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tObfus
ation is a method 
onsisting in hiding information of someparts of a 
omputer program. A

ording to the Kerkhof prin
iple, a
ryptographi
al algorithm should be kept publi
 while the whole se
u-rity should rely on the knowledge of the key. The goal of obfus
ation ofblo
k 
iphers is therefore to produ
e programs 
ontaining the key that
ould not be extra
ted by someone having a

ess to the sour
e 
ode.This paper deals with the 
ryptanalysis of su
h methods of obfus
a-tion, in parti
ular for the DES. Su
h methods, 
alled the �naked DES�and �non standard DES�, were proposed by Chow et al. [4℄ in 2002.Some methods for the 
ryptanalysis of the �naked DES� were proposedby Chow et al. [4℄, Ja
ob et al. [5℄, and Link and Neuman [6℄. Intheir paper, Link and Neuman [6℄ proposed an other method for theobfus
ation of the DES.In this paper, we propose a general method that applies to alls
hemes. Moreover, we provide a theoreti
al analysis. We imple-mented our method with a C 
ode and applied it to some instan
es ofobfus
ations of the DES. So far, our results are su

essful and moresystemati
al tests are in progress.1 Introdu
tionIn 2002, Chow et al. [3, 4℄ suggested two di�erent obfus
ations, one for theAES, the other for the DES. The AES obfus
ation was 
ryptanalysed byBillet et al. [1, 2℄ in 2004. Also Chow et al. [4℄ gived an atta
k on their�rst DES obfus
ation version (
alled �naked DES�). Ja
ob et al. [5℄ and Linkand Neuman [6℄, proposed two others atta
ks on the �naked DES�. A se
ond1



version of DES obfus
ation, 
alled �non standard DES�, was given by Chowet al. [4℄. This version seems not to have been 
ryptanalysed yet.In Se
tion 2, we give an overview of the obfus
ation methods given byChow et al. and by Link and Neumann. Se
tion 3 is devoted to our atta
kon the �naked DES�. In Se
tion 4, we adapt our atta
k to the �non standard�DES, whi
h was not 
ryptanalysed so far. Finally, we 
on
lude in Se
tion 5.2 DES obfus
ation methodsChow et al. [4℄ proposed two types of DES obfus
ation. The �rst one,
alled �naked DES�, produ
es a real DES. The se
ond one, 
alled the �nonstandard DES�, is a slight modi�
ation of the standard DES algorithm. Thislast version is the one they re
ommend.Let's des
ribe the naked DES. The obfus
ation starts with an a�ne fun
-tion M1, wi
h is the 
omposition of the initial permutation and the expan-sion. This fun
tion is linear, so we 
an parsed it in a 
lever way, in manytables. Ea
h round is then the 
on
atenation of 12 T-boxes (derived fromthe S-boxes of the DES) followed by an a�ne fun
tion M2 (derived from Pand the xor operation). The last round of the obfus
ation is followed by ana�ne fun
tion M3 whi
h is the �nal permutation. This fun
tion takes forarguments the outputs of the a�ne fun
tion M2 of the last round and returnsthe 
ipher text. We will denote by Ai, one of these 
omponents (T-box or
Mi).Ea
h 
omponents Ai are obfus
ated between random non linear permu-tations P1 and P2, i.e. P1◦Ai◦P2 (it is what Chow et al. [4℄ refers to io-blo
ken
oding). The resulting fun
tions are stored in arrays in order to be usedin the obfus
ated program. Permutations P1 and P2 are 
hosen su
h thatthe 
omposition of 
onse
utive obfus
ated 
omponents is the obfus
ation ofthe 
omposition of the 
omponents.This obfus
ation was 
ryptanalysed by the authors themselves [4℄. Inorder to avoid this atta
k, they propose the �non standard DES�. It 
onsistsin adding two a�ne bije
tions M0 and M4 in front and after the naked DES,respe
tively. It is not spe
i�ed by Chow et al. [4℄ whether M0 and M4 areblo
k en
oded (i.e. respe
tively pre
eded and followed by non linear randompermutations). In this paper, we 
onsider that M0 and M4 are not blo
ken
oded.On the other hand, Link and Neumann [6℄ improved the atta
k on the�naked DES�, and suggested another solution whi
h 
onsists in merging theT-boxes and the a�ne fun
tion M2 of ea
h round. This way, we do not havea

ess to the T-boxes outputs. Moreover, the M2 of the di�erent rounds areblo
k en
oded in an other way.As far as we know, no one has published an atta
k neither on the �nonstandard DES�, nor on the improved �naked DES�. We adress this issue in2



this paper.3 Atta
k on the naked DES3.1 The prin
ipleAs mentioned before, the naked DES proposed by Chow et al. [4℄ was al-ready 
ryptanalysed in the papers [4, 5, 6℄. In this se
tion, we show how to
ryptanalyse the improved version of the naked DES proposed by Link andNeumann [6℄. Note that our method works also for the naked DES proposedby Chow et al. [4℄. In what follows, we will denote by �regular DES�, theone des
ribed in the standard [8℄ (without PC1), and we will use the samenotations.Our atta
k is divided into two phases and is based on a trun
ated di�er-ential atta
k. Roughly speaking, the �rst phase 
onsists in generating pairsof messages (X,X ′) su
h that the right part of the images throught IP andthe �rst round of a regular DES, are equal (for a given key). The se
ondphase 
onsists in evaluating those pairs of messages (X,X ′) on the nakedDES, and in 
he
king a 
ondition that we spe
ify below. The pairs thatsatisfy the test provide a key 
andidate.Let's go into the details. Remember that f(., k) denotes the fun
tion ofthe regular DES, we will also denote it as fk(.). (L0, R0) denotes the image ofthe initial message through IP , and (L1, R1) is the image of (L0, R0) throughthe �rst round, i.e. (L1, R1) = (R0, L0 ⊕ f(R0, k)). Consider a fun
tion f ,ve
tors X and ∆, the derivative f(x0) ⊕ f(X0 ⊕ ∆) will be denoted by
D∆f(X). Let's �rst motivate our algorithm. Let k be a �xed unknown key.Assume we want to �nd the �rst round 6-bit-subkey 
orresponding to Si(for the sake of 
larity, we will restrain ourself to i = 1). Therefore we willgenerate 
andidate keys su
h that only the 6 key bits of S1 of the �rst roundare modi�ed. For ea
h of these keys, we 
ompute pairs of messages (X,X ′)su
h that,1. ∆ = R0 ⊕ R′

0 is zero, ex
ept for the bits index 2 and 3.2. L′
0 = L0 ⊕ D∆fk(R0)Observe that the bits of R0 index 2 and 3 only a�e
t the output of

S1. Therefore, f(R0, k) and f(R′
0, k) are identi
al ex
ept for the 4 bits
orresponding to the output of S1.Under these 
onditions, in the next round we have R1 = R′

1 and L′
1(= R′

0)is identi
al to L1(= R0) ex
ept for at most two bits. Consider now thesetwo messages X and X ′ applied to the �naked DES� with the 
orre
t key
andidate. We observe that these bits (non-zero bits of L′
1 ⊕ L1) in�uen
eat most two io-blo
k en
oding bije
tions. If the key 
andidate is wrong, we3



will have R1 6= R′
1. Therefore many bits will 
hange at the output of M2of the �rst round, and we will be able to distinguish this situation from the
orre
t key guess.Here is an overview of the atta
k:

• Choose a message X randomly.
• Compute (L0, R0) = IP (X) with IP publi
.
• Choose ∆ su
h that only bits index 2 and 3 are di�erent from 0.
• For all possible 6 bits of round subkey k:� Compute L′

0 = L0 ⊕ D∆fk(R0).� Compute X ′ = IP−1(L′
0, R0 ⊕ ∆).� Apply X and X ′ to the obfus
ated DES and save the values Yand Y ′ at the end of the �rst round.� Compare Y and Y ′ and 
ompute in how many io-blo
k en
odingbije
tions they di�er.� If this number is stri
tly greater than 2, then reje
t the 6-bit-subkey, else the 6-bit-subkey are probably 
orre
t.This way, we 
an re
over the 48 key-bit of the �rst round of the DES. The8 remaining bits are found by exhaustive sear
h.3.2 E�
ien
yThis algorithm 
an produ
e more than one 
andidate for the 6-bit-subkey.It will provide wrong 6-bit-subkeys in two situations.1. Due to the balan
e property of the S-boxes, and the fa
t they mapsix bits to four bits, four di�erent inputs produ
es the same output.Therefore for ea
h S-box, three wrong 6-bit-subkeys will produ
e thesame output as the 
orre
t key. To avoid this problem, we 
an laun
hthis algorithm with another random initial message, or simply another

∆. In fa
t, we only have to 
hange the values of the bits of R0 and ∆
orresponding to the input of S1 (the bits index 32,1,. . . ,5). A
tuallywe 
an 
hoose di�erents pairs (X,X ′) su
h that the interse
tion of thekey 
andidates asso
iated to ea
h of them is the 
orre
t key.2. The se
ond one is due to a propagation phenomena. Suppose we have awrong 6-bit-subkey produ
ing a wrong S1 output. It means that thereare more than three bits of di�eren
e between (L1, R1) and (L′
1, R

′
1).These di�eren
es 
ould be mapped to the same io-blo
k en
oding bi-je
tion, leading to the �ipping of only two io-blo
k en
oding bije
tions4



at the output of M2. In this 
ase, we laun
h this algorithm with sev-eral values for R0. It leads to several lists of key 
andidates and the
orre
t key belongs to the interse
tion. This way, wrong keys will bedis
arded.4 Atta
k on the �non standard DES�This se
tion is dedi
ated to an atta
k on the �non standard DES�. Remindthat the �non standard DES� is a �naked DES� where the a�ne fun
tion
M1 is repla
ed by M1 ◦ M0, where M0 is a mixing bije
tion (see Chowet al. [4℄). As mentionned before, we assume that the inputs of M1 ◦ M0(respe
tively the outputs of M4 ◦ M3) are not io-blo
k en
oded. Note thatall the other fun
tions are io-blo
k en
oded using 4× 4 bije
tions (the sameprin
iple applies for the obfus
ation proposed by Link and Neuman [6℄ wherebije
tions are from 8 to 8 bits). Moreover, we assume that the T-Boxes followthe same ordering in the di�erents rounds. In what follows, we will not
onsider IP (inside M1) for the sake of 
larity. It does not 
hange anythingto the argument.Denote by F : F64

2 → F96
2 the obfus
ation of M1 ◦ M0. We summarizethe situation in the �gures below. The fun
tion φ : F96

2 → F96
2 is a bit-permutation (48 positions are determined by the regular DES operation andthe others 48 bits are 
hosen randomly).

M0

Message

M1

b0 b23. . . . . . . . . . .

F

Figure 1: F fun
tionIn what follows, the term preimage will impli
itly refer to the preimagewith respe
t to the linear bije
tion M0. Moreover, we say that a bit of ave
tor is tou
hing an io-blo
k en
oding bije
tion if this bije
tion depends onthis bit. Similarly we will say that a ve
tor tou
hes an S-Box if non-zero bitstou
h it.Our atta
k on the �non standard DES� is based on the one on the �nakedDES�. Our approa
h is based on a di�erential trun
ated atta
k. It 
onsistsin 
omputing the images of a random ve
tor X0 at di�erent levels in the5
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Figure 2: M1 fun
tionobfus
ated DES. We 
ompare these values (
alled initial-entries) to the 
or-responding images of X0 ⊕ ∆, where ∆ satis�es some 
onditions dependingon the 
ontext. This approa
h allows to provide gradually informations onthe key and the matrix M−1
0 . Full key and the matrix M−1

0 are knownat the end. The way we store information on M−1
0 
onsists in 
onsideringlists of 
andidates for preimages of unspe
i�ed 
anoni
al ve
tors. Lists of
andidates 
ontaining only one ve
tor are 
alled distinguished list.Note thatthese lists are a
tually ve
tor spa
es and 
an be shared by several 
anoni
alve
tors. In pra
ti
e, a list E will be shared by dim E 
anoni
al ve
tors (thatare not ne
essary spe
i�ed). Our algorithm works sequentially and 
onsistsin spe
ifying these 
anoni
al ve
tors and in shortening the lists using sometri
ks. Our method 
an therefore be understood as a ��ltering pro
ess�. Thedi�erent �lters are des
ribed below.Se
tion 4.1 des
ribes a preliminary step almost independant of the stru
-ture of the blo
k 
ipher. It 
onsists in �nding ve
tor spa
es asso
iated to aparti
ular io-blo
k en
oding bije
tion at the output of F . This step allowsto get global information on M−1

0 .Se
tion 4.2 des
ribes a set of �lters intending to re�ne information on
M−1

0 . These steps are highly related to the studied blo
k 
ipher. The �rst�lter, des
ribed in Se
tion 4.2.1, allows to distinguish lists that are asso
iatedto 
anoni
al ve
tors belonging either to right bits or left bits of the inputof the �rst round. The se
ond �lter, des
ribed in Se
tion 4.2.2, extra
tsall the lists (marked as �right� in the previous �lter) tou
hing a single S-box. The third �lter, des
ribed in Se
tion 4.2.3, gathers the lists (markedas �left� in the previous �lter) in sets asso
iated to the output of S-boxes.Se
tion 4.2.4 links T-Boxes (obfus
ation of the keyed S-boxes) to S-Boxes.This information allows the last �lter, presented in Se
tion 4.2.5, to spe
ifypre
isely the 1-to-1 link between the lists (marked as �left�) and the (left)
anoni
al ve
tors.Se
tion 4.3 explains how to extra
t the key and how to re
over the fullinvertible matri
es M−1
0 and M4. 6



4.1 Blo
 level analysis of M1 ◦ M0Denote by Kk the spa
e ({0}4k × F4
2 × {0}92−4k), and by Kk, the spa
e

(F4k
2 × {0}4 × F92−4k

2 ). In what follows, the ve
tor spa
e spanned by a setof ve
tors S will be denoted 〈S〉. Also, ei denotes the ith 
anoni
al ve
tor(the position of the �one is 
omputed from the left and start from one) ofthe ve
tor spa
e F64
2 . The sets {ei ∈ F64

2 | i = 1 . . . 32} and {ei ∈ F64
2 | i =

33 . . . 64} will be denoted by SL and SR, respe
tively.Ideally, we are looking for 24 ve
tor spa
es su
h their ve
tors in�uen
eonly one io-blo
k en
oding bije
tion at the output of M1 ◦ M0. This wouldallow to a
t spe
i�
aly on one parti
ular io-blo
k en
oding bije
tion. Unfor-tunately, due to the dupli
ation of the bits in M1 (be
ause of the expansion
E) this goal is impossible to a
hieve. We will therefore try to approximatethis situation and deal with the drawba
ks afterwards. First we will have togive some notations, de�nitions and properties.Let X a ve
tor in F96

2 , let k be an integer, k ∈ [0, 23], πk denotes theproje
tion πk : (F4
2)

24 → F4
2 : X = (x1, . . . , x24) 7→ xk. Let bk be the

(k+1)th io-blo
k en
oding bije
tion at the output of M1 ◦M0. The fun
tion
F is written as
F (X) = (b0◦π0◦M1◦M0(X), b1◦π1◦M1◦M0(X), . . . , b23◦π23◦M1◦M0(X))De�nition 4.1 Let k be an integer, k ∈ [0, 23]. We denote by Bk the ve
torspa
e {X ∈ F64

2 | πk ◦ M1(X) = 0}. In other words, it is the subspa
e ofve
tor X su
h that for any non-zero 
omponent ei of X, M1(ei) does nottou
h bk, i.e. Bk = 〈ej | πk ◦ M1(ej) = 0〉.De�nition 4.2 Let k be an integer, k ∈ [0, 23]. We denote by Ek the sub-spa
e of ve
tor X su
h that for any non-zero 
omponent ei of X, M1(ei)tou
hes bk, i.e. Ek = 〈ej | πk ◦ M1(ej) 6= 0〉.Remark: Note that F64
2 is the dire
t sum of Bk and Ek for any k; i.e.

F64
2 = Bk ⊕ EkWe wil denote by Bk the subspa
e M−1

0 (Bk), and by Ek the subspa
e
M−1

0 (Ek)Property 4.3 For all k integer, k ∈ [0, 23], Bk = {∆ ∈ F64
2 | D∆F (F64

2 ) ⊂
Kk}, the probability that ∆ belongs to Bk, when ∆ is randomly 
hosen, isgreater or equal to 1

24 = 1
16 , and 60 ≤ dim(Bk) < 64.Proof: Let E be the set {∆ ∈ F64

2 | D∆F (F64
2 ) ⊂ Kk}.

• Let ∆ be an element belonging to Bk. Let X be an element belongingto F64
2 .

D∆F (X) = (D∆(b0◦π0◦M1◦M0(X)), . . . ,D∆(b23◦π23◦M1◦M0(X)))7



A

ording to the de�nitions, if ∆ ∈ Bk then M0(∆) ∈ Bk or equiva-lently πk ◦M1 ◦M0(∆) = 0. Let's 
ompute D∆(bk ◦πk ◦M1 ◦M0(X)) =
(1).
(1) = bk ◦ πk ◦ M1 ◦ M0(X) ⊕ bk ◦ πk ◦ M1 ◦ M0(X ⊕ ∆)

= bk ◦ πk ◦ M1 ◦ M0(X) ⊕ bk(πk ◦ M1 ◦ M0(X) ⊕ πk ◦ M1 ◦ M0(∆))
= bk ◦ πk ◦ M1 ◦ M0(X) ⊕ bk(πk ◦ M1 ◦ M0(X) ⊕ 0)
= bk ◦ πk ◦ M1 ◦ M0(X) ⊕ bk ◦ πk ◦ M1 ◦ M0(X) = 0This means that D∆F (X) belongs to Kk or equivalently ∆ belongs to

E. We 
on
lude that Bk ⊂ E.
• Let ∆ be any element of E. A

ording to the de�nition of E, we havein parti
ular D∆(0) ∈ Kk. This means that

bk(0) ⊕ bk ◦ πk ◦ M1 ◦ M0(∆) = 0or equivalently
bk(0) = bk ◦ πk ◦ M1 ◦ M0(∆).We dedu
e that πk ◦ M1 ◦ M0(∆) = 0 be
ause bk is a bije
tion. A
-
ording to the de�nitions, it means that M0(∆) ∈ Bk or equivalently

∆ belongs to Bk. Therefore E ⊂ Bk. We 
on
lude that E = Bk.
• Note that in fa
t Bk is the kernel of πk ◦ M1 ◦ M0. Sin
e rank(πk ◦

M1 ◦ M0) is less or equal to 4, and greater or equal to 1, we havesimultaneously 60 ≤ dim(Bk) ≤ 63 and the probability that ∆ belongsto Bk when ∆ is randomly 
hosen, is equal to dim(Bk)
264 . The resultsfollows.

�Combining De�nition 4.2 and Property 4.3, the ve
tor spa
e Ek 
an bedes
ribed as the set of ve
tors ∆ su
h that for any ve
tor X0 ∈ F64
2 M0(X0)⊕

M0(X0 ⊕∆) has in total less than four non-zero 
omponents ei, all of themtou
hing the (k + 1)th io-blo
k en
oding bije
tion through M1. Due to theProperty 4.3, it is easier to re
over a basis for Bk's, than for Ek's. That'swhy we will �rst re
over all the Bk's. Using Property 4.3, we only have to
ompute D∆F (X0) for random ∆ ∈ F64
2 and determine to whi
h spa
e Kkit belongs. Using Bk's, we will re
over Ek's, or at least, 24 ve
tor spa
es Êk
ontaining Ek with minimal dimension.Let's now explain how to re
over Êk. First, let's remark that for all

X ∈ F64
2 and for all ∆ ∈ F64

2 , we have D∆F (X) ∈ Kk if and only if D∆πk ◦
M1 ◦ M0(X) ∈ Kk. Let's introdu
e the following lemma.8



Lemma 4.4 Let k be an integer belonging to [0, 23]. If Ej ∩Ek = {0} for allinteger j distin
t from k belonging to [0, 23], then
Ek =

⋂

j 6=k

Bj.Proof: The proof is available in the appendix.
�Sin
e M0 is a bije
tion, this lemma means that if Ej ∩Ek = {0} for all integer

j ∈ [0, 23] di�erent from k, then Ek =
⋂

j 6=k

Bj . Nevertheless, due to the bit-dupli
ation, there exist indexes k and j su
h that Ej ∩ Ek 6= {0} (and then
Ej ∩Ek 6= {0}). Denote by Jk the set {j | Ej ∩Ek = {0}}, by Êk the subspa
e⋂
j∈Jk

Bj, and by Êk the subspa
e ⋂
j∈Jk

Bj where k is an integer belonging to
[0, 23].Property 4.5 For all integer k ∈ [0, 23], Ek ⊆ Êk.Proof: The proof is available in the appendix.

�Let's introdu
e a property that will allow us to give another 
hara
terizationof Jk.Property 4.6 For all integer i ∈ [0, 23] and for all integer j ∈ [0, 23]

dim(Ei ∩ Ej) = 64 + dim(Bi ∩ Bj) − dim(Bj) − dim(Bi)Proof: The proof is available in the appendix.
�A straight forward appli
ationof this property to the de�nition of Jkleads to Jk = {j ∈ [0, 23] | 64 = dim(Bj) + dim(Bi) − dim(Bi ∩ Bj)}.This 
hara
terization will be useful in order to 
ompute Êk. If dim(Êk) +

dim(Bk) < 64 then Ek ( Êk, and we have found a ve
tor spa
e 
ontainingstri
tly the one we sear
he. Note that when dim(Êk) + dim(Bk) = 64, Ek =
Êk. This 
ase is parti
ularly interesting be
ause it redu
es the 
omplexityof the full 
ryptanalysis.4.2 Bit level analysis of M

−1
0In the previous se
tion, we were looking for di�eren
es ∆ asso
iated to aspe
i�ed io-blo
k en
oding bije
tion. It allowed us to get some informationon M−1

0 . In this se
tion, we re�ne our sear
h and this will allow us to getenough information on M−1
0 in order to apply our method on the �nakedDES� to �non standard DES�. Our algorithm works sequentially and 
onsistsin a ��ltering pro
ess�. The di�erent �lters are des
ribed below.9



4.2.1 Sear
h for 
andidates for preimages of elements belongingto the sets SL and SRConsider ∆ be an element of F64
2 su
h that M0(∆) = ei and ei ∈ SL. Theonly non-zero bit of M1 ◦ M0(∆) tou
hes only one io-blo
k en
oding bije
-tion. Therefore, ∆ belongs to a single Êk. Assume now that ∆ ∈ F64

2 su
hthat M0(∆) = ei and ei ∈ SR then M1 ◦ M0(∆) has exa
tly two non-zerobits that may tou
h the same or two distin
ts io-blo
k en
oding bije
tion orequivalently ∆ belongs to one or two spa
es Êk. In what follows, we will
all double an element ∆ ∈ F64
2 su
h that M0(∆) ∈ SR and the two non-zerobits of M1 ◦ M0(∆) tou
h the same io-blo
k en
oding bije
tion. By 
onsid-ering interse
tions between the spa
es Êk, we 
an distinguish preimages ofelements of SR from doubles or preimages of elements of SL.Note that the interse
tions between spa
es Êk taken pairwise provide a
-tually more information. Indeed, Êi ∩ Êj 
ontains preimages of unknown
anoni
al ve
tors. In parti
ular, if dim(Êi ∩ Êj) = 1 then Êi ∩ Êj =

〈M−1
0 (ek)〉 for some k. In this 
ase, we already know the preimage of anunknown 
anoni
al ve
tor. When dim(Êi ∩ Êj) > 1 we 
an still take advan-tage of this fa
t even if it requires some extra sear
hes.4.2.2 Re
overing middle bitsIn order to apply our atta
k presented in Se
tion 3, we need to know exa
tlythe preimage of 
anoni
al ve
tors tou
hing only a single S-Box of the �rstround (e.g. Right bits index 2,3,6,7,10,. . . ). In what follows, we will refer tosu
h a 
anoni
al ve
tor as a middle bit.Re
all that X0 is the initial-ve
tor de�ned in Se
tion 4. For ea
h di�er-en
e ∆ belonging to the lists marked as input of the studied T-box, we apply

X0⊕∆ to the obfus
ated DES by making an inje
tion fault. This means thatwe set the input of this T-box to the initial-entry while we keep the a
tualvalue for the other T-Boxes. We evaluate the number of io-blo
k en
odingbije
tions at the output of the �rst round that di�ers from the 
orrespondinginitial-entries. If only one io-blo
k en
oding bije
tion (at the output of the�rst round) di�ers from the 
orresponding initial-entry, we dedu
e that ∆
ould be the preimage of a middle bit. Therefore, a list pointed by several
anoni
al ve
tors 
an be divided into two shorter lists; one list is pointed bymiddle bits while the other is pointed by non-middle bits.Remarks: If a T-box is tou
hed by more than three middle bits or leftbits, we dedu
e that this T-box does not 
ontain any S-box. Note also thatdoubles 
an only be preimages of middle bits. Finally, a T-box tou
hed bya double 
ontains ne
essarily an S-box.
10



4.2.3 Re
overing left bitsIn order to apply our atta
k presented in Se
tion 3, we need to know whi
hgroup of four 
anoni
al ve
tors are xored with the output of ea
h S-box ofthe �rst round. First, we determine the io-blo
k en
oding bije
tions that aretou
hed by the outputs of the studied S-box and we denote by BS this setof bije
tions. Then, we store in an extra list L ea
h ∆ marked as left bitstou
hing exa
tly two bije
tions of BS. This list 
ontains all the preimagesasso
iated to 
anoni
al ve
tors that are potentially xored with the output ofthe S-box. Finally, we �nd ∆l ∈ 〈L〉 su
h that for any bije
tion bi ∈ BS wehave D∆m⊕∆l
bi(X0) = 0, where ∆m belongs to a list marked as a middle bitof the studied S-box. This pro
ess is repeated with di�erent ∆m or X0, untilwe �nd four linearly independent ∆l or equivalently the ve
tor spa
e spannedby the preimages of the sear
hed 
anoni
al ve
tors. We then 
ompute theinterse
tion between this spa
e and all the lists. It allows us to split some ofthem in shorter lists (the interse
tion and the 
omplementary spa
e of theinterse
tion). It may lead to lists 
ontaining a single ve
tor (distinguishedlist).4.2.4 ChainingIn this se
tion, we will try to determine pre
isely the 
orrespondan
e betweenT-boxes and S-boxes. Due to the remark in Se
tion 4.2.2, we know whi
hare the T-boxes 
ontaining an S-box. The probability that a sele
ted T-box,denoted by T1, 
ontains S1 is 1/8. We determine the two T-Boxes that aretou
hed by a 
anoni
al ve
tor asso
iated to a list marked as �right bit�, �non-middle bit� and asso
iated to T1. Sele
ting one of these T-Boxes randomly,the probability that it 
ontains S2 is 1/2. Out of the set of unsele
ted T-Boxes, we sele
t the one that is tou
hed by a 
anoni
al ve
tor asso
iated toa list marked as �right bit�, �non-middle bit� and asso
iated to the previoussele
ted T-Box. We 
ontinue the pro
ess until all T-Boxes have been sele
ted.Note that the probability to determine the right 
orrespondan
e is 1/8 ×

1/2 = 1/16.4.2.5 Bits positionsAt this stage, we have re
overed between others, 32 preimages 
orrespondingto unspe
i�ed left 
anoni
al ve
tors. In order to determine the 
orrespon-dan
e, we use the following observation on the DES;Out of the four Left bits that are xored with the output of a spe
i�ed S-Box,exa
tly two be
ome (in the se
ond round) middle bits.Now, we just have to apply ea
h of the preimages to the obfus
ated DESand to 
he
k whether the image of this ve
tor in front of the se
ond roundis a middle bit (
f. 4.2.2). Assuming that the T-Boxes follow the same11



ordering in the di�erents rounds, preimages 
orresponding to a middle bit(resp. non-middle bit) 
an be distinguished observing the indexes of thetou
hed T-Boxes.For example, for the �rst S-box, among the 4 identi�ed left 
anoni
al ve
torspreimages,
• the one that is the preimage of a middle bit of S6 (resp. S8) in these
ond round is the preimage of e23 (resp. e31).
• the one that is not the preimage of a middle bit and is in the input of

S2 and S3 (resp. S4 and S5) of the se
ond round, is the preimage of
e9 (resp. e17).4.3 The atta
kIn Se
tion 4.2, we have shown how to re
over all the preimage of the left
anoni
al ve
tors. In other words, we have re
overed half of M−1

0 (
olumnsand their positions). Also, some of the lists marked as middle bits 
ontainonly one ve
tor but their 
orresponding 
anoni
al ve
tor is however unknown.Therefore, some 
olumns of M−1
0 are known up to their positions. Finally,the remaining lists marked as middle bits are pointed by some 
anoni
al ve
-tors (their number is the dimension of the ve
tor spa
e spanned by the list).In this 
ase, we sele
t linearly independant ve
tors in the list and we asso-
iate ea
h of them to the 
anoni
al ve
tor pointing to the list. Therefore, weare in the 
ontext of the atta
k of the naked-DES modulo some adaptations.In parti
ular, we have to 
hoose X0 belonging to the ve
tor spa
e spannedby the known 
olumns of M−1

0 . The evaluation of the �rst round on X0 ⊕∆may lead to some di�
ulties. Indeed, we have to 
hoose ∆ belonging tothe preimage of middle bits spa
e whi
h is not ne
essarily in
luded in theve
tor spa
e spanned by the known 
olumns of M−1
0 . It turns out that wehave to try all the 
andidates for this part of the matrix M−1

0 . For ea
h ofthese 
andidates, we mount an atta
k like we did on the �naked DES� whi
hprovide 48 key-bit 
andidates. Note that it may happen that wrong keys willbe re
overed. More importantly, it may happen that no key exists for this
andidate for this part of the matrix M−1
0 . In other words, it means that wehave to dis
ard this 
andidate.In order to determine the remaining part of M−1

0 (
olumns asso
iated tonon-middle bits), we apply a similar prin
iple that we used for the �nakedDES�. Indeed, we know the key and we know that for the �naked DES� forall initial-message X0 there always exists a di�eren
e ∆ with non-zero right
omponent su
h that the right part of the di�erential (evaluated in X0) ofthe �rst round is zero. It means that in the 
ontext of the �non standardDES�, wrong 
andidates for M−1
0 
an be dis
arded. Denote by K the spa
espanned by the known 
olumns of the 
andidate for M−1

0 and by U the12



unknown 
olumns of the 
andidate for M−1
0 . We have K ⊕ U = F64

2 . The
andidate for M−1
0 
an be dis
arded if there exists X0 ∈ K su
h that theredoes not exist ∆ with a non zero-
omponent in U su
h that the right partof the di�erential (evaluated in X0) is zero.At this stage, we have a 48 key-bit 
andidate and a 
andidate for M−1

0 .We make an exhaustive sear
h in order to determine the 8 remaining bits.For ea
h of them we try to solve a linear system in order to �nd the matrix
M4. If there is no solution for M4 we dedu
e that the 8 key-bit 
andidate iswrong. If all the 8 key-bit 
andidate are wrong, we dis
ard this parti
ular
M−1

0 . Note that this method also works if M4 has a io-blo
k en
odingbije
tions at the output.Atta
k on Link and Neumann obfus
ation Our methods only use theoutputs of the �rst and se
ond round. In parti
ular, we never use the outputsof the T-boxes. Therefore, our two atta
ks (naked DES, and non-standardDES) 
an be applied on the Link and Neumann [6℄ obfus
ation method. Theonly di�eren
e is that we will deal with larger lists.5 Con
lusionIn this paper, we have given new te
hniques of 
ryptanalysis for the 
urrentobfus
ation methods of DES. These te
hniques rely on a theoreti
al analysisand have also been implemented as a C program. Our results are promisingon the instan
es we have tried so far. More systemati
al simulations are inprogress and the results will be 
ommuni
ated soon.Referen
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all that Bk = 〈ej | πk ◦ M1(ej) = 0〉 and
Ek = 〈ej | πk ◦ M1(ej) 6= 0〉. Let j and k be two distin
t integers, then thefollowing 
onditions are equivalent.

• Ej ∩ Ek = {0}.
• πk ◦ M1(ei) = 0 or πj ◦ M1(ei) = 0 for all integer i ∈ [1, 64].
• πk ◦ M1(X) = 0 or πj ◦ M1(X) = 0.for all ve
tor X ∈ F64

2 .We 
on
lude that if X ∈ Ej and Ej ∩ Ek = {0} then πk ◦ M1(X) = 0 orequivalently X ∈ Bk.Consider X 6= 0 belonging to ⋂
j 6=k

Bj. We have that πj ◦ M1(X) = 0 for all
j 6= k. Note that M1 is inje
tive. Therefore M1(X) 6= 0 and πk ◦ M1(X) 6=
0. We 
on
lude that all the bits of M1 ◦ (X) that tou
h bj (j 6= k) arezeros. Therefore, for any non-zero 
omponent ei of X, M1(ei) tou
hes bk orequivalently X ∈ Ek, and ⋂

j 6=k

Bj ⊂ Ek.Let's use an argument by 
ontraposition. Consider ei /∈
⋂

j 6=k

Bj . Then, thereexists j 6= k, su
h that ei /∈ Bj, i.e. πj ◦ M1(ei) 6= 0 or equivalently ei ∈ Ej .Therefore, a

ording to the previous three equivalent 
onditions, ei /∈ Ek.We dedu
e that for all ei ∈ Ek we have ei ∈
⋂

j 6=k

Bj. It means that Ek = 〈ei |

ei ∈ Ek〉 ⊂
⋂

j 6=k

Bj. We 
on
lude Ek =
⋂

j 6=k

Bj.
�14



Proof of Property 4.5: Let ei be an element of Ek and j be an element of
Jk. We have πk◦M1(ei) 6= 0 and Ej∩Ek = {0}. It implies that πj◦M1(ei) = 0,and ei ∈ Bj . Therefor, ei ∈

⋂
j∈Jk

Bj, and 〈ei | ei ∈ Ek〉 ⊂ Êk.
�Proof of Property 4.6: We will �rst prove that (Bi∩Bj)⊕〈Ei ∪Ej〉 = F64

2 .Consider a 
anoni
al ve
tor ek /∈ Bi∩Bj. This is equivalent to πi◦M1(ek) 6= 0or πj ◦ M1(ek) 6= 0. In other words ek ∈ Ei or ek ∈ Ej, or equivalently
ek ∈ 〈Ei ∪ Ej〉. This means that for all 
anoni
al ve
tor ek of F64

2 , we haveeither ek belongs to Bi ∩ Bj or ek belongs to 〈Ei ∪ Ej〉.Assume that there exists a 
anoni
al ve
tor ek ∈ (Bi∩Bj)∩〈Ei∪Ej〉. We have
πi ◦M1(ek) = πj ◦M1(ek) = 0, and either πi ◦M1(ek) 6= 0 or πj ◦M1(ek) 6= 0.It leads to a 
ontradi
tion. Hen
e (Bi ∩Bj)∩ 〈Ei ∪ Ej〉 
ontains no 
anoni
alve
tors.Assume now that there exists an element ∆ ∈ (Bi ∩ Bj) ∩ 〈Ei ∪ Ej〉 having anon-zero 
omponent ek. The ve
tor ∆ belongs to (Bi∩Bj), hen
e ek belongsto (Bi ∩ Bj). Moreover ∆ belongs to 〈Ei ∪ Ej〉, hen
e ek belongs to 〈Ei ∪ Ej〉.Therefore ek belongs to (Bi∩Bj)∩〈Ei∪Ej〉 whi
h is impossible. We 
on
ludethat (Bi ∩ Bj) ∩ 〈Ei ∪ Ej〉 = {0}. Therefore (Bi ∩ Bj) ⊕ 〈Ei ∪ Ej〉 = F64

2 .We dedu
e that
64 = dim(〈Ei ∪ Ej〉) + dim(Bi ∩ Bj)

= dim(Ei + Ej) + dim(Bi ∩ Bj)
= dim(Ei) + dim(Ej) − dim(Ei ∩ Ej) + dim(Bi ∩ Bj)Moreover Ei ⊕ Bi = F64

2 = Ej ⊕ Bj. Hen
e 64 = 64 − dim(Bi) + 64 −
dim(Bj) − dim(Ei ∩ Ej) + dim(Bi ∩ Bj). The result follows.

�
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