M0(∆) has exatly two non-zerobits that may touh the same or two distints io-blok enoding bijetion orequivalently ∆ belongs to one or two spaes Êk. In what follows, we willall double an element ∆ ∈ F64
2 suh that M0(∆) ∈ SR and the two non-zerobits of M1 ◦ M0(∆) touh the same io-blok enoding bijetion. By onsid-ering intersetions between the spaes Êk, we an distinguish preimages ofelements of SR from doubles or preimages of elements of SL.Note that the intersetions between spaes Êk taken pairwise provide a-tually more information. Indeed, Êi ∩ Êj ontains preimages of unknownanonial vetors. In partiular, if dim(Êi ∩ Êj) = 1 then Êi ∩ Êj =

〈M−1
0 (ek)〉 for some k. In this ase, we already know the preimage of anunknown anonial vetor. When dim(Êi ∩ Êj) > 1 we an still take advan-tage of this fat even if it requires some extra searhes.4.2.2 Reovering middle bitsIn order to apply our attak presented in Setion 3, we need to know exatlythe preimage of anonial vetors touhing only a single S-Box of the �rstround (e.g. Right bits index 2,3,6,7,10,. . . ). In what follows, we will refer tosuh a anonial vetor as a middle bit.Reall that X0 is the initial-vetor de�ned in Setion 4. For eah di�er-ene ∆ belonging to the lists marked as input of the studied T-box, we apply

X0⊕∆ to the obfusated DES by making an injetion fault. This means thatwe set the input of this T-box to the initial-entry while we keep the atualvalue for the other T-Boxes. We evaluate the number of io-blok enodingbijetions at the output of the �rst round that di�ers from the orrespondinginitial-entries. If only one io-blok enoding bijetion (at the output of the�rst round) di�ers from the orresponding initial-entry, we dedue that ∆ould be the preimage of a middle bit. Therefore, a list pointed by severalanonial vetors an be divided into two shorter lists; one list is pointed bymiddle bits while the other is pointed by non-middle bits.Remarks: If a T-box is touhed by more than three middle bits or leftbits, we dedue that this T-box does not ontain any S-box. Note also thatdoubles an only be preimages of middle bits. Finally, a T-box touhed bya double ontains neessarily an S-box.
10



4.2.3 Reovering left bitsIn order to apply our attak presented in Setion 3, we need to know whihgroup of four anonial vetors are xored with the output of eah S-box ofthe �rst round. First, we determine the io-blok enoding bijetions that aretouhed by the outputs of the studied S-box and we denote by BS this setof bijetions. Then, we store in an extra list L eah ∆ marked as left bitstouhing exatly two bijetions of BS. This list ontains all the preimagesassoiated to anonial vetors that are potentially xored with the output ofthe S-box. Finally, we �nd ∆l ∈ 〈L〉 suh that for any bijetion bi ∈ BS wehave D∆m⊕∆l
bi(X0) = 0, where ∆m belongs to a list marked as a middle bitof the studied S-box. This proess is repeated with di�erent ∆m or X0, untilwe �nd four linearly independent ∆l or equivalently the vetor spae spannedby the preimages of the searhed anonial vetors. We then ompute theintersetion between this spae and all the lists. It allows us to split some ofthem in shorter lists (the intersetion and the omplementary spae of theintersetion). It may lead to lists ontaining a single vetor (distinguishedlist).4.2.4 ChainingIn this setion, we will try to determine preisely the orrespondane betweenT-boxes and S-boxes. Due to the remark in Setion 4.2.2, we know whihare the T-boxes ontaining an S-box. The probability that a seleted T-box,denoted by T1, ontains S1 is 1/8. We determine the two T-Boxes that aretouhed by a anonial vetor assoiated to a list marked as �right bit�, �non-middle bit� and assoiated to T1. Seleting one of these T-Boxes randomly,the probability that it ontains S2 is 1/2. Out of the set of unseleted T-Boxes, we selet the one that is touhed by a anonial vetor assoiated toa list marked as �right bit�, �non-middle bit� and assoiated to the previousseleted T-Box. We ontinue the proess until all T-Boxes have been seleted.Note that the probability to determine the right orrespondane is 1/8 ×

1/2 = 1/16.4.2.5 Bits positionsAt this stage, we have reovered between others, 32 preimages orrespondingto unspei�ed left anonial vetors. In order to determine the orrespon-dane, we use the following observation on the DES;Out of the four Left bits that are xored with the output of a spei�ed S-Box,exatly two beome (in the seond round) middle bits.Now, we just have to apply eah of the preimages to the obfusated DESand to hek whether the image of this vetor in front of the seond roundis a middle bit (f. 4.2.2). Assuming that the T-Boxes follow the same11



ordering in the di�erents rounds, preimages orresponding to a middle bit(resp. non-middle bit) an be distinguished observing the indexes of thetouhed T-Boxes.For example, for the �rst S-box, among the 4 identi�ed left anonial vetorspreimages,
• the one that is the preimage of a middle bit of S6 (resp. S8) in theseond round is the preimage of e23 (resp. e31).
• the one that is not the preimage of a middle bit and is in the input of

S2 and S3 (resp. S4 and S5) of the seond round, is the preimage of
e9 (resp. e17).4.3 The attakIn Setion 4.2, we have shown how to reover all the preimage of the leftanonial vetors. In other words, we have reovered half of M−1

0 (olumnsand their positions). Also, some of the lists marked as middle bits ontainonly one vetor but their orresponding anonial vetor is however unknown.Therefore, some olumns of M−1
0 are known up to their positions. Finally,the remaining lists marked as middle bits are pointed by some anonial ve-tors (their number is the dimension of the vetor spae spanned by the list).In this ase, we selet linearly independant vetors in the list and we asso-iate eah of them to the anonial vetor pointing to the list. Therefore, weare in the ontext of the attak of the naked-DES modulo some adaptations.In partiular, we have to hoose X0 belonging to the vetor spae spannedby the known olumns of M−1

0 . The evaluation of the �rst round on X0 ⊕∆may lead to some di�ulties. Indeed, we have to hoose ∆ belonging tothe preimage of middle bits spae whih is not neessarily inluded in thevetor spae spanned by the known olumns of M−1
0 . It turns out that wehave to try all the andidates for this part of the matrix M−1

0 . For eah ofthese andidates, we mount an attak like we did on the �naked DES� whihprovide 48 key-bit andidates. Note that it may happen that wrong keys willbe reovered. More importantly, it may happen that no key exists for thisandidate for this part of the matrix M−1
0 . In other words, it means that wehave to disard this andidate.In order to determine the remaining part of M−1

0 (olumns assoiated tonon-middle bits), we apply a similar priniple that we used for the �nakedDES�. Indeed, we know the key and we know that for the �naked DES� forall initial-message X0 there always exists a di�erene ∆ with non-zero rightomponent suh that the right part of the di�erential (evaluated in X0) ofthe �rst round is zero. It means that in the ontext of the �non standardDES�, wrong andidates for M−1
0 an be disarded. Denote by K the spaespanned by the known olumns of the andidate for M−1

0 and by U the12



unknown olumns of the andidate for M−1
0 . We have K ⊕ U = F64

2 . Theandidate for M−1
0 an be disarded if there exists X0 ∈ K suh that theredoes not exist ∆ with a non zero-omponent in U suh that the right partof the di�erential (evaluated in X0) is zero.At this stage, we have a 48 key-bit andidate and a andidate for M−1

0 .We make an exhaustive searh in order to determine the 8 remaining bits.For eah of them we try to solve a linear system in order to �nd the matrix
M4. If there is no solution for M4 we dedue that the 8 key-bit andidate iswrong. If all the 8 key-bit andidate are wrong, we disard this partiular
M−1

0 . Note that this method also works if M4 has a io-blok enodingbijetions at the output.Attak on Link and Neumann obfusation Our methods only use theoutputs of the �rst and seond round. In partiular, we never use the outputsof the T-boxes. Therefore, our two attaks (naked DES, and non-standardDES) an be applied on the Link and Neumann [6℄ obfusation method. Theonly di�erene is that we will deal with larger lists.5 ConlusionIn this paper, we have given new tehniques of ryptanalysis for the urrentobfusation methods of DES. These tehniques rely on a theoretial analysisand have also been implemented as a C program. Our results are promisingon the instanes we have tried so far. More systematial simulations are inprogress and the results will be ommuniated soon.Referenes[1℄ O. Billet. Cryptologie Multivariable Ph.D. thesis University of Versailles,Deember 2005.[2℄ O. Billet, H. Gilbert, and C. Eh-Chatbi. Cryptanalysis of a white boxAES implementation. In Helena Handshuh and M. Anwar Hasan, ed-itors, Seleted Areas in Cryptography, volume 3357 of Leture Notes inComputer Siene, pages 227�240. Springer, 2004.[3℄ S. Chow, P. Eisen, H. Johnson, and P. van Oorshot. White-box ryptog-raphy and an AES implementation. In 9th Annual Workshop on SeletedAreas in Cryptography, volume 2595 of LNCS, pages 250�270. Springer-Verlag, 2002.[4℄ S. Chow, H. Johnson, P. van Oorshot, and P. Eisen. A white-box DESimplementation for DRM appliations. In Proeedings of ACM CCS-13



9 Workshop DRM 2002, volume 2595 of LNCS, pages 1�15. Springer-Verlag, 2002.[5℄ M. Jaob, D. Boneh, and E. Felten. Attaking an obfusated ipher byinjeting faults. In Proeedings 2002 ACM Workshop on Digital RightsManagement, November 18, 2002, Washington DC, USA., 2002.[6℄ H.E. Link and W.D. Neumann. Clarifying obfusation: Improving theseurity of white-box enoding. 2004. http://eprint.iar.org/.[7℄ J. Patarin and L. Goubin. Asymmetri ryptography with S-boxes. InPro. 1st International Information and Communiations Seurity Con-ferene, pages 369�380, 1997.[8℄ http://www.itl.nist.gov/�pspubs/�p46-2.htmAppendix: ProofsProof of Lemma 4.4: First reall that Bk = 〈ej | πk ◦ M1(ej) = 0〉 and
Ek = 〈ej | πk ◦ M1(ej) 6= 0〉. Let j and k be two distint integers, then thefollowing onditions are equivalent.

• Ej ∩ Ek = {0}.
• πk ◦ M1(ei) = 0 or πj ◦ M1(ei) = 0 for all integer i ∈ [1, 64].
• πk ◦ M1(X) = 0 or πj ◦ M1(X) = 0.for all vetor X ∈ F64

2 .We onlude that if X ∈ Ej and Ej ∩ Ek = {0} then πk ◦ M1(X) = 0 orequivalently X ∈ Bk.Consider X 6= 0 belonging to ⋂
j 6=k

Bj. We have that πj ◦ M1(X) = 0 for all
j 6= k. Note that M1 is injetive. Therefore M1(X) 6= 0 and πk ◦ M1(X) 6=
0. We onlude that all the bits of M1 ◦ (X) that touh bj (j 6= k) arezeros. Therefore, for any non-zero omponent ei of X, M1(ei) touhes bk orequivalently X ∈ Ek, and ⋂

j 6=k

Bj ⊂ Ek.Let's use an argument by ontraposition. Consider ei /∈
⋂

j 6=k

Bj . Then, thereexists j 6= k, suh that ei /∈ Bj, i.e. πj ◦ M1(ei) 6= 0 or equivalently ei ∈ Ej .Therefore, aording to the previous three equivalent onditions, ei /∈ Ek.We dedue that for all ei ∈ Ek we have ei ∈
⋂

j 6=k

Bj. It means that Ek = 〈ei |

ei ∈ Ek〉 ⊂
⋂

j 6=k

Bj. We onlude Ek =
⋂

j 6=k

Bj.
�14



Proof of Property 4.5: Let ei be an element of Ek and j be an element of
Jk. We have πk◦M1(ei) 6= 0 and Ej∩Ek = {0}. It implies that πj◦M1(ei) = 0,and ei ∈ Bj . Therefor, ei ∈

⋂
j∈Jk

Bj, and 〈ei | ei ∈ Ek〉 ⊂ Êk.
�Proof of Property 4.6: We will �rst prove that (Bi∩Bj)⊕〈Ei ∪Ej〉 = F64

2 .Consider a anonial vetor ek /∈ Bi∩Bj. This is equivalent to πi◦M1(ek) 6= 0or πj ◦ M1(ek) 6= 0. In other words ek ∈ Ei or ek ∈ Ej, or equivalently
ek ∈ 〈Ei ∪ Ej〉. This means that for all anonial vetor ek of F64

2 , we haveeither ek belongs to Bi ∩ Bj or ek belongs to 〈Ei ∪ Ej〉.Assume that there exists a anonial vetor ek ∈ (Bi∩Bj)∩〈Ei∪Ej〉. We have
πi ◦M1(ek) = πj ◦M1(ek) = 0, and either πi ◦M1(ek) 6= 0 or πj ◦M1(ek) 6= 0.It leads to a ontradition. Hene (Bi ∩Bj)∩ 〈Ei ∪ Ej〉 ontains no anonialvetors.Assume now that there exists an element ∆ ∈ (Bi ∩ Bj) ∩ 〈Ei ∪ Ej〉 having anon-zero omponent ek. The vetor ∆ belongs to (Bi∩Bj), hene ek belongsto (Bi ∩ Bj). Moreover ∆ belongs to 〈Ei ∪ Ej〉, hene ek belongs to 〈Ei ∪ Ej〉.Therefore ek belongs to (Bi∩Bj)∩〈Ei∪Ej〉 whih is impossible. We onludethat (Bi ∩ Bj) ∩ 〈Ei ∪ Ej〉 = {0}. Therefore (Bi ∩ Bj) ⊕ 〈Ei ∪ Ej〉 = F64

2 .We dedue that
64 = dim(〈Ei ∪ Ej〉) + dim(Bi ∩ Bj)

= dim(Ei + Ej) + dim(Bi ∩ Bj)
= dim(Ei) + dim(Ej) − dim(Ei ∩ Ej) + dim(Bi ∩ Bj)Moreover Ei ⊕ Bi = F64

2 = Ej ⊕ Bj. Hene 64 = 64 − dim(Bi) + 64 −
dim(Bj) − dim(Ei ∩ Ej) + dim(Bi ∩ Bj). The result follows.

�
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