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tObfus
ation is a method 
onsisting in hiding information of some partsof a 
omputer program. A

ording to the Ker
kho�s prin
iple, a 
rypto-graphi
al algorithm should be kept publi
 while the whole se
urity shouldrely on the knowledge of the key. The goal of obfus
ation of blo
k 
iphersis therefore to produ
e programs 
ontaining the key that 
ould not be ex-tra
ted by someone having a

ess to the sour
e 
ode. This paper deals withthe 
ryptanalysis of su
h methods of obfus
ation, in parti
ular for the DES.Su
h methods, 
alled the �naked DES� and �non standard DES�, were pro-posed by Chow et al. [4℄ in 2002. Some methods for the 
ryptanalysis of the�naked DES� were proposed by Chow et al. [4℄, Ja
ob et al. [5℄, and Link andNeuman [6℄. In their paper, Link and Neuman [6℄ proposed an other methodfor the obfus
ation of the DES.In this paper, we propose a general method that applies to all s
hemes.Moreover, we provide a theoreti
al analysis. We implemented our methodwith a C 
ode and applied it su

essfully to thousands of obfus
ated imple-mentations of DES (both �naked� and �non standard� DES).1 Introdu
tionIn 2002, Chow et al. [3, 4℄ suggested two di�erent obfus
ations, one for the AES,the other for the DES. The AES obfus
ation was 
ryptanalysed by Billet et al.[1, 2℄ in 2004. Also Chow et al. [4℄ gived an atta
k on their �rst DES obfus
ationversion (
alled �naked DES�). Ja
ob et al. [5℄ and Link and Neuman [6℄, proposedtwo others atta
ks on the �naked DES�. A se
ond version of DES obfus
ation,
alled �non standard DES�, was given by Chow et al. [4℄. This version seems notto have been 
ryptanalysed yet. 1



In Se
tion 2, we give an overview of the obfus
ation methods given by Chow etal. and by Link and Neumann. Se
tion 3 is devoted to our atta
k on the �nakedDES�. In Se
tion 4, we adapt our atta
k to the �non standard� DES, whi
h was not
ryptanalysed so far. Se
tio n5 is devoted to our implementation of this atta
k.Finally, we 
on
lude in Se
tion 6.2 DES obfus
ation methodsChow et al. [4℄ proposed two types of DES obfus
ation. The �rst one, 
alled �nakedDES�, produ
es a real DES. The se
ond one, 
alled the �non standard DES�, is aslight modi�
ation of the standard DES algorithm. This last version is the onethey re
ommend.Let's des
ribe the naked DES. The obfus
ation starts with an a�ne fun
tion M1,wi
h is the 
omposition of the initial permutation and the expansion. This fun
tionis linear, so we 
an parsed it in a 
lever way, in many tables. Ea
h round is thenthe 
on
atenation of 12 T-boxes (derived from the S-boxes of the DES) followed byan a�ne fun
tion M2 (derived from P and the xor operation). The last round ofthe obfus
ation is followed by an a�ne fun
tion M3 whi
h is the �nal permutation.This fun
tion takes for arguments the outputs of the a�ne fun
tion M2 of the lastround and returns the 
ipher text. We will denote by Ai, one of these 
omponents(T-box or Mi).Ea
h 
omponents Ai are obfus
ated between random non linear permutations P1and P2, i.e. P1 ◦Ai◦P2 (it is what Chow et al. [4℄ refers to io-blo
k en
oding). Theresulting fun
tions are stored in arrays in order to be used in the obfus
ated pro-gram. Permutations P1 and P2 are 
hosen su
h that the 
omposition of 
onse
utiveobfus
ated 
omponents is the obfus
ation of the 
omposition of the 
omponents.This obfus
ation was 
ryptanalysed by the authors themselves [4℄. In order toavoid this atta
k, they propose the �non standard DES�. It 
onsists in adding twoa�ne bije
tions M0 and M4 in front and after the naked DES, respe
tively. Itis not spe
i�ed by Chow et al. [4℄ whether M0 and M4 are blo
k en
oded (i.e.respe
tively pre
eded and followed by non linear random permutations). In thispaper, we 
onsider that M0 and M4 are not blo
k en
oded.On the other hand, Link and Neumann [6℄ improved the atta
k on the �nakedDES�, and suggested another solution whi
h 
onsists in merging the T-boxes andthe a�ne fun
tion M2 of ea
h round. This way, we do not have a

ess to theT-boxes outputs. Moreover, the M2 of the di�erent rounds are blo
k en
oded inan other way.As far as we know, no one has published an atta
k neither on the �non standardDES�, nor on the improved �naked DES�. We adress this issue in this paper.
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3 Atta
k on the naked DES3.1 The prin
ipleAs mentioned before, the naked DES proposed by Chow et al. [4℄ was already
ryptanalysed in the papers [4, 5, 6℄. In this se
tion, we show how to 
ryptanalysethe improved version of the naked DES proposed by Link and Neumann [6℄. Notethat our method works also for the naked DES proposed by Chow et al. [4℄. Inwhat follows, we will denote by �regular DES�, the one des
ribed in the standard[8℄ (without PC1), and we will use the same notations.Our atta
k is divided into two phases and is based on a trun
ated di�erentialatta
k. Roughly speaking, the �rst phase 
onsists in generating pairs of messages(X,X ′) su
h that the right part of the images throught IP and the �rst round of aregular DES, are equal (for a given key). The se
ond phase 
onsists in evaluatingthose pairs of messages (X,X ′) on the naked DES, and in 
he
king a 
onditionthat we spe
ify below. The pairs that satisfy the test provide a key 
andidate.Let's go into the details. Remember that f(., k) denotes the fun
tion of the regularDES, we will also denote it as fk(.). (L0, R0) denotes the image of the initialmessage through IP , and (L1, R1) is the image of (L0, R0) through the �rst round,i.e. (L1, R1) = (R0, L0 ⊕ f(R0, k)). Consider a fun
tion f , ve
tors X and ∆, thederivative f(x0)⊕f(X0⊕∆) will be denoted by D∆f(X). Let's �rst motivate ouralgorithm. Let k be a �xed unknown key. Assume we want to �nd the �rst round6-bit-subkey 
orresponding to Si (for the sake of 
larity, we will restrain ourself to
i = 1). Therefore we will generate 
andidate keys su
h that only the 6 key bitsof S1 of the �rst round are modi�ed. For ea
h of these keys, we 
ompute pairs ofmessages (X,X ′) su
h that,1. ∆ = R0 ⊕ R′

0 is zero, ex
ept for the bits index 2 and 3.2. L′
0 = L0 ⊕ D∆fk(R0)Observe that the bits of R0 index 2 and 3 only a�e
t the output of S1. Therefore,

f(R0, k) and f(R′
0, k) are identi
al ex
ept for the 4 bits 
orresponding to the outputof S1.Under these 
onditions, in the next round we have R1 = R′

1 and L′
1(= R′

0) isidenti
al to L1(= R0) ex
ept for at most two bits. Consider now these two messages
X and X ′ applied to the �naked DES� with the 
orre
t key 
andidate. We observethat these bits (non-zero bits of L′

1 ⊕ L1) in�uen
e at most two io-blo
k en
odingbije
tions. If the key 
andidate is wrong, we will have R1 6= R′
1. Therefore manybits will 
hange at the output of M2 of the �rst round, and we will be able todistinguish this situation from the 
orre
t key guess.Here is an overview of the atta
k:

• Choose a message X randomly. 3



• Compute (L0, R0) = IP (X) with IP publi
.
• Choose ∆ su
h that only bits index 2 and 3 are di�erent from 0.
• For all possible 6 bits of round subkey k:� Compute L′

0 = L0 ⊕ D∆fk(R0).� Compute X ′ = IP−1(L′
0, R0 ⊕ ∆).� Apply X and X ′ to the obfus
ated DES and save the values Y and Y ′at the end of the �rst round.� Compare Y and Y ′ and 
ompute in how many io-blo
k en
oding bije
-tions they di�er.� If this number is stri
tly greater than 2, then reje
t the 6-bit-subkey,else the 6-bit-subkey are probably 
orre
t.This way, we 
an re
over the 48 key-bit of the �rst round of the DES. The 8remaining bits are found by exhaustive sear
h.3.2 E�
ien
yThis algorithm 
an produ
e more than one 
andidate for the 6-bit-subkey. It willprovide wrong 6-bit-subkeys in two situations.1. Due to the balan
e property of the S-boxes, and the fa
t they map six bitsto four bits, four di�erent inputs produ
es the same output. Therefore forea
h S-box, three wrong 6-bit-subkeys will produ
e the same output as the
orre
t key. To avoid this problem, we 
an laun
h this algorithm with anotherrandom initial message, or simply another ∆. In fa
t, we only have to 
hangethe values of the bits of R0 and ∆ 
orresponding to the input of S1 (the bitsindex 32,1,. . . ,5). A
tually we 
an 
hoose di�erents pairs (X,X ′) su
h thatthe interse
tion of the key 
andidates asso
iated to ea
h of them is the 
orre
tkey.2. The se
ond one is due to a propagation phenomena. Suppose we have awrong 6-bit-subkey produ
ing a wrong S1 output. It means that there aremore than three bits of di�eren
e between (L1, R1) and (L′

1, R
′
1). Thesedi�eren
es 
ould be mapped to the same io-blo
k en
oding bije
tion, leadingto the �ipping of only two io-blo
k en
oding bije
tions at the output of M2.In this 
ase, we laun
h this algorithm with several values for R0. It leads toseveral lists of key 
andidates and the 
orre
t key belongs to the interse
tion.This way, wrong keys will be dis
arded.
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4 Atta
k on the �non standard DES�This se
tion is dedi
ated to an atta
k on the �non standard DES�. Remind thatthe �non standard DES� is a �naked DES� where the a�ne fun
tion M1 is repla
edby M1 ◦M0, where M0 is a mixing bije
tion (see Chow et al. [4℄). As mentionnedbefore, we assume that the inputs of M1◦M0 (respe
tively the outputs of M4◦M3)are not io-blo
k en
oded. Note that all the other fun
tions are io-blo
k en
odedusing 4 × 4 bije
tions (the same prin
iple applies for the obfus
ation proposedby Link and Neuman [6℄ where bije
tions are from 8 to 8 bits). Moreover, weassume that the T-Boxes follow the same ordering in the di�erents rounds. Inwhat follows, we will not 
onsider IP (inside M1) for the sake of 
larity. It doesnot 
hange anything to the argument.Denote by F : F64
2 → F96

2 the obfus
ation of M1 ◦M0. We summarize the situationin the �gures below. The fun
tion φ : F96
2 → F96

2 is a bit-permutation (48 positionsare determined by the regular DES operation and the others 48 bits are 
hosenrandomly).
M0

Message

M1

b0 b23. . . . . . . . . . .

F

Figure 1: F fun
tion
L0 R0

IP

E

L0 R0 R0

phi

M1

Figure 2: M1 fun
tionIn what follows, the term preimage will impli
itly refer to the preimage with respe
tto the linear bije
tion M0. Moreover, we say that a bit of a ve
tor is tou
hing anio-blo
k en
oding bije
tion if this bije
tion depends on this bit. Similarly we willsay that a ve
tor tou
hes an S-Box if non-zero bits tou
h it.5



Our atta
k on the �non standard DES� is based on the one on the �naked DES�.Our approa
h is based on a di�erential trun
ated atta
k. It 
onsists in 
omputingthe images of a random ve
tor X0 at di�erent levels in the obfus
ated DES. We
ompare these values (
alled initial-entries) to the 
orresponding images of X0⊕∆,where ∆ satis�es some 
onditions depending on the 
ontext. This approa
h allowsto provide gradually informations on the key and the matrix M−1
0 . Full key andthe matrix M−1

0 are known at the end. The way we store information on M−1
0
onsists in 
onsidering lists of 
andidates for preimages of unspe
i�ed 
anoni
alve
tors. Lists of 
andidates 
ontaining only one ve
tor are 
alled distinguishedlist. Note that these lists are a
tually ve
tor spa
es and 
an be shared by several
anoni
al ve
tors. In pra
ti
e, a list E will be shared by dimE 
anoni
al ve
tors(that are not ne
essary spe
i�ed). Our algorithm works sequentially and 
onsistsin spe
ifying these 
anoni
al ve
tors and in shortening the lists using some tri
ks.Our method 
an therefore be understood as a ��ltering pro
ess�. The di�erent�lters are des
ribed below.Se
tion 4.1 des
ribes a preliminary step almost independant of the stru
ture of theblo
k 
ipher. It 
onsists in �nding ve
tor spa
es asso
iated to a parti
ular io-blo
ken
oding bije
tion at the output of F . This step allows to get global informationon M−1

0 .Se
tion 4.2 des
ribes a set of �lters intending to re�ne information on M−1
0 . Thesesteps are highly related to the studied blo
k 
ipher. The �rst �lter, des
ribed inSe
tion 4.2.1, allows to distinguish lists that are asso
iated to 
anoni
al ve
torsbelonging either to right bits or left bits of the input of the �rst round. The se
ond�lter, des
ribed in Se
tion 4.2.2, extra
ts all the lists (marked as �right� in theprevious �lter) tou
hing a single S-box. The third �lter, des
ribed in Se
tion 4.2.3,gathers the lists (marked as �left� in the previous �lter) in sets asso
iated to theoutput of S-boxes. Se
tion 4.2.4 links T-Boxes (obfus
ation of the keyed S-boxes)to S-Boxes. This information allows the last �lter, presented in Se
tion 4.2.5, tospe
ify pre
isely the 1-to-1 link between the lists (marked as �left�) and the (left)
anoni
al ve
tors.Se
tion 4.3 explains how to extra
t the key and how to re
over the full invertiblematri
es M−1

0 and M4.4.1 Blo
 level analysis of M1 ◦ M0Denote by Kk the spa
e ({0}4k × F4
2 × {0}92−4k), and by Kk, the spa
e (F4k

2 ×
{0}4 × F92−4k

2 ). In what follows, the ve
tor spa
e spanned by a set of ve
tors Swill be denoted 〈S〉. Also, ei denotes the ith 
anoni
al ve
tor (the position of the�one is 
omputed from the left and start from one) of the ve
tor spa
e F64
2 . Thesets {ei ∈ F64

2 | i = 1 . . . 32} and {ei ∈ F64
2 | i = 33 . . . 64} will be denoted by SLand SR, respe
tively.Ideally, we are looking for 24 ve
tor spa
es su
h their ve
tors in�uen
e only oneio-blo
k en
oding bije
tion at the output of M1 ◦ M0. This would allow to a
tspe
i�
aly on one parti
ular io-blo
k en
oding bije
tion. Unfortunately, due to the6



dupli
ation of the bits in M1 (be
ause of the expansion E) this goal is impossibleto a
hieve. We will therefore try to approximate this situation and deal with thedrawba
ks afterwards. First we will have to give some notations, de�nitions andproperties.Let X a ve
tor in F96
2 , let k be an integer, k ∈ [0, 23], πk denotes the proje
tion

πk : (F4
2)

24 → F4
2 : X = (x1, . . . , x24) 7→ xk. Let bk be the (k + 1)th io-blo
ken
oding bije
tion at the output of M1 ◦ M0. The fun
tion F is written as

F (X) = (b0 ◦ π0 ◦ M1 ◦ M0(X), b1 ◦ π1 ◦ M1 ◦M0(X), . . . , b23 ◦ π23 ◦ M1 ◦M0(X))De�nition 4.1 Let k be an integer, k ∈ [0, 23]. We denote by Bk the ve
tor spa
e
{X ∈ F64

2 | πk ◦ M1(X) = 0}. In other words, it is the subspa
e of ve
tor Xsu
h that for any non-zero 
omponent ei of X, M1(ei) does not tou
h bk, i.e.
Bk = 〈ej | πk ◦ M1(ej) = 0〉.De�nition 4.2 Let k be an integer, k ∈ [0, 23]. We denote by Ek the subspa
e ofve
tor X su
h that for any non-zero 
omponent ei of X, M1(ei) tou
hes bk, i.e.
Ek = 〈ej | πk ◦ M1(ej) 6= 0〉.Remark: Note that F64

2 is the dire
t sum of Bk and Ek for any k; i.e. F64
2 = Bk⊕EkWe wil denote by Bk the subspa
e M−1

0 (Bk), and by Ek the subspa
e M−1
0 (Ek)Property 4.3 For all k integer, k ∈ [0, 23], Bk = {∆ ∈ F64

2 | D∆F (F64
2 ) ⊂ Kk},the probability that ∆ belongs to Bk, when ∆ is randomly 
hosen, is greater orequal to 1

24 = 1
16 , and 60 ≤ dim(Bk) < 64.Proof: Let E be the set {∆ ∈ F64

2 | D∆F (F64
2 ) ⊂ Kk}.

• Let ∆ be an element belonging to Bk. Let X be an element belonging toF64
2 .
D∆F (X) = (D∆(b0 ◦ π0 ◦ M1 ◦ M0(X)), . . . ,D∆(b23 ◦ π23 ◦ M1 ◦ M0(X)))A

ording to the de�nitions, if ∆ ∈ Bk then M0(∆) ∈ Bk or equivalently

πk ◦ M1 ◦ M0(∆) = 0. Let's 
ompute D∆(bk ◦ πk ◦ M1 ◦ M0(X)) = (1).
(1) = bk ◦ πk ◦ M1 ◦ M0(X) ⊕ bk ◦ πk ◦ M1 ◦ M0(X ⊕ ∆)

= bk ◦ πk ◦ M1 ◦ M0(X) ⊕ bk(πk ◦ M1 ◦ M0(X) ⊕ πk ◦ M1 ◦ M0(∆))
= bk ◦ πk ◦ M1 ◦ M0(X) ⊕ bk(πk ◦ M1 ◦ M0(X) ⊕ 0)
= bk ◦ πk ◦ M1 ◦ M0(X) ⊕ bk ◦ πk ◦ M1 ◦ M0(X) = 0This means that D∆F (X) belongs to Kk or equivalently ∆ belongs to E.We 
on
lude that Bk ⊂ E. 7



• Let ∆ be any element of E. A

ording to the de�nition of E, we have inparti
ular D∆(0) ∈ Kk. This means that
bk(0) ⊕ bk ◦ πk ◦ M1 ◦ M0(∆) = 0or equivalently

bk(0) = bk ◦ πk ◦ M1 ◦ M0(∆).We dedu
e that πk ◦M1 ◦M0(∆) = 0 be
ause bk is a bije
tion. A

ording tothe de�nitions, it means that M0(∆) ∈ Bk or equivalently ∆ belongs to Bk.Therefore E ⊂ Bk. We 
on
lude that E = Bk.
• Note that in fa
t Bk is the kernel of πk ◦M1 ◦M0. Sin
e rank(πk ◦M1 ◦M0)is less or equal to 4, and greater or equal to 1, we have simultaneously

60 ≤ dim(Bk) ≤ 63 and the probability that ∆ belongs to Bk when ∆ israndomly 
hosen, is equal to dim(Bk)
264 . The results follows.

�Combining De�nition 4.2 and Property 4.3, the ve
tor spa
e Ek 
an be des
ribedas the set of ve
tors ∆ su
h that for any ve
tor X0 ∈ F64
2 M0(X0)⊕M0(X0⊕∆) hasin total less than four non-zero 
omponents ei, all of them tou
hing the (k + 1)thio-blo
k en
oding bije
tion through M1. Due to the Property 4.3, it is easier tore
over a basis for Bk's, than for Ek's. That's why we will �rst re
over all the Bk's.Using Property 4.3, we only have to 
ompute D∆F (X0) for random ∆ ∈ F64

2 anddetermine to whi
h spa
e Kk it belongs. Using Bk's, we will re
over Ek's, or atleast, 24 ve
tor spa
es Êk 
ontaining Ek with minimal dimension.Let's now explain how to re
over Êk. First, let's remark that for all X ∈ F64
2 andfor all ∆ ∈ F64

2 , we have D∆F (X) ∈ Kk if and only if D∆πk ◦M1 ◦M0(X) ∈ Kk.Let's introdu
e the following lemma.Lemma 4.4 Let k be an integer belonging to [0, 23]. If Ej∩Ek = {0} for all integer
j distin
t from k belonging to [0, 23], then

Ek =
⋂

j 6=k

Bj.Proof: The proof is available in the appendix.
�Sin
e M0 is a bije
tion, this lemma means that if Ej ∩ Ek = {0} for all integer j ∈

[0, 23] di�erent from k, then Ek =
⋂

j 6=k

Bj . Nevertheless, due to the bit-dupli
ation,there exist indexes k and j su
h that Ej ∩ Ek 6= {0} (and then Ej ∩ Ek 6= {0}).Denote by Jk the set {j | Ej ∩ Ek = {0}}, by Êk the subspa
e ⋂
j∈Jk

Bj, and by Êkthe subspa
e ⋂
j∈Jk

Bj where k is an integer belonging to [0, 23].8



Property 4.5 For all integer k ∈ [0, 23], Ek ⊆ Êk.Proof: The proof is available in the appendix.
�Let's introdu
e a property that will allow us to give another 
hara
terization of

Jk.Property 4.6 For all integer i ∈ [0, 23] and for all integer j ∈ [0, 23]

dim(Ei ∩ Ej) = 64 + dim(Bi ∩ Bj) − dim(Bj) − dim(Bi)Proof: The proof is available in the appendix.
�A straight forward appli
ationof this property to the de�nition of Jk leads to

Jk = {j ∈ [0, 23] | 64 = dim(Bj)+dim(Bi)−dim(Bi ∩Bj)}. This 
hara
terizationwill be useful in order to 
ompute Êk. If dim(Êk) + dim(Bk) < 64 then Ek ( Êk,and we have found a ve
tor spa
e 
ontaining stri
tly the one we sear
he. Notethat when dim(Êk)+dim(Bk) = 64, Ek = Êk. This 
ase is parti
ularly interestingbe
ause it redu
es the 
omplexity of the full 
ryptanalysis.4.2 Bit level analysis of M
−1
0In the previous se
tion, we were looking for di�eren
es ∆ asso
iated to a spe
i�edio-blo
k en
oding bije
tion. It allowed us to get some information on M−1

0 . In thisse
tion, we re�ne our sear
h and this will allow us to get enough information on
M−1

0 in order to apply our method on the �naked DES� to �non standard DES�.Our algorithm works sequentially and 
onsists in a ��ltering pro
ess�. The di�erent�lters are des
ribed below.4.2.1 Sear
h for 
andidates for preimages of elements belonging to thesets SL and SRConsider ∆ be an element of F64
2 su
h that M0(∆) = ei and ei ∈ SL. The only non-zero bit of M1 ◦ M0(∆) tou
hes only one io-blo
k en
oding bije
tion. Therefore,

∆ belongs to a single Êk. Assume now that ∆ ∈ F64
2 su
h that M0(∆) = ei and

ei ∈ SR then M1 ◦ M0(∆) has exa
tly two non-zero bits that may tou
h the sameor two distin
ts io-blo
k en
oding bije
tion or equivalently ∆ belongs to one ortwo spa
es Êk. In what follows, we will 
all double an element ∆ ∈ F64
2 su
h that

M0(∆) ∈ SR and the two non-zero bits of M1 ◦ M0(∆) tou
h the same io-blo
ken
oding bije
tion. By 
onsidering interse
tions between the spa
es Êk, we 
andistinguish preimages of elements of SR from doubles or preimages of elements of
SL. 9



Note that the interse
tions between spa
es Êk taken pairwise provide a
tually moreinformation. Indeed, Êi ∩ Êj 
ontains preimages of unknown 
anoni
al ve
tors.In parti
ular, if dim(Êi ∩ Êj) = 1 then Êi ∩ Êj = 〈M−1
0 (ek)〉 for some k. Inthis 
ase, we already know the preimage of an unknown 
anoni
al ve
tor. When

dim(Êi ∩ Êj) > 1 we 
an still take advantage of this fa
t even if it requires someextra sear
hes.4.2.2 Re
overing middle bitsIn order to apply our atta
k presented in Se
tion 3, we need to know exa
tly thepreimage of 
anoni
al ve
tors tou
hing only a single S-Box of the �rst round (e.g.Right bits index 2,3,6,7,10,. . . ). In what follows, we will refer to su
h a 
anoni
alve
tor as a middle bit.Re
all that X0 is the initial-ve
tor de�ned in Se
tion 4. For ea
h di�eren
e ∆belonging to the lists marked as input of the studied T-box, we apply X0 ⊕ ∆ tothe obfus
ated DES by making an inje
tion fault. This means that we set the inputof this T-box to the initial-entry while we keep the a
tual value for the other T-Boxes. We evaluate the number of io-blo
k en
oding bije
tions at the output of the�rst round that di�ers from the 
orresponding initial-entries. If only one io-blo
ken
oding bije
tion (at the output of the �rst round) di�ers from the 
orrespondinginitial-entry, we dedu
e that ∆ 
ould be the preimage of a middle bit. Therefore,a list pointed by several 
anoni
al ve
tors 
an be divided into two shorter lists;one list is pointed by middle bits while the other is pointed by non-middle bits.Remarks: If a T-box is tou
hed by more than three middle bits or left bits, wededu
e that this T-box does not 
ontain any S-box. Note also that doubles 
anonly be preimages of middle bits. Finally, a T-box tou
hed by a double 
ontainsne
essarily an S-box.4.2.3 Re
overing left bitsIn order to apply our atta
k presented in Se
tion 3, we need to know whi
h groupof four 
anoni
al ve
tors are xored with the output of ea
h S-box of the �rstround. First, we determine the io-blo
k en
oding bije
tions that are tou
hed bythe outputs of the studied S-box and we denote by BS this set of bije
tions. Then,we store in an extra list L ea
h ∆ marked as left bits tou
hing exa
tly two bije
tionsof BS. This list 
ontains all the preimages asso
iated to 
anoni
al ve
tors thatare potentially xored with the output of the S-box. Finally, we �nd ∆l ∈ 〈L〉 su
hthat for any bije
tion bi ∈ BS we have D∆m⊕∆l
bi(X0) = 0, where ∆m belongs toa list marked as a middle bit of the studied S-box. This pro
ess is repeated withdi�erent ∆m or X0, until we �nd four linearly independent ∆l or equivalently theve
tor spa
e spanned by the preimages of the sear
hed 
anoni
al ve
tors. We then
ompute the interse
tion between this spa
e and all the lists. It allows us to splitsome of them in shorter lists (the interse
tion and the 
omplementary spa
e of theinterse
tion). It may lead to lists 
ontaining a single ve
tor (distinguished list).10



4.2.4 ChainingIn this se
tion, we will try to determine pre
isely the 
orrespondan
e between T-boxes and S-boxes. Due to the remark in Se
tion 4.2.2, we know whi
h are theT-boxes 
ontaining an S-box. The probability that a sele
ted T-box, denoted by
T1, 
ontains S1 is 1/8. We determine the two T-Boxes that are tou
hed by a
anoni
al ve
tor asso
iated to a list marked as �right bit�, �non-middle bit� andasso
iated to T1. Sele
ting one of these T-Boxes randomly, the probability that it
ontains S2 is 1/2. Out of the set of unsele
ted T-Boxes, we sele
t the one that istou
hed by a 
anoni
al ve
tor asso
iated to a list marked as �right bit�, �non-middlebit� and asso
iated to the previous sele
ted T-Box. We 
ontinue the pro
ess untilall T-Boxes have been sele
ted. Note that the probability to determine the right
orrespondan
e is 1/8 × 1/2 = 1/16.4.2.5 Bits positionsAt this stage, we have re
overed between others, 32 preimages 
orresponding tounspe
i�ed left 
anoni
al ve
tors. In order to determine the 
orrespondan
e, weuse the following observation on the DES:Out of the four Left bits that are xored with the output of a spe
i�ed S-Box,exa
tly two be
ome (in the se
ond round) middle bits.Now, we just have to apply ea
h of the preimages to the obfus
ated DES and to
he
k whether the image of this ve
tor in front of the se
ond round is a middle bit(
f. 4.2.2). Assuming that the T-Boxes follow the same ordering in the di�erentsrounds, preimages 
orresponding to a middle bit (resp. non-middle bit) 
an bedistinguished observing the indexes of the tou
hed T-Boxes.For example, for the �rst S-box, among the 4 identi�ed left 
anoni
al ve
torspreimages,

• the one that is the preimage of a middle bit of S6 (resp. S8) in the se
ondround is the preimage of e23 (resp. e31).
• the one that is not the preimage of a middle bit and is in the input of S2 and

S3 (resp. S4 and S5) of the se
ond round, is the preimage of e9 (resp. e17).4.3 The atta
kIn Se
tion 4.2, we have shown how to re
over all the preimage of the left 
anon-i
al ve
tors. In other words, we have re
overed half of M−1
0 (
olumns and theirpositions). Also, some of the lists marked as middle bits 
ontain only one ve
torbut their 
orresponding 
anoni
al ve
tor is however unknown. Therefore, some
olumns of M−1

0 are known up to their positions. Finally, the remaining listsmarked as middle bits are pointed by some 
anoni
al ve
tors (their number is thedimension of the ve
tor spa
e spanned by the list). In this 
ase, we sele
t linearly11



independant ve
tors in the list and we asso
iate ea
h of them to the 
anoni
alve
tor pointing to the list. Therefore, we are in the 
ontext of the atta
k of thenaked-DES modulo some adaptations. In parti
ular, we have to 
hoose X0 belong-ing to the ve
tor spa
e spanned by the known 
olumns of M−1
0 . The evaluationof the �rst round on X0 ⊕ ∆ may lead to some di�
ulties. Indeed, we have to
hoose ∆ belonging to the preimage of middle bits spa
e whi
h is not ne
essarilyin
luded in the ve
tor spa
e spanned by the known 
olumns of M−1

0 . It turns outthat we have to try all the 
andidates for this part of the matrix M−1
0 . For ea
hof these 
andidates, we mount an atta
k like we did on the �naked DES� whi
hprovide 48 key-bit 
andidates. Note that it may happen that wrong keys will bere
overed. More importantly, it may happen that no key exists for this 
andidatefor this part of the matrix M−1

0 . In other words, it means that we have to dis
ardthis 
andidate.In order to determine the remaining part of M−1
0 (
olumns asso
iated to non-middle bits), we apply a similar prin
iple that we used for the �naked DES�. Indeed,we know the key and we know that for the �naked DES� for all initial-message X0there always exists a di�eren
e ∆ with non-zero right 
omponent su
h that theright part of the di�erential (evaluated in X0) of the �rst round is zero. It meansthat in the 
ontext of the �non standard DES�, wrong 
andidates for M−1

0 
anbe dis
arded. Denote by K the spa
e spanned by the known 
olumns of the
andidate for M−1
0 and by U the unknown 
olumns of the 
andidate for M−1

0 .We have K ⊕ U = F64
2 . The 
andidate for M−1

0 
an be dis
arded if there exists
X0 ∈ K su
h that there does not exist ∆ with a non zero-
omponent in U su
hthat the right part of the di�erential (evaluated in X0) is zero.At this stage, we have a 48 key-bit 
andidate and a 
andidate for M−1

0 . We makean exhaustive sear
h in order to determine the 8 remaining bits. For ea
h of themwe try to solve a linear system in order to �nd the matrix M4. If there is nosolution for M4 we dedu
e that the 8 key-bit 
andidate is wrong. If all the 8 key-bit 
andidate are wrong, we dis
ard this parti
ular M−1
0 . Note that this methodalso works if M4 has a io-blo
k en
oding bije
tions at the output.Atta
k on Link and Neumann obfus
ation Our methods only use the out-puts of the �rst and se
ond round. In parti
ular, we never use the outputs of theT-boxes. Therefore, our two atta
ks (naked DES, and non-standard DES) 
an beapplied on the Link and Neumann [6℄ obfus
ation method. The only di�eren
e isthat we will deal with larger lists.5 ResultsThis atta
k was implemented with a C 
ode. At ea
h stage of the atta
k, the num-ber of 
andidates for the key, and for M−1

0 de
rease, leading to a unique 48 key-bit
andidate and a unique M−1
0 
andidate. We have tested our atta
k on thousands12



of obfus
ated implementations of DES (both �naked� and �non-standard� DES).The �gure 3 shows the time needed to 
omplete the atta
k. We 
an observe that95% of the atta
ks requires less than 50 se
ondes, and 75% less than 17 se
ondes.The mean time is about 17 se
ondes. However, the atta
ks were exe
uted on astandard PC, and the 
ode was not optimized, so we 
an easily divise the time bya fa
tor 4.
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Figure 3: Repartition of the atta
ks durations6 Con
lusionIn this paper, we have given new te
hniques of 
ryptanalysis for the 
urrent obfus-
ation methods of DES. These te
hniques rely on a theoreti
al analysis and havealso been implemented as a C program. We implemented our method with a C
ode and applied it su

essfully to more thousands of obfus
ated implementationsof DES (both �naked� and �non standard� DES). So far, all the studied instan
eslead to a unique 
andidate for the DES key and similarly for the M0 and M4 se
retlinear transformations. The key and the two linear transforms are obtain within17 se
onds on average.Referen
es[1℄ O. Billet. Cryptologie Multivariable Ph.D. thesis University of Versailles, De-
ember 2005. 13
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all that Bk = 〈ej | πk ◦ M1(ej) = 0〉 and Ek =
〈ej | πk ◦ M1(ej) 6= 0〉. Let j and k be two distin
t integers, then the following
onditions are equivalent.

• Ej ∩ Ek = {0}.
• πk ◦ M1(ei) = 0 or πj ◦ M1(ei) = 0 for all integer i ∈ [1, 64].
• πk ◦ M1(X) = 0 or πj ◦ M1(X) = 0.for all ve
tor X ∈ F64

2 .We 
on
lude that if X ∈ Ej and Ej ∩Ek = {0} then πk ◦M1(X) = 0 or equivalently
X ∈ Bk.Consider X 6= 0 belonging to ⋂

j 6=k

Bj . We have that πj ◦ M1(X) = 0 for all j 6= k.Note that M1 is inje
tive. Therefore M1(X) 6= 0 and πk ◦ M1(X) 6= 0. We
on
lude that all the bits of M1 ◦ (X) that tou
h bj (j 6= k) are zeros. Therefore,for any non-zero 
omponent ei of X, M1(ei) tou
hes bk or equivalently X ∈ Ek,and ⋂
j 6=k

Bj ⊂ Ek. 14



Let's use an argument by 
ontraposition. Consider ei /∈
⋂

j 6=k

Bj. Then, there exists
j 6= k, su
h that ei /∈ Bj, i.e. πj ◦ M1(ei) 6= 0 or equivalently ei ∈ Ej. Therefore,a

ording to the previous three equivalent 
onditions, ei /∈ Ek. We dedu
e that forall ei ∈ Ek we have ei ∈

⋂
j 6=k

Bj . It means that Ek = 〈ei | ei ∈ Ek〉 ⊂
⋂

j 6=k

Bj . We
on
lude Ek =
⋂

j 6=k

Bj .
�Proof of Property 4.5: Let ei be an element of Ek and j be an element of Jk.We have πk ◦ M1(ei) 6= 0 and Ej ∩ Ek = {0}. It implies that πj ◦ M1(ei) = 0, and

ei ∈ Bj. Therefor, ei ∈
⋂

j∈Jk

Bj, and 〈ei | ei ∈ Ek〉 ⊂ Êk.
�Proof of Property 4.6: We will �rst prove that (Bi ∩ Bj) ⊕ 〈Ei ∪ Ej〉 = F64

2 .Consider a 
anoni
al ve
tor ek /∈ Bi ∩ Bj. This is equivalent to πi ◦ M1(ek) 6= 0 or
πj ◦ M1(ek) 6= 0. In other words ek ∈ Ei or ek ∈ Ej , or equivalently ek ∈ 〈Ei ∪ Ej〉.This means that for all 
anoni
al ve
tor ek of F64

2 , we have either ek belongs to
Bi ∩ Bj or ek belongs to 〈Ei ∪ Ej〉.Assume that there exists a 
anoni
al ve
tor ek ∈ (Bi ∩ Bj) ∩ 〈Ei ∪ Ej〉. We have
πi ◦ M1(ek) = πj ◦ M1(ek) = 0, and either πi ◦ M1(ek) 6= 0 or πj ◦ M1(ek) 6= 0. Itleads to a 
ontradi
tion. Hen
e (Bi ∩Bj)∩ 〈Ei ∪Ej〉 
ontains no 
anoni
al ve
tors.Assume now that there exists an element ∆ ∈ (Bi ∩ Bj) ∩ 〈Ei ∪ Ej〉 having anon-zero 
omponent ek. The ve
tor ∆ belongs to (Bi ∩ Bj), hen
e ek belongsto (Bi ∩ Bj). Moreover ∆ belongs to 〈Ei ∪ Ej〉, hen
e ek belongs to 〈Ei ∪ Ej〉.Therefore ek belongs to (Bi ∩Bj)∩〈Ei ∪Ej〉 whi
h is impossible. We 
on
lude that
(Bi ∩ Bj) ∩ 〈Ei ∪ Ej〉 = {0}. Therefore (Bi ∩ Bj) ⊕ 〈Ei ∪ Ej〉 = F64

2 .We dedu
e that
64 = dim(〈Ei ∪ Ej〉) + dim(Bi ∩ Bj)

= dim(Ei + Ej) + dim(Bi ∩ Bj)
= dim(Ei) + dim(Ej) − dim(Ei ∩ Ej) + dim(Bi ∩ Bj)Moreover Ei ⊕ Bi = F64

2 = Ej ⊕ Bj. Hen
e 64 = 64 − dim(Bi) + 64 − dim(Bj) −
dim(Ei ∩ Ej) + dim(Bi ∩ Bj). The result follows.
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