Cryptanalysis of white box DES
implementations

Louis Goubin Jean-Michel Masereel Michaél Quisquater

Versailles St-Quentin-en-Yvelines University
45 avenue des Etats-Unis
78035 Versailles Cedex
France

{Louis.Goubin,Jean-Michel.Masereel,Michael.Quisquater}@uvsq.fr

Mars 19th, 2007

Abstract

Obfuscation is a method consisting in hiding information of some parts
of a computer program. According to the Kerckhoffs principle, a crypto-
graphical algorithm should be kept public while the whole security should
rely on the knowledge of the key. The goal of obfuscation of block ciphers
is therefore to produce programs containing the key that could not be ex-
tracted by someone having access to the source code. This paper deals with
the cryptanalysis of such methods of obfuscation, in particular for the DES.
Such methods, called the “naked DES” and “non standard DES”, were pro-
posed by Chow et al. [4] in 2002. Some methods for the cryptanalysis of the
“naked DES” were proposed by Chow et al. [4], Jacob et al. [5], and Link and
Neuman [6]. In their paper, Link and Neuman [6] proposed an other method
for the obfuscation of the DES.

In this paper, we propose a general method that applies to all schemes.
Moreover, we provide a theoretical analysis. We implemented our method
with a C code and applied it successfully to thousands of obfuscated imple-
mentations of DES (both “naked” and “non standard” DES).

1 Introduction

In 2002, Chow et al. |3, 4] suggested two different obfuscations, one for the AES,
the other for the DES. The AES obfuscation was cryptanalysed by Billet et al.
[1, 2| in 2004. Also Chow et al. [4] gived an attack on their first DES obfuscation
version (called “naked DES”). Jacob et al. [5] and Link and Neuman [6], proposed
two others attacks on the “naked DES”. A second version of DES obfuscation,
called “non standard DES”, was given by Chow et al. [4]. This version seems not
to have been cryptanalysed yet.



In Section 2, we give an overview of the obfuscation methods given by Chow et
al. and by Link and Neumann. Section 3 is devoted to our attack on the “naked
DES”. In Section 4, we adapt our attack to the “non standard” DES, which was not
cryptanalysed so far. Sectio n5 is devoted to our implementation of this attack.
Finally, we conclude in Section 6.

2 DES obfuscation methods

Chow et al. [4] proposed two types of DES obfuscation. The first one, called “naked
DES”, produces a real DES. The second one, called the “non standard DES”, is a
slight modification of the standard DES algorithm. This last version is the one
they recommend.

Let’s describe the naked DES. The obfuscation starts with an affine function My,
wich is the composition of the initial permutation and the expansion. This function
is linear, so we can parsed it in a clever way, in many tables. Each round is then
the concatenation of 12 T-boxes (derived from the S-boxes of the DES) followed by
an affine function My (derived from P and the xor operation). The last round of
the obfuscation is followed by an affine function M3 which is the final permutation.
This function takes for arguments the outputs of the affine function My of the last
round and returns the cipher text. We will denote by A;, one of these components
(T-box or M;).

Each components A; are obfuscated between random non linear permutations P;
and Py, i.e. PioA;oP; (it is what Chow et al. |4] refers to io-block encoding). The
resulting functions are stored in arrays in order to be used in the obfuscated pro-
gram. Permutations P, and P» are chosen such that the composition of consecutive
obfuscated components is the obfuscation of the composition of the components.

This obfuscation was cryptanalysed by the authors themselves [4]. In order to
avoid this attack, they propose the “non standard DES”. It consists in adding two
affine bijections My and M, in front and after the naked DES, respectively. It
is not specified by Chow et al. [4] whether My and My are block encoded (i.e.
respectively preceded and followed by non linear random permutations). In this
paper, we consider that My and M, are not block encoded.

On the other hand, Link and Neumann [6] improved the attack on the “naked
DES”, and suggested another solution which consists in merging the T-boxes and
the affine function Ms of each round. This way, we do not have access to the
T-boxes outputs. Moreover, the My of the different rounds are block encoded in
an other way.

As far as we know, no one has published an attack neither on the “non standard
DES”, nor on the improved “naked DES”. We adress this issue in this paper.



3 Attack on the naked DES

3.1 The principle

As mentioned before, the naked DES proposed by Chow et al. [4] was already
cryptanalysed in the papers [4, 5, 6]. In this section, we show how to cryptanalyse
the improved version of the naked DES proposed by Link and Neumann [6]. Note
that our method works also for the naked DES proposed by Chow et al. [4]. In
what follows, we will denote by “regular DES”, the one described in the standard
[8] (without PC1), and we will use the same notations.

Our attack is divided into two phases and is based on a truncated differential
attack. Roughly speaking, the first phase consists in generating pairs of messages
(X,X’) such that the right part of the images throught I P and the first round of a
regular DES, are equal (for a given key). The second phase consists in evaluating
those pairs of messages (X, X’) on the naked DES, and in checking a condition
that we specify below. The pairs that satisfy the test provide a key candidate.

Let’s go into the details. Remember that f(., k) denotes the function of the regular
DES, we will also denote it as fi(.). (Lo, Rp) denotes the image of the initial
message through I P, and (Ly, Ry) is the image of (Lg, Ry) through the first round,
ie. (L1,R1) = (Ro, Lo ® f(Ro,k)). Consider a function f, vectors X and A, the
derivative f(z9) @ f(Xo® A) will be denoted by Da f(X). Let’s first motivate our
algorithm. Let k£ be a fixed unknown key. Assume we want to find the first round
6-bit-subkey corresponding to S; (for the sake of clarity, we will restrain ourself to
i = 1). Therefore we will generate candidate keys such that only the 6 key bits
of S of the first round are modified. For each of these keys, we compute pairs of
messages (X,X’) such that,

1. A= Ry ® Ry is zero, except for the bits index 2 and 3.
2. Ly = Lo ® Da fr(Rp)

Observe that the bits of Ry index 2 and 3 only affect the output of S;. Therefore,
f(Ro, k) and f(Ry, k) are identical except for the 4 bits corresponding to the output
of Sl.

Under these conditions, in the next round we have Ry = R} and Lj(= R{) is
identical to L1 (= Ry) except for at most two bits. Consider now these two messages
X and X’ applied to the “naked DES” with the correct key candidate. We observe
that these bits (non-zero bits of L} @ L) influence at most two io-block encoding
bijections. If the key candidate is wrong, we will have Ry # R). Therefore many
bits will change at the output of My of the first round, and we will be able to
distinguish this situation from the correct key guess.

Here is an overview of the attack:

e Choose a message X randomly.



e Compute (Lo, Rg) = IP(X) with I P public.
e Choose A such that only bits index 2 and 3 are different from 0.
e For all possible 6 bits of round subkey k:

— Compute Ly = Lo ® Da fr(Rp).
— Compute X' = IP7YL}, Ry ® A).

— Apply X and X' to the obfuscated DES and save the values Y and Y’
at the end of the first round.

— Compare Y and Y’ and compute in how many io-block encoding bijec-
tions they differ.

— If this number is strictly greater than 2, then reject the 6-bit-subkey,
else the 6-bit-subkey are probably correct.

This way, we can recover the 48 key-bit of the first round of the DES. The 8
remaining bits are found by exhaustive search.

3.2 Efficiency

This algorithm can produce more than one candidate for the 6-bit-subkey. It will
provide wrong 6-bit-subkeys in two situations.

1. Due to the balance property of the S-boxes, and the fact they map six bits
to four bits, four different inputs produces the same output. Therefore for
each S-box, three wrong 6-bit-subkeys will produce the same output as the
correct key. To avoid this problem, we can launch this algorithm with another
random initial message, or simply another A. In fact, we only have to change
the values of the bits of Ry and A corresponding to the input of S1 (the bits
index 32,1,...,5). Actually we can choose differents pairs (X, X’) such that
the intersection of the key candidates associated to each of them is the correct
key.

2. The second one is due to a propagation phenomena. Suppose we have a
wrong 6-bit-subkey producing a wrong S; output. It means that there are
more than three bits of difference between (Lq,R;) and (L}, R}). These
differences could be mapped to the same io-block encoding bijection, leading
to the flipping of only two io-block encoding bijections at the output of Mos.
In this case, we launch this algorithm with several values for Ry. It leads to
several lists of key candidates and the correct key belongs to the intersection.
This way, wrong keys will be discarded.



4 Attack on the “non standard DES”

This section is dedicated to an attack on the “non standard DES”. Remind that
the “non standard DES” is a “naked DES” where the affine function M; is replaced
by Mj o My, where My is a mixing bijection (see Chow et al. [4]). As mentionned
before, we assume that the inputs of Mj o My (respectively the outputs of Myo Ms)
are not io-block encoded. Note that all the other functions are io-block encoded
using 4 x 4 bijections (the same principle applies for the obfuscation proposed
by Link and Neuman [6] where bijections are from 8 to 8 bits). Moreover, we
assume that the T-Boxes follow the same ordering in the differents rounds. In
what follows, we will not consider IP (inside Mj) for the sake of clarity. It does
not change anything to the argument.

Denote by F': ]Fg4 — IFgﬁ the obfuscation of My o My. We summarize the situation
in the figures below. The function ¢ : F36 — F3° is a bit-permutation (48 positions
are determined by the regular DES operation and the others 48 bits are chosen
randomly).

| Lo RO |
\ LO \ RO \ RO

Figure 2: M; function

In what follows, the term preimage will implicitly refer to the preimage with respect
to the linear bijection My. Moreover, we say that a bit of a vector is touching an
io-block encoding bijection if this bijection depends on this bit. Similarly we will
say that a vector touches an S-Box if non-zero bits touch it.

5



Our attack on the “non standard DES” is based on the one on the “naked DES”.
Our approach is based on a differential truncated attack. It consists in computing
the images of a random vector X at different levels in the obfuscated DES. We
compare these values (called initial-entries) to the corresponding images of Xo®A,
where A satisfies some conditions depending on the context. This approach allows
to provide gradually informations on the key and the matrix Mo_l. Full key and
the matrix Mgl are known at the end. The way we store information on Mgl
consists in considering lists of candidates for preimages of unspecified canonical
vectors. Lists of candidates containing only one vector are called distinguished
list. Note that these lists are actually vector spaces and can be shared by several
canonical vectors. In practice, a list £ will be shared by dim £ canonical vectors
(that are not necessary specified). Our algorithm works sequentially and consists
in specifying these canonical vectors and in shortening the lists using some tricks.
Our method can therefore be understood as a “filtering process”. The different
filters are described below.

Section 4.1 describes a preliminary step almost independant of the structure of the
block cipher. It consists in finding vector spaces associated to a particular io-block
encoding bijection at the output of F. This step allows to get global information
on MO_I.

Section 4.2 describes a set of filters intending to refine information on Mgl. These
steps are highly related to the studied block cipher. The first filter, described in
Section 4.2.1, allows to distinguish lists that are associated to canonical vectors
belonging either to right bits or left bits of the input of the first round. The second
filter, described in Section 4.2.2, extracts all the lists (marked as “right” in the
previous filter) touching a single S-box. The third filter, described in Section 4.2.3,
gathers the lists (marked as “left” in the previous filter) in sets associated to the
output of S-boxes. Section 4.2.4 links T-Boxes (obfuscation of the keyed S-boxes)
to S-Boxes. This information allows the last filter, presented in Section 4.2.5, to
specify precisely the 1-to-1 link between the lists (marked as “left”) and the (left)
canonical vectors.

Section 4.3 explains how to extract the key and how to recover the full invertible
matrices MO_1 and My.

4.1 Bloc level analysis of M; o M,

Denote by K} the space ({0} x 3 x {0}927%F) and by K}, the space (F3* x
{0} x F32_4k). In what follows, the vector space spanned by a set of vectors S
will be denoted (S). Also, e; denotes the ith canonical vector (the position of the
“one is computed from the left and start from one) of the vector space F$*. The
sets {e; € F§* | i =1...32} and {e; € F§* | i = 33...64} will be denoted by S,
and Sg, respectively.

Ideally, we are looking for 24 vector spaces such their vectors influence only one
io-block encoding bijection at the output of M; o My. This would allow to act
specificaly on one particular io-block encoding bijection. Unfortunately, due to the

6



duplication of the bits in M; (because of the expansion E) this goal is impossible
to achieve. We will therefore try to approximate this situation and deal with the
drawbacks afterwards. First we will have to give some notations, definitions and
properties.

Let X a vector in F3%, let k be an integer, k € [0,23], 7 denotes the projection
7,0 (F? — F5 0 X = (21,...,794) = x. Let by be the (k + 1)th io-block
encoding bijection at the output of M; o My. The function F' is written as

F(X) = (bg omyo My oMy(X),byomy oMyoMy(X),...,baz30m30MoMy(X))

Definition 4.1 Let k be an integer, k € [0,23]. We denote by By the vector space
{X € F$* | m, 0o My(X) = 0}. In other words, it is the subspace of vector X

such that for any non-zero component e; of X, Mi(e;) does not touch by, i.e.
Bk = <€j | Tk OMl(ej) = 0>.

Definition 4.2 Let k be an integer, k € [0,23]. We denote by & the subspace of
vector X such that for any non-zero component e; of X, M (e;) touches by, i.e.

& = (ej | m o Mi(ej) #0).

Remark: Note that ]Fg4 is the direct sum of By, and &, for any k;i.e. F$* = B, @&
We wil denote by By, the subspace Mgl(Bk), and by Ej, the subspace Mgl(é’k)
Property 4.3 For all k integer, k € [0,23], By = {A € F§* | DAF(F$) C Ky},

the probability that A belongs to By, when A is randomly chosen, is greater or
equal to 2%1 = %6’ and 60 < dim(By) < 64.

Proof: Let E be the set {A € F$* | DAF(F$Y) € K}

e Let A be an element belonging to Bi. Let X be an element belonging to
F§4.

DAF(X) = (Da(bg o mg 0 My o Mo(X)), ..., Da(bes o maz 0 My o Mo(X)))

According to the definitions, if A € By then My(A) € By or equivalently
7 0 My o My(A) = 0. Let’s compute Da (b o m 0 My o My(X)) = (1).

(1) =bgompoMyoMy(X
= by om0 My o My(X
= by om0 My o My(X
= by om0 My o My(X

@b ompo My oMy(X P A)
@bk(ﬂ'kOMl OM(](X) @ﬂ'kOMl OMO(A))
@ by (0 My o Mo(X) © 0)
@kaﬂ'kOMloMo(X) =0

~— — N

This means that DAF(X) belongs to K}, or equivalently A belongs to E.
We conclude that By C E.



e Let A be any element of E. According to the definition of F, we have in
particular DA (0) € K}. This means that

bk(O) @bk O Tk OM1 OM()(A) =0

or equivalently

b (0) = by o . o M7 o My(A).

We deduce that 7 0 My o My(A) = 0 because by, is a bijection. According to
the definitions, it means that My(A) € By or equivalently A belongs to Bj.
Therefore £ C Bj. We conclude that £ = By.

e Note that in fact By is the kernel of 73 o My o My. Since rank (7 o My o M)
is less or equal to 4, and greater or equal to 1, we have simultaneously
60 < dim(By) < 63 and the probability that A belongs to By when A is

dim(By,)
264

randomly chosen, is equal to . The results follows.

O

Combining Definition 4.2 and Property 4.3, the vector space Ej can be described
as the set of vectors A such that for any vector Xo € F§* My(Xo)® Mo(Xo®A) has
in total less than four non-zero components e;, all of them touching the (k4 1)th
io-block encoding bijection through M;. Due to the Property 4.3, it is easier to
recover a basis for By’s, than for F’s. That’s why we will first recover all the By’s.
Using Property 4.3, we only have to compute DaF(Xg) for random A € F§* and
determine to which space K, it belongs. Using By’s, we will recover E}’s, or at
least, 24 vector spaces E‘k containing Fj with minimal dimension.

Let’s now explain how to recover Ek First, let’s remark that for all X € I]F‘g4 and
for all A € F$*, we have DAF(X) € K, if and only if Damg o My o Mo(X) € K.
Let’s introduce the following lemma.

Lemma 4.4 Let k be an integer belonging to [0,23]. If £;NE, = {0} for all integer
j distinct from k belonging to [0,23], then

& =) B;

J#k
Proof: The proof is available in the appendix.

O

Since My is a bijection, this lemma means that if £ N &, = {0} for all integer j €
[0, 23] different from k, then £}, = (| B;. Nevertheless, due to the bit-duplication,
jk
there exist indexes k and j such that £ N &, # {0} (and then E; N Ej, # {0}).
Denote by Ji, the set {j | £ N &, = {0}}, by & the subspace () Bj, and by Ej
J€Jk
the subspace () Bj where k is an integer belonging to [0, 23].
J€Jx

8



Property 4.5 For all integer k € [0,23], & C Er.

Proof: The proof is available in the appendix.
O

Let’s introduce a property that will allow us to give another characterization of
Jg.

Property 4.6 For all integer i € [0,23] and for all integer j € [0, 23]
dim(&; N &) = 64 + dim(B; N B;) — dim(B;) — dim(B;)
Proof: The proof is available in the appendix.
O

A straight forward applicationof this property to the definition of J leads to
Jr ={j €10,23] | 64 = dim(B )+d1m( i) — dlm(B N B;)}. This characterization
will be useful in order to compute Ek If dlm(Ek) + dim(By) < 64 then Ey C Ek,
and we have found a vector space containing strictly the one we searche. Note
that when dim(E})+dim(By) = 64, E;, = Ej. This case is particularly interesting
because it reduces the complexity of the full cryptanalysis.

4.2 Bit level analysis of M,

In the previous section, we were looking for differences A associated to a specified
io-block encoding bijection. It allowed us to get some information on M(;l. In this
section, we refine our search and this will allow us to get enough information on
Mgl in order to apply our method on the “naked DES” to “non standard DES”.
Our algorithm works sequentially and consists in a “filtering process”. The different
filters are described below.

4.2.1 Search for candidates for preimages of elements belonging to the
sets Sy, and Sp

Consider A be an element of F$* such that M(A) = e; and ¢; € S;,. The only non-
zero bit of Mj o MO(A) touches only one io-block encoding bijection. Therefore,
A belongs to a single Ek Assume now that A € F§* such that My(A) = e; and
e; € Sg then Mj o My(A) has exactly two non-zero bits that may touch the same
or two distincts io-block encoding bijection or equivalently A belongs to one or
two spaces Ek In what follows, we will call double an element A € IFg4 such that
My(A) € Sg and the two non-zero bits of M o My(A) touch the same io-block
encoding bijection. By considering intersections between the spaces Ek, we can
distinguish preimages of elements of Sk from doubles or preimages of elements of
St



Note that the intersections between spaces Ek taken pairwise provide actually more
information. Indeed, E’Z N Ej contains preimages of unknown canonical vectors.
In particular, if dim(E; N EJ) = 1 then E; N E'j = (M (ex)) for some k. In
this case, we already know the preimage of an unknown canonical vector. When
dim(Ei N E‘J) > 1 we can still take advantage of this fact even if it requires some
extra searches.

4.2.2 Recovering middle bits

In order to apply our attack presented in Section 3, we need to know exactly the
preimage of canonical vectors touching only a single S-Box of the first round (e.g.
Right bits index 2,3,6,7,10,...). In what follows, we will refer to such a canonical
vector as a middle bit.

Recall that X is the initial-vector defined in Section 4. For each difference A
belonging to the lists marked as input of the studied T-box, we apply Xg ® A to
the obfuscated DES by making an injection fault. This means that we set the input
of this T-box to the initial-entry while we keep the actual value for the other T-
Boxes. We evaluate the number of io-block encoding bijections at the output of the
first round that differs from the corresponding initial-entries. If only one io-block
encoding bijection (at the output of the first round) differs from the corresponding
initial-entry, we deduce that A could be the preimage of a middle bit. Therefore,
a list pointed by several canonical vectors can be divided into two shorter lists;
one list is pointed by middle bits while the other is pointed by non-middle bits.

Remarks: If a T-box is touched by more than three middle bits or left bits, we
deduce that this T-box does not contain any S-box. Note also that doubles can
only be preimages of middle bits. Finally, a T-box touched by a double contains
necessarily an S-box.

4.2.3 Recovering left bits

In order to apply our attack presented in Section 3, we need to know which group
of four canonical vectors are xored with the output of each S-box of the first
round. First, we determine the io-block encoding bijections that are touched by
the outputs of the studied S-box and we denote by B.S this set of bijections. Then,
we store in an extra list £ each A marked as left bits touching exactly two bijections
of BS. This list contains all the preimages associated to canonical vectors that
are potentially xored with the output of the S-box. Finally, we find A; € (£) such
that for any bijection b; € BS we have D, ¢pa,bi(Xo) = 0, where A, belongs to
a list marked as a middle bit of the studied S-box. This process is repeated with
different A,, or Xy, until we find four linearly independent A; or equivalently the
vector space spanned by the preimages of the searched canonical vectors. We then
compute the intersection between this space and all the lists. It allows us to split
some of them in shorter lists (the intersection and the complementary space of the
intersection). It may lead to lists containing a single vector (distinguished list).

10



4.2.4 Chaining

In this section, we will try to determine precisely the correspondance between T-
boxes and S-boxes. Due to the remark in Section 4.2.2, we know which are the
T-boxes containing an S-box. The probability that a selected T-box, denoted by
T1, contains S1 is 1/8. We determine the two T-Boxes that are touched by a
canonical vector associated to a list marked as “right bit”, “non-middle bit” and
associated to T'1. Selecting one of these T-Boxes randomly, the probability that it
contains 52 is 1/2. Out of the set of unselected T-Boxes, we select the one that is
touched by a canonical vector associated to a list marked as “right bit”, “non-middle
bit” and associated to the previous selected T-Box. We continue the process until
all T-Boxes have been selected. Note that the probability to determine the right
correspondance is 1/8 x 1/2 = 1/16.

4.2.5 Bits positions

At this stage, we have recovered between others, 32 preimages corresponding to
unspecified left canonical vectors. In order to determine the correspondance, we
use the following observation on the DES:

Out of the four Left bits that are xored with the output of a specified S-Bor,
exactly two become (in the second round) middle bits.

Now, we just have to apply each of the preimages to the obfuscated DES and to
check whether the image of this vector in front of the second round is a middle bit
(cf. 4.2.2). Assuming that the T-Boxes follow the same ordering in the differents
rounds, preimages corresponding to a middle bit (resp. non-middle bit) can be
distinguished observing the indexes of the touched T-Boxes.

For example, for the first S-box, among the 4 identified left canonical vectors
preimages,

e the one that is the preimage of a middle bit of Sg (resp. S8) in the second
round is the preimage of ea3 (resp. esy).

e the one that is not the preimage of a middle bit and is in the input of S5 and
S3 (resp. S4 and S5) of the second round, is the preimage of eg (resp. ej7).

4.3 The attack

In Section 4.2, we have shown how to recover all the preimage of the left canon-
ical vectors. In other words, we have recovered half of MO_1 (columns and their
positions). Also, some of the lists marked as middle bits contain only one vector
but their corresponding canonical vector is however unknown. Therefore, some
columns of Mgl are known up to their positions. Finally, the remaining lists
marked as middle bits are pointed by some canonical vectors (their number is the
dimension of the vector space spanned by the list). In this case, we select linearly

11



independant vectors in the list and we associate each of them to the canonical
vector pointing to the list. Therefore, we are in the context of the attack of the
naked-DES modulo some adaptations. In particular, we have to choose X belong-
ing to the vector space spanned by the known columns of Mo_l. The evaluation
of the first round on Xg & A may lead to some difficulties. Indeed, we have to
choose A belonging to the preimage of middle bits space which is not necessarily
included in the vector space spanned by the known columns of Mgl. It turns out
that we have to try all the candidates for this part of the matrix Mo_l. For each
of these candidates, we mount an attack like we did on the “naked DES” which
provide 48 key-bit candidates. Note that it may happen that wrong keys will be
recovered. More importantly, it may happen that no key exists for this candidate
for this part of the matrix Mgl. In other words, it means that we have to discard
this candidate.

In order to determine the remaining part of Mgl (columns associated to non-
middle bits), we apply a similar principle that we used for the “naked DES”. Indeed,
we know the key and we know that for the “naked DES” for all initial-message X
there always exists a difference A with non-zero right component such that the
right part of the differential (evaluated in X) of the first round is zero. It means
that in the context of the “non standard DES”, wrong candidates for MO_1 can
be discarded. Denote by K the space spanned by the known columns of the
candidate for M(;l and by U the unknown columns of the candidate for Mal.
We have K @ U = F$*. The candidate for ]\40_1 can be discarded if there exists
Xo € K such that there does not exist A with a non zero-component in U such
that the right part of the differential (evaluated in Xj) is zero.

At this stage, we have a 48 key-bit candidate and a candidate for Mgl. We make
an exhaustive search in order to determine the 8 remaining bits. For each of them
we try to solve a linear system in order to find the matrix M,. If there is no
solution for M, we deduce that the 8 key-bit candidate is wrong. If all the 8 key-
bit candidate are wrong, we discard this particular MO_I. Note that this method
also works if My has a io-block encoding bijections at the output.

Attack on Link and Neumann obfuscation Our methods only use the out-
puts of the first and second round. In particular, we never use the outputs of the
T-boxes. Therefore, our two attacks (naked DES, and non-standard DES) can be
applied on the Link and Neumann [6] obfuscation method. The only difference is
that we will deal with larger lists.

5 Results
This attack was implemented with a C code. At each stage of the attack, the num-

ber of candidates for the key, and for M(;l decrease, leading to a unique 48 key-bit
candidate and a unique MO_1 candidate. We have tested our attack on thousands

12



of obfuscated implementations of DES (both “naked” and “non-standard” DES).
The figure 3 shows the time needed to complete the attack. We can observe that
95% of the attacks requires less than 50 secondes, and 75% less than 17 secondes.
The mean time is about 17 secondes. However, the attacks were executed on a
standard PC, and the code was not optimized, so we can easily divise the time by
a factor 4.

50

o [
o [

30 J

25 /

20

time (sec)

15

10

%

Figure 3: Repartition of the attacks durations

6 Conclusion

In this paper, we have given new techniques of cryptanalysis for the current obfus-
cation methods of DES. These techniques rely on a theoretical analysis and have
also been implemented as a C program. We implemented our method with a C
code and applied it successfully to more thousands of obfuscated implementations
of DES (both “naked” and “non standard” DES). So far, all the studied instances
lead to a unique candidate for the DES key and similarly for the M, and M, secret
linear transformations. The key and the two linear transforms are obtain within
17 seconds on average.

References

[1] O. Billet. Cryptologie Multivariable Ph.D. thesis University of Versailles, De-
cember 2005.

13



[2] O. Billet, H. Gilbert, and C. Ech-Chatbi. Cryptanalysis of a white box AES
implementation. In Helena Handschuh and M. Anwar Hasan, editors, Selected
Areas in Cryptography, volume 3357 of Lecture Notes in Computer Science,
pages 227 240. Springer, 2004.

[3] S. Chow, P. Eisen, H. Johnson, and P. van OQorschot. White-box cryptography
and an AES implementation. In 9" Annual Workshop on Selected Areas in
Cryptography, volume 2595 of LNCS, pages 250 270. Springer-Verlag, 2002.

[4] S. Chow, H. Johnson, P. van Oorschot, and P. Eisen. A white-box DES im-
plementation for DRM applications. In Proceedings of ACM CCS-9 Workshop
DRM 2002, volume 2595 of LNCS, pages 1-15. Springer-Verlag, 2002.

[5] M. Jacob, D. Boneh, and E. Felten. Attacking an obfuscated cipher by injecting
faults. In Proceedings 2002 ACM Workshop on Digital Rights Management,
November 18, 2002, Washington DC, USA., 2002.

[6] H.E. Link and W.D. Neumann. Clarifying obfuscation: Improving the security
of white-box encoding. 2004. http://eprint.iacr.org/.

[7] J. Patarin and L. Goubin. Asymmetric cryptography with S-boxes. In Proc.
1st International Information and Communications Security Conference, pages
369-380, 1997.

[8] http://www.itl.nist.gov/fipspubs/fip46-2.htm

Appendix: Proofs

Proof of Lemma 4.4: First recall that By = (e; | m; 0 Mi(ej) = 0) and &, =
(ej | m o My(e;) # 0). Let j and k be two distinct integers, then the following
conditions are equivalent.

o & NE&E, = {0}
o 1,0 Mi(e;) =0 or mj o Mi(e;) =0 for all integer i € [1,64].
e 70 Mi(X) =0 or moM;(X) = 0.for all vector X € FS*.

We conclude that if X € & and £;N&, = {0} then 7,0 M;(X) = 0 or equivalently
X € B;.
Consider X # 0 belonging to [ B;. We have that m; o M;(X) = 0 for all j # k.
j#k

Note that M is injective. T}ferefore Mi(X) # 0 and 7 o M1(X) # 0. We
conclude that all the bits of M; o (X)) that touch b; (j # k) are zeros. Therefore,
for any non-zero component e; of X, Mj(e;) touches by or equivalently X € &,
and ﬂ Bj C &.

i#k

14



Let’s use an argument by contraposition. Consider e; ¢ (| B;j. Then, there exists
jk
J # k, such that e; ¢ Bj, i.e. mj 0 Mi(e;) # 0 or equivalently e; € £;. Therefore,
according to the previous three equivalent conditions, e; ¢ . We deduce that for
all e; € & we have ¢; € () Bj. It means that & = (e; | e; € &) C () B;. We
ik itk
conclude & = ) B;.
ik
O

Proof of Property 4.5: Let e; be an element of & and j be an element of Jj.
We have 7, 0 My(e;) # 0 and &5 N &, = {0}. It implies that m; o Mi(e;) = 0, and
e; € Bj. Therefor, e; € ﬂ Bj, and <€i | €e; € €k> C &
JE€Jk
O

Proof of Property 4.6: We will first prove that (B; N B;) @ (& UE;) = F§L.
Consider a canonical vector ey ¢ B; N B;. This is equivalent to m; o Mj(ex) # 0 or
mjo Mi(er) # 0. In other words ey € & or ej, € &, or equivalently e;, € (& UE;).
This means that for all canonical vector e of ]Fg47 we have either e; belongs to
B; N B; or ey, belongs to (& UE;).

—~

Assume that there exists a canonical vector e, €
m; o Mi(ey) = mj o My(ex) = 0, and either 7; o M,
leads to a contradiction. Hence (B; NB;) N (& UE;

B; N BJ) N <5z U 5J> We have
er) # 0 or mj o Mi(ex) # 0. It

contains no canonical vectors.

Assume now that there exists an element A € (B; N B;) N (& U E;) having a
non-zero component ey. The vector A belongs to (B; N Bj), hence e belongs
to (B; N Bj). Moreover A belongs to (& U &;), hence ey belongs to (& U &;j).
Therefore ey belongs to (B; N B;) N (£ UE;) which is impossible. We conclude that
(B;N B]) N <5z U €J> = {0} Therefore (B; N B]) @ (& U €J> = Fg4.
We deduce that
64 = dim((& U¢E;)) + dim(B; N By)

= dlm((c;z + 5]) + dlm(BZ N B])

= dlm(&) + dim(&'j) — lel((c;Z N gj) + dlm(BZ N BJ)
Moreover & @ B; = F$* = & @ B;. Hence 64 = 64 — dim(B;) + 64 — dim(B;) —
dim(& NE;) + dim(B; N B;). The result follows.

— ~— —

O

15



