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In Setion 2, we give an overview of the obfusation methods given by Chow etal. and by Link and Neumann. Setion 3 is devoted to our attak on the �nakedDES�. In Setion 4, we adapt our attak to the �non standard� DES, whih was notryptanalysed so far. Setio n5 is devoted to our implementation of this attak.Finally, we onlude in Setion 6.2 DES obfusation methodsChow et al. [4℄ proposed two types of DES obfusation. The �rst one, alled �nakedDES�, produes a real DES. The seond one, alled the �non standard DES�, is aslight modi�ation of the standard DES algorithm. This last version is the onethey reommend.Let's desribe the naked DES. The obfusation starts with an a�ne funtion M1,wih is the omposition of the initial permutation and the expansion. This funtionis linear, so we an parsed it in a lever way, in many tables. Eah round is thenthe onatenation of 12 T-boxes (derived from the S-boxes of the DES) followed byan a�ne funtion M2 (derived from P and the xor operation). The last round ofthe obfusation is followed by an a�ne funtion M3 whih is the �nal permutation.This funtion takes for arguments the outputs of the a�ne funtion M2 of the lastround and returns the ipher text. We will denote by Ai, one of these omponents(T-box or Mi).Eah omponents Ai are obfusated between random non linear permutations P1and P2, i.e. P1 ◦Ai◦P2 (it is what Chow et al. [4℄ refers to io-blok enoding). Theresulting funtions are stored in arrays in order to be used in the obfusated pro-gram. Permutations P1 and P2 are hosen suh that the omposition of onseutiveobfusated omponents is the obfusation of the omposition of the omponents.This obfusation was ryptanalysed by the authors themselves [4℄. In order toavoid this attak, they propose the �non standard DES�. It onsists in adding twoa�ne bijetions M0 and M4 in front and after the naked DES, respetively. Itis not spei�ed by Chow et al. [4℄ whether M0 and M4 are blok enoded (i.e.respetively preeded and followed by non linear random permutations). In thispaper, we onsider that M0 and M4 are not blok enoded.On the other hand, Link and Neumann [6℄ improved the attak on the �nakedDES�, and suggested another solution whih onsists in merging the T-boxes andthe a�ne funtion M2 of eah round. This way, we do not have aess to theT-boxes outputs. Moreover, the M2 of the di�erent rounds are blok enoded inan other way.As far as we know, no one has published an attak neither on the �non standardDES�, nor on the improved �naked DES�. We adress this issue in this paper.
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3 Attak on the naked DES3.1 The prinipleAs mentioned before, the naked DES proposed by Chow et al. [4℄ was alreadyryptanalysed in the papers [4, 5, 6℄. In this setion, we show how to ryptanalysethe improved version of the naked DES proposed by Link and Neumann [6℄. Notethat our method works also for the naked DES proposed by Chow et al. [4℄. Inwhat follows, we will denote by �regular DES�, the one desribed in the standard[8℄ (without PC1), and we will use the same notations.Our attak is divided into two phases and is based on a trunated di�erentialattak. Roughly speaking, the �rst phase onsists in generating pairs of messages(X,X ′) suh that the right part of the images throught IP and the �rst round of aregular DES, are equal (for a given key). The seond phase onsists in evaluatingthose pairs of messages (X,X ′) on the naked DES, and in heking a onditionthat we speify below. The pairs that satisfy the test provide a key andidate.Let's go into the details. Remember that f(., k) denotes the funtion of the regularDES, we will also denote it as fk(.). (L0, R0) denotes the image of the initialmessage through IP , and (L1, R1) is the image of (L0, R0) through the �rst round,i.e. (L1, R1) = (R0, L0 ⊕ f(R0, k)). Consider a funtion f , vetors X and ∆, thederivative f(x0)⊕f(X0⊕∆) will be denoted by D∆f(X). Let's �rst motivate ouralgorithm. Let k be a �xed unknown key. Assume we want to �nd the �rst round6-bit-subkey orresponding to Si (for the sake of larity, we will restrain ourself to
i = 1). Therefore we will generate andidate keys suh that only the 6 key bitsof S1 of the �rst round are modi�ed. For eah of these keys, we ompute pairs ofmessages (X,X ′) suh that,1. ∆ = R0 ⊕ R′

0 is zero, exept for the bits index 2 and 3.2. L′
0 = L0 ⊕ D∆fk(R0)Observe that the bits of R0 index 2 and 3 only a�et the output of S1. Therefore,

f(R0, k) and f(R′
0, k) are idential exept for the 4 bits orresponding to the outputof S1.Under these onditions, in the next round we have R1 = R′

1 and L′
1(= R′

0) isidential to L1(= R0) exept for at most two bits. Consider now these two messages
X and X ′ applied to the �naked DES� with the orret key andidate. We observethat these bits (non-zero bits of L′

1 ⊕ L1) in�uene at most two io-blok enodingbijetions. If the key andidate is wrong, we will have R1 6= R′
1. Therefore manybits will hange at the output of M2 of the �rst round, and we will be able todistinguish this situation from the orret key guess.Here is an overview of the attak:

• Choose a message X randomly. 3



• Compute (L0, R0) = IP (X) with IP publi.
• Choose ∆ suh that only bits index 2 and 3 are di�erent from 0.
• For all possible 6 bits of round subkey k:� Compute L′

0 = L0 ⊕ D∆fk(R0).� Compute X ′ = IP−1(L′
0, R0 ⊕ ∆).� Apply X and X ′ to the obfusated DES and save the values Y and Y ′at the end of the �rst round.� Compare Y and Y ′ and ompute in how many io-blok enoding bije-tions they di�er.� If this number is stritly greater than 2, then rejet the 6-bit-subkey,else the 6-bit-subkey are probably orret.This way, we an reover the 48 key-bit of the �rst round of the DES. The 8remaining bits are found by exhaustive searh.3.2 E�ienyThis algorithm an produe more than one andidate for the 6-bit-subkey. It willprovide wrong 6-bit-subkeys in two situations.1. Due to the balane property of the S-boxes, and the fat they map six bitsto four bits, four di�erent inputs produes the same output. Therefore foreah S-box, three wrong 6-bit-subkeys will produe the same output as theorret key. To avoid this problem, we an launh this algorithm with anotherrandom initial message, or simply another ∆. In fat, we only have to hangethe values of the bits of R0 and ∆ orresponding to the input of S1 (the bitsindex 32,1,. . . ,5). Atually we an hoose di�erents pairs (X,X ′) suh thatthe intersetion of the key andidates assoiated to eah of them is the orretkey.2. The seond one is due to a propagation phenomena. Suppose we have awrong 6-bit-subkey produing a wrong S1 output. It means that there aremore than three bits of di�erene between (L1, R1) and (L′

1, R
′
1). Thesedi�erenes ould be mapped to the same io-blok enoding bijetion, leadingto the �ipping of only two io-blok enoding bijetions at the output of M2.In this ase, we launh this algorithm with several values for R0. It leads toseveral lists of key andidates and the orret key belongs to the intersetion.This way, wrong keys will be disarded.
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4 Attak on the �non standard DES�This setion is dediated to an attak on the �non standard DES�. Remind thatthe �non standard DES� is a �naked DES� where the a�ne funtion M1 is replaedby M1 ◦M0, where M0 is a mixing bijetion (see Chow et al. [4℄). As mentionnedbefore, we assume that the inputs of M1◦M0 (respetively the outputs of M4◦M3)are not io-blok enoded. Note that all the other funtions are io-blok enodedusing 4 × 4 bijetions (the same priniple applies for the obfusation proposedby Link and Neuman [6℄ where bijetions are from 8 to 8 bits). Moreover, weassume that the T-Boxes follow the same ordering in the di�erents rounds. Inwhat follows, we will not onsider IP (inside M1) for the sake of larity. It doesnot hange anything to the argument.Denote by F : F64
2 → F96

2 the obfusation of M1 ◦M0. We summarize the situationin the �gures below. The funtion φ : F96
2 → F96

2 is a bit-permutation (48 positionsare determined by the regular DES operation and the others 48 bits are hosenrandomly).
M0

Message
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b0 b23. . . . . . . . . . .

F

Figure 1: F funtion
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Figure 2: M1 funtionIn what follows, the term preimage will impliitly refer to the preimage with respetto the linear bijetion M0. Moreover, we say that a bit of a vetor is touhing anio-blok enoding bijetion if this bijetion depends on this bit. Similarly we willsay that a vetor touhes an S-Box if non-zero bits touh it.5



Our attak on the �non standard DES� is based on the one on the �naked DES�.Our approah is based on a di�erential trunated attak. It onsists in omputingthe images of a random vetor X0 at di�erent levels in the obfusated DES. Weompare these values (alled initial-entries) to the orresponding images of X0⊕∆,where ∆ satis�es some onditions depending on the ontext. This approah allowsto provide gradually informations on the key and the matrix M−1
0 . Full key andthe matrix M−1

0 are known at the end. The way we store information on M−1
0onsists in onsidering lists of andidates for preimages of unspei�ed anonialvetors. Lists of andidates ontaining only one vetor are alled distinguishedlist. Note that these lists are atually vetor spaes and an be shared by severalanonial vetors. In pratie, a list E will be shared by dimE anonial vetors(that are not neessary spei�ed). Our algorithm works sequentially and onsistsin speifying these anonial vetors and in shortening the lists using some triks.Our method an therefore be understood as a ��ltering proess�. The di�erent�lters are desribed below.Setion 4.1 desribes a preliminary step almost independant of the struture of theblok ipher. It onsists in �nding vetor spaes assoiated to a partiular io-blokenoding bijetion at the output of F . This step allows to get global informationon M−1

0 .Setion 4.2 desribes a set of �lters intending to re�ne information on M−1
0 . Thesesteps are highly related to the studied blok ipher. The �rst �lter, desribed inSetion 4.2.1, allows to distinguish lists that are assoiated to anonial vetorsbelonging either to right bits or left bits of the input of the �rst round. The seond�lter, desribed in Setion 4.2.2, extrats all the lists (marked as �right� in theprevious �lter) touhing a single S-box. The third �lter, desribed in Setion 4.2.3,gathers the lists (marked as �left� in the previous �lter) in sets assoiated to theoutput of S-boxes. Setion 4.2.4 links T-Boxes (obfusation of the keyed S-boxes)to S-Boxes. This information allows the last �lter, presented in Setion 4.2.5, tospeify preisely the 1-to-1 link between the lists (marked as �left�) and the (left)anonial vetors.Setion 4.3 explains how to extrat the key and how to reover the full invertiblematries M−1

0 and M4.4.1 Blo level analysis of M1 ◦ M0Denote by Kk the spae ({0}4k × F4
2 × {0}92−4k), and by Kk, the spae (F4k

2 ×
{0}4 × F92−4k

2 ). In what follows, the vetor spae spanned by a set of vetors Swill be denoted 〈S〉. Also, ei denotes the ith anonial vetor (the position of the�one is omputed from the left and start from one) of the vetor spae F64
2 . Thesets {ei ∈ F64

2 | i = 1 . . . 32} and {ei ∈ F64
2 | i = 33 . . . 64} will be denoted by SLand SR, respetively.Ideally, we are looking for 24 vetor spaes suh their vetors in�uene only oneio-blok enoding bijetion at the output of M1 ◦ M0. This would allow to atspei�aly on one partiular io-blok enoding bijetion. Unfortunately, due to the6



dupliation of the bits in M1 (beause of the expansion E) this goal is impossibleto ahieve. We will therefore try to approximate this situation and deal with thedrawbaks afterwards. First we will have to give some notations, de�nitions andproperties.Let X a vetor in F96
2 , let k be an integer, k ∈ [0, 23], πk denotes the projetion

πk : (F4
2)

24 → F4
2 : X = (x1, . . . , x24) 7→ xk. Let bk be the (k + 1)th io-blokenoding bijetion at the output of M1 ◦ M0. The funtion F is written as

F (X) = (b0 ◦ π0 ◦ M1 ◦ M0(X), b1 ◦ π1 ◦ M1 ◦M0(X), . . . , b23 ◦ π23 ◦ M1 ◦M0(X))De�nition 4.1 Let k be an integer, k ∈ [0, 23]. We denote by Bk the vetor spae
{X ∈ F64

2 | πk ◦ M1(X) = 0}. In other words, it is the subspae of vetor Xsuh that for any non-zero omponent ei of X, M1(ei) does not touh bk, i.e.
Bk = 〈ej | πk ◦ M1(ej) = 0〉.De�nition 4.2 Let k be an integer, k ∈ [0, 23]. We denote by Ek the subspae ofvetor X suh that for any non-zero omponent ei of X, M1(ei) touhes bk, i.e.
Ek = 〈ej | πk ◦ M1(ej) 6= 0〉.Remark: Note that F64

2 is the diret sum of Bk and Ek for any k; i.e. F64
2 = Bk⊕EkWe wil denote by Bk the subspae M−1

0 (Bk), and by Ek the subspae M−1
0 (Ek)Property 4.3 For all k integer, k ∈ [0, 23], Bk = {∆ ∈ F64

2 | D∆F (F64
2 ) ⊂ Kk},the probability that ∆ belongs to Bk, when ∆ is randomly hosen, is greater orequal to 1

24 = 1
16 , and 60 ≤ dim(Bk) < 64.Proof: Let E be the set {∆ ∈ F64

2 | D∆F (F64
2 ) ⊂ Kk}.

• Let ∆ be an element belonging to Bk. Let X be an element belonging toF64
2 .
D∆F (X) = (D∆(b0 ◦ π0 ◦ M1 ◦ M0(X)), . . . ,D∆(b23 ◦ π23 ◦ M1 ◦ M0(X)))Aording to the de�nitions, if ∆ ∈ Bk then M0(∆) ∈ Bk or equivalently

πk ◦ M1 ◦ M0(∆) = 0. Let's ompute D∆(bk ◦ πk ◦ M1 ◦ M0(X)) = (1).
(1) = bk ◦ πk ◦ M1 ◦ M0(X) ⊕ bk ◦ πk ◦ M1 ◦ M0(X ⊕ ∆)

= bk ◦ πk ◦ M1 ◦ M0(X) ⊕ bk(πk ◦ M1 ◦ M0(X) ⊕ πk ◦ M1 ◦ M0(∆))
= bk ◦ πk ◦ M1 ◦ M0(X) ⊕ bk(πk ◦ M1 ◦ M0(X) ⊕ 0)
= bk ◦ πk ◦ M1 ◦ M0(X) ⊕ bk ◦ πk ◦ M1 ◦ M0(X) = 0This means that D∆F (X) belongs to Kk or equivalently ∆ belongs to E.We onlude that Bk ⊂ E. 7



• Let ∆ be any element of E. Aording to the de�nition of E, we have inpartiular D∆(0) ∈ Kk. This means that
bk(0) ⊕ bk ◦ πk ◦ M1 ◦ M0(∆) = 0or equivalently

bk(0) = bk ◦ πk ◦ M1 ◦ M0(∆).We dedue that πk ◦M1 ◦M0(∆) = 0 beause bk is a bijetion. Aording tothe de�nitions, it means that M0(∆) ∈ Bk or equivalently ∆ belongs to Bk.Therefore E ⊂ Bk. We onlude that E = Bk.
• Note that in fat Bk is the kernel of πk ◦M1 ◦M0. Sine rank(πk ◦M1 ◦M0)is less or equal to 4, and greater or equal to 1, we have simultaneously

60 ≤ dim(Bk) ≤ 63 and the probability that ∆ belongs to Bk when ∆ israndomly hosen, is equal to dim(Bk)
264 . The results follows.

�Combining De�nition 4.2 and Property 4.3, the vetor spae Ek an be desribedas the set of vetors ∆ suh that for any vetor X0 ∈ F64
2 M0(X0)⊕M0(X0⊕∆) hasin total less than four non-zero omponents ei, all of them touhing the (k + 1)thio-blok enoding bijetion through M1. Due to the Property 4.3, it is easier toreover a basis for Bk's, than for Ek's. That's why we will �rst reover all the Bk's.Using Property 4.3, we only have to ompute D∆F (X0) for random ∆ ∈ F64

2 anddetermine to whih spae Kk it belongs. Using Bk's, we will reover Ek's, or atleast, 24 vetor spaes Êk ontaining Ek with minimal dimension.Let's now explain how to reover Êk. First, let's remark that for all X ∈ F64
2 andfor all ∆ ∈ F64

2 , we have D∆F (X) ∈ Kk if and only if D∆πk ◦M1 ◦M0(X) ∈ Kk.Let's introdue the following lemma.Lemma 4.4 Let k be an integer belonging to [0, 23]. If Ej∩Ek = {0} for all integer
j distint from k belonging to [0, 23], then

Ek =
⋂

j 6=k

Bj.Proof: The proof is available in the appendix.
�Sine M0 is a bijetion, this lemma means that if Ej ∩ Ek = {0} for all integer j ∈

[0, 23] di�erent from k, then Ek =
⋂

j 6=k

Bj . Nevertheless, due to the bit-dupliation,there exist indexes k and j suh that Ej ∩ Ek 6= {0} (and then Ej ∩ Ek 6= {0}).Denote by Jk the set {j | Ej ∩ Ek = {0}}, by Êk the subspae ⋂
j∈Jk

Bj, and by Êkthe subspae ⋂
j∈Jk

Bj where k is an integer belonging to [0, 23].8



Property 4.5 For all integer k ∈ [0, 23], Ek ⊆ Êk.Proof: The proof is available in the appendix.
�Let's introdue a property that will allow us to give another haraterization of

Jk.Property 4.6 For all integer i ∈ [0, 23] and for all integer j ∈ [0, 23]

dim(Ei ∩ Ej) = 64 + dim(Bi ∩ Bj) − dim(Bj) − dim(Bi)Proof: The proof is available in the appendix.
�A straight forward appliationof this property to the de�nition of Jk leads to

Jk = {j ∈ [0, 23] | 64 = dim(Bj)+dim(Bi)−dim(Bi ∩Bj)}. This haraterizationwill be useful in order to ompute Êk. If dim(Êk) + dim(Bk) < 64 then Ek ( Êk,and we have found a vetor spae ontaining stritly the one we searhe. Notethat when dim(Êk)+dim(Bk) = 64, Ek = Êk. This ase is partiularly interestingbeause it redues the omplexity of the full ryptanalysis.4.2 Bit level analysis of M
−1
0In the previous setion, we were looking for di�erenes ∆ assoiated to a spei�edio-blok enoding bijetion. It allowed us to get some information on M−1

0 . In thissetion, we re�ne our searh and this will allow us to get enough information on
M−1

0 in order to apply our method on the �naked DES� to �non standard DES�.Our algorithm works sequentially and onsists in a ��ltering proess�. The di�erent�lters are desribed below.4.2.1 Searh for andidates for preimages of elements belonging to thesets SL and SRConsider ∆ be an element of F64
2 suh that M0(∆) = ei and ei ∈ SL. The only non-zero bit of M1 ◦ M0(∆) touhes only one io-blok enoding bijetion. Therefore,

∆ belongs to a single Êk. Assume now that ∆ ∈ F64
2 suh that M0(∆) = ei and

ei ∈ SR then M1 ◦ M0(∆) has exatly two non-zero bits that may touh the sameor two distints io-blok enoding bijetion or equivalently ∆ belongs to one ortwo spaes Êk. In what follows, we will all double an element ∆ ∈ F64
2 suh that

M0(∆) ∈ SR and the two non-zero bits of M1 ◦ M0(∆) touh the same io-blokenoding bijetion. By onsidering intersetions between the spaes Êk, we andistinguish preimages of elements of SR from doubles or preimages of elements of
SL. 9



Note that the intersetions between spaes Êk taken pairwise provide atually moreinformation. Indeed, Êi ∩ Êj ontains preimages of unknown anonial vetors.In partiular, if dim(Êi ∩ Êj) = 1 then Êi ∩ Êj = 〈M−1
0 (ek)〉 for some k. Inthis ase, we already know the preimage of an unknown anonial vetor. When

dim(Êi ∩ Êj) > 1 we an still take advantage of this fat even if it requires someextra searhes.4.2.2 Reovering middle bitsIn order to apply our attak presented in Setion 3, we need to know exatly thepreimage of anonial vetors touhing only a single S-Box of the �rst round (e.g.Right bits index 2,3,6,7,10,. . . ). In what follows, we will refer to suh a anonialvetor as a middle bit.Reall that X0 is the initial-vetor de�ned in Setion 4. For eah di�erene ∆belonging to the lists marked as input of the studied T-box, we apply X0 ⊕ ∆ tothe obfusated DES by making an injetion fault. This means that we set the inputof this T-box to the initial-entry while we keep the atual value for the other T-Boxes. We evaluate the number of io-blok enoding bijetions at the output of the�rst round that di�ers from the orresponding initial-entries. If only one io-blokenoding bijetion (at the output of the �rst round) di�ers from the orrespondinginitial-entry, we dedue that ∆ ould be the preimage of a middle bit. Therefore,a list pointed by several anonial vetors an be divided into two shorter lists;one list is pointed by middle bits while the other is pointed by non-middle bits.Remarks: If a T-box is touhed by more than three middle bits or left bits, wededue that this T-box does not ontain any S-box. Note also that doubles anonly be preimages of middle bits. Finally, a T-box touhed by a double ontainsneessarily an S-box.4.2.3 Reovering left bitsIn order to apply our attak presented in Setion 3, we need to know whih groupof four anonial vetors are xored with the output of eah S-box of the �rstround. First, we determine the io-blok enoding bijetions that are touhed bythe outputs of the studied S-box and we denote by BS this set of bijetions. Then,we store in an extra list L eah ∆ marked as left bits touhing exatly two bijetionsof BS. This list ontains all the preimages assoiated to anonial vetors thatare potentially xored with the output of the S-box. Finally, we �nd ∆l ∈ 〈L〉 suhthat for any bijetion bi ∈ BS we have D∆m⊕∆l
bi(X0) = 0, where ∆m belongs toa list marked as a middle bit of the studied S-box. This proess is repeated withdi�erent ∆m or X0, until we �nd four linearly independent ∆l or equivalently thevetor spae spanned by the preimages of the searhed anonial vetors. We thenompute the intersetion between this spae and all the lists. It allows us to splitsome of them in shorter lists (the intersetion and the omplementary spae of theintersetion). It may lead to lists ontaining a single vetor (distinguished list).10



4.2.4 ChainingIn this setion, we will try to determine preisely the orrespondane between T-boxes and S-boxes. Due to the remark in Setion 4.2.2, we know whih are theT-boxes ontaining an S-box. The probability that a seleted T-box, denoted by
T1, ontains S1 is 1/8. We determine the two T-Boxes that are touhed by aanonial vetor assoiated to a list marked as �right bit�, �non-middle bit� andassoiated to T1. Seleting one of these T-Boxes randomly, the probability that itontains S2 is 1/2. Out of the set of unseleted T-Boxes, we selet the one that istouhed by a anonial vetor assoiated to a list marked as �right bit�, �non-middlebit� and assoiated to the previous seleted T-Box. We ontinue the proess untilall T-Boxes have been seleted. Note that the probability to determine the rightorrespondane is 1/8 × 1/2 = 1/16.4.2.5 Bits positionsAt this stage, we have reovered between others, 32 preimages orresponding tounspei�ed left anonial vetors. In order to determine the orrespondane, weuse the following observation on the DES:Out of the four Left bits that are xored with the output of a spei�ed S-Box,exatly two beome (in the seond round) middle bits.Now, we just have to apply eah of the preimages to the obfusated DES and tohek whether the image of this vetor in front of the seond round is a middle bit(f. 4.2.2). Assuming that the T-Boxes follow the same ordering in the di�erentsrounds, preimages orresponding to a middle bit (resp. non-middle bit) an bedistinguished observing the indexes of the touhed T-Boxes.For example, for the �rst S-box, among the 4 identi�ed left anonial vetorspreimages,

• the one that is the preimage of a middle bit of S6 (resp. S8) in the seondround is the preimage of e23 (resp. e31).
• the one that is not the preimage of a middle bit and is in the input of S2 and

S3 (resp. S4 and S5) of the seond round, is the preimage of e9 (resp. e17).4.3 The attakIn Setion 4.2, we have shown how to reover all the preimage of the left anon-ial vetors. In other words, we have reovered half of M−1
0 (olumns and theirpositions). Also, some of the lists marked as middle bits ontain only one vetorbut their orresponding anonial vetor is however unknown. Therefore, someolumns of M−1

0 are known up to their positions. Finally, the remaining listsmarked as middle bits are pointed by some anonial vetors (their number is thedimension of the vetor spae spanned by the list). In this ase, we selet linearly11



independant vetors in the list and we assoiate eah of them to the anonialvetor pointing to the list. Therefore, we are in the ontext of the attak of thenaked-DES modulo some adaptations. In partiular, we have to hoose X0 belong-ing to the vetor spae spanned by the known olumns of M−1
0 . The evaluationof the �rst round on X0 ⊕ ∆ may lead to some di�ulties. Indeed, we have tohoose ∆ belonging to the preimage of middle bits spae whih is not neessarilyinluded in the vetor spae spanned by the known olumns of M−1

0 . It turns outthat we have to try all the andidates for this part of the matrix M−1
0 . For eahof these andidates, we mount an attak like we did on the �naked DES� whihprovide 48 key-bit andidates. Note that it may happen that wrong keys will bereovered. More importantly, it may happen that no key exists for this andidatefor this part of the matrix M−1

0 . In other words, it means that we have to disardthis andidate.In order to determine the remaining part of M−1
0 (olumns assoiated to non-middle bits), we apply a similar priniple that we used for the �naked DES�. Indeed,we know the key and we know that for the �naked DES� for all initial-message X0there always exists a di�erene ∆ with non-zero right omponent suh that theright part of the di�erential (evaluated in X0) of the �rst round is zero. It meansthat in the ontext of the �non standard DES�, wrong andidates for M−1

0 anbe disarded. Denote by K the spae spanned by the known olumns of theandidate for M−1
0 and by U the unknown olumns of the andidate for M−1

0 .We have K ⊕ U = F64
2 . The andidate for M−1

0 an be disarded if there exists
X0 ∈ K suh that there does not exist ∆ with a non zero-omponent in U suhthat the right part of the di�erential (evaluated in X0) is zero.At this stage, we have a 48 key-bit andidate and a andidate for M−1

0 . We makean exhaustive searh in order to determine the 8 remaining bits. For eah of themwe try to solve a linear system in order to �nd the matrix M4. If there is nosolution for M4 we dedue that the 8 key-bit andidate is wrong. If all the 8 key-bit andidate are wrong, we disard this partiular M−1
0 . Note that this methodalso works if M4 has a io-blok enoding bijetions at the output.Attak on Link and Neumann obfusation Our methods only use the out-puts of the �rst and seond round. In partiular, we never use the outputs of theT-boxes. Therefore, our two attaks (naked DES, and non-standard DES) an beapplied on the Link and Neumann [6℄ obfusation method. The only di�erene isthat we will deal with larger lists.5 ResultsThis attak was implemented with a C ode. At eah stage of the attak, the num-ber of andidates for the key, and for M−1

0 derease, leading to a unique 48 key-bitandidate and a unique M−1
0 andidate. We have tested our attak on thousands12



of obfusated implementations of DES (both �naked� and �non-standard� DES).The �gure 3 shows the time needed to omplete the attak. We an observe that95% of the attaks requires less than 50 seondes, and 75% less than 17 seondes.The mean time is about 17 seondes. However, the attaks were exeuted on astandard PC, and the ode was not optimized, so we an easily divise the time bya fator 4.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

%

tim
e 

(s
ec

)

Figure 3: Repartition of the attaks durations6 ConlusionIn this paper, we have given new tehniques of ryptanalysis for the urrent obfus-ation methods of DES. These tehniques rely on a theoretial analysis and havealso been implemented as a C program. We implemented our method with a Code and applied it suessfully to more thousands of obfusated implementationsof DES (both �naked� and �non standard� DES). So far, all the studied instaneslead to a unique andidate for the DES key and similarly for the M0 and M4 seretlinear transformations. The key and the two linear transforms are obtain within17 seonds on average.Referenes[1℄ O. Billet. Cryptologie Multivariable Ph.D. thesis University of Versailles, De-ember 2005. 13



[2℄ O. Billet, H. Gilbert, and C. Eh-Chatbi. Cryptanalysis of a white box AESimplementation. In Helena Handshuh and M. Anwar Hasan, editors, SeletedAreas in Cryptography, volume 3357 of Leture Notes in Computer Siene,pages 227�240. Springer, 2004.[3℄ S. Chow, P. Eisen, H. Johnson, and P. van Oorshot. White-box ryptographyand an AES implementation. In 9th Annual Workshop on Seleted Areas inCryptography, volume 2595 of LNCS, pages 250�270. Springer-Verlag, 2002.[4℄ S. Chow, H. Johnson, P. van Oorshot, and P. Eisen. A white-box DES im-plementation for DRM appliations. In Proeedings of ACM CCS-9 WorkshopDRM 2002, volume 2595 of LNCS, pages 1�15. Springer-Verlag, 2002.[5℄ M. Jaob, D. Boneh, and E. Felten. Attaking an obfusated ipher by injetingfaults. In Proeedings 2002 ACM Workshop on Digital Rights Management,November 18, 2002, Washington DC, USA., 2002.[6℄ H.E. Link and W.D. Neumann. Clarifying obfusation: Improving the seurityof white-box enoding. 2004. http://eprint.iar.org/.[7℄ J. Patarin and L. Goubin. Asymmetri ryptography with S-boxes. In Pro.1st International Information and Communiations Seurity Conferene, pages369�380, 1997.[8℄ http://www.itl.nist.gov/�pspubs/�p46-2.htmAppendix: ProofsProof of Lemma 4.4: First reall that Bk = 〈ej | πk ◦ M1(ej) = 0〉 and Ek =
〈ej | πk ◦ M1(ej) 6= 0〉. Let j and k be two distint integers, then the followingonditions are equivalent.

• Ej ∩ Ek = {0}.
• πk ◦ M1(ei) = 0 or πj ◦ M1(ei) = 0 for all integer i ∈ [1, 64].
• πk ◦ M1(X) = 0 or πj ◦ M1(X) = 0.for all vetor X ∈ F64

2 .We onlude that if X ∈ Ej and Ej ∩Ek = {0} then πk ◦M1(X) = 0 or equivalently
X ∈ Bk.Consider X 6= 0 belonging to ⋂

j 6=k

Bj . We have that πj ◦ M1(X) = 0 for all j 6= k.Note that M1 is injetive. Therefore M1(X) 6= 0 and πk ◦ M1(X) 6= 0. Weonlude that all the bits of M1 ◦ (X) that touh bj (j 6= k) are zeros. Therefore,for any non-zero omponent ei of X, M1(ei) touhes bk or equivalently X ∈ Ek,and ⋂
j 6=k

Bj ⊂ Ek. 14



Let's use an argument by ontraposition. Consider ei /∈
⋂

j 6=k

Bj. Then, there exists
j 6= k, suh that ei /∈ Bj, i.e. πj ◦ M1(ei) 6= 0 or equivalently ei ∈ Ej. Therefore,aording to the previous three equivalent onditions, ei /∈ Ek. We dedue that forall ei ∈ Ek we have ei ∈

⋂
j 6=k

Bj . It means that Ek = 〈ei | ei ∈ Ek〉 ⊂
⋂

j 6=k

Bj . Weonlude Ek =
⋂

j 6=k

Bj .
�Proof of Property 4.5: Let ei be an element of Ek and j be an element of Jk.We have πk ◦ M1(ei) 6= 0 and Ej ∩ Ek = {0}. It implies that πj ◦ M1(ei) = 0, and

ei ∈ Bj. Therefor, ei ∈
⋂

j∈Jk

Bj, and 〈ei | ei ∈ Ek〉 ⊂ Êk.
�Proof of Property 4.6: We will �rst prove that (Bi ∩ Bj) ⊕ 〈Ei ∪ Ej〉 = F64

2 .Consider a anonial vetor ek /∈ Bi ∩ Bj. This is equivalent to πi ◦ M1(ek) 6= 0 or
πj ◦ M1(ek) 6= 0. In other words ek ∈ Ei or ek ∈ Ej , or equivalently ek ∈ 〈Ei ∪ Ej〉.This means that for all anonial vetor ek of F64

2 , we have either ek belongs to
Bi ∩ Bj or ek belongs to 〈Ei ∪ Ej〉.Assume that there exists a anonial vetor ek ∈ (Bi ∩ Bj) ∩ 〈Ei ∪ Ej〉. We have
πi ◦ M1(ek) = πj ◦ M1(ek) = 0, and either πi ◦ M1(ek) 6= 0 or πj ◦ M1(ek) 6= 0. Itleads to a ontradition. Hene (Bi ∩Bj)∩ 〈Ei ∪Ej〉 ontains no anonial vetors.Assume now that there exists an element ∆ ∈ (Bi ∩ Bj) ∩ 〈Ei ∪ Ej〉 having anon-zero omponent ek. The vetor ∆ belongs to (Bi ∩ Bj), hene ek belongsto (Bi ∩ Bj). Moreover ∆ belongs to 〈Ei ∪ Ej〉, hene ek belongs to 〈Ei ∪ Ej〉.Therefore ek belongs to (Bi ∩Bj)∩〈Ei ∪Ej〉 whih is impossible. We onlude that
(Bi ∩ Bj) ∩ 〈Ei ∪ Ej〉 = {0}. Therefore (Bi ∩ Bj) ⊕ 〈Ei ∪ Ej〉 = F64

2 .We dedue that
64 = dim(〈Ei ∪ Ej〉) + dim(Bi ∩ Bj)

= dim(Ei + Ej) + dim(Bi ∩ Bj)
= dim(Ei) + dim(Ej) − dim(Ei ∩ Ej) + dim(Bi ∩ Bj)Moreover Ei ⊕ Bi = F64

2 = Ej ⊕ Bj. Hene 64 = 64 − dim(Bi) + 64 − dim(Bj) −
dim(Ei ∩ Ej) + dim(Bi ∩ Bj). The result follows.
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