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Abstract

In the current work we propose two efficient formulas for computing the 5-fold (5P ) of an
elliptic curve point P . One formula is for curves over finite fields of even characteristic and
the other is for curves over prime fields. Double base number systems (DBNS) have been
gainfully exploited to compute scalar multiplication efficiently in ECC. Using the proposed
point quintupling formulas one can use 2,5 and 3,5 (besides 3,5) as bases of the double base
number system. In the current work we propose a scalar multiplication algorithm, which
expands the scalar using three bases 2, 3 and 5 and computes the scalar multiplication very
efficiently. The proposed scheme is faster than all sequential scalar multiplication algorithms
reported in literature.

Keywords Elliptic Curve Cryptosystems, Scalar Multiplication, Quintupling, Efficient Curve
Arithmetic.

1 Introduction

Undoubtedly the papers [23, 27], which independently proposed the elliptic curve cryptography
(ECC), are among the most cited papers in cryptology. In ECC, elliptic curves over finite fields
are used to generate finite abelian groups to implement public key cryptographic primitives. The
advantage of using elliptic curve groups is that there is no known sub exponential algorithm to
solve elliptic curve discrete logarithm problem (ECDLP). This means that a desired security
level can be achieved with a much smaller key size in comparison to other public key schemes.
This, in turn, leads to efficient implementation and efficient use of transmission bandwidth.
Another advantage of ECC is the flexibility it offers in the choice of various security parameters
(like group element representation, group arithmetic, underlying field, its size and representation
etc) used in its implementation.

Probably, the single operation which has received highest attention among cryptographers is
the operation of scalar multiplication. If P is a point on an EC and d is an integer, the operation
computing the d-fold of P , namely, the point dP is called scalar multiplication. It is one of the
most researched operations in cryptography. Several methods have been reported in literature to
compute scalar multiplication efficiently and securely from prying eyes (side-channel attackers).
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The strategies used for enhancement of efficiency are: (1) efficient group arithmetic in the elliptic
curve group, (2) using a “nice” representation for the scalar (the sparser, the better), (3) use
of precomputation to precompute some points required later (4) using efficient algorithms like
sliding window method, comb methods or use of efficient addition chains, like Montgomery’s
ladder etc.

In the current work, we propose a new scalar multiplication algorithm, the essence of whose
efficiency comes from two new efficient point quintupling formulas for curves over arbitrary
prime and binary fields and use of a very sparse representation of the scalar using three bases.
For last couple of years, double base number system (DBNS) has been proposed to be used in
this context by several authors [7, 10, 2, 11, 14]. For general curves, a DBNS representation of
the scalar using 2 and 3 as bases has been proved quite efficient [10]. In search of sub linear
scalar multiplication algorithms, authors of [2] have used complex bases, 3 and τ for Koblitz
curves. However, their proof of sub linearity has some flaws. In [11], authors have proved that
a sub linear algorithm is indeed possible using three bases, namely τ , τ − 1 and τ2 + τ + 1.
Their software and hardware implementations using two bases τ and τ − 1 are fast enough to
give the feeling of a sub linear algorithm, but it lacks a theoretical proof. In [14], authors have
used the precomputations to obtain further speed-ups. In this work, we represent the scalar
using a generalization of DBNS representation, namely, multibase number representation. The
exponent scalar is represented as a sum/difference of product of powers of 2, 3 and 5.

Our Contributions: The main contribution of this work are two formulas for computing
5-fold (5P ) of an elliptic curve point P , one for curves over binary fields and the other for curves
over prime fields. These formulas can be used to compute the scalar multiplication using quinary
or DBNS expansion (using 2,5 or 3,5 as bases) of the scalar. We also generalize the algorithm
used to compute scalar multiplication in double base [10] to accommodate a third base, namely
5. Thus the proposed scalar multiplication algorithm represents a scalar as a sum of product
of powers of 2, 3 and 5 and computes the scalar multiplication efficiently. Experimental results
indicates it to be faster than all scalar multiplication algorithm known so far for general curves
over prime and binary fields.

2 Background

In this section, we briefly outline the materials used as a prerequisite for this work. Interested
readers can consult the cited works to check details.

2.1 ECC

In this section, we give a brief overview of elliptic curve cryptography. Details can be found
in [1, 3, 4, 18].
Definition An elliptic curve E over a field K is defined by an equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1)

where a1, a2, a3, a4, a6 ∈ K, and ∆ 6= 0, where ∆ is the discriminant of E. Applying admissible
changes of variables, the Weierstrass equation (1) can be simplified. In case of prime fields, Fp,
(i.e. the characteristic is not equal to 2 and 3), the equation (1) can be simplified to

y2 = x3 + ax+ b, (2)

where a, b ∈ K and ∆ = 4a3 + 27b2 6= 0.
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Over binary fields K = F2m , the non-supersingular curves are used in cryptology, whose
Weierstrass equation can be simplified to the form:

y2 + xy = x3 + ax2 + b, (3)

where a, b ∈ K and ∆ = b 6= 0.
The set E(K) of rational points on an elliptic curve E defined over a field K form an abelian

group, under the operation (denoted additively) defined by the secant and tangent law . The
special point O, called point at infinity plays the role of identity in this group.

The most natural representation for a point in an elliptic curve group is the affine represen-
tation, i.e., by an ordered pair of field elements satisfying the equation of the curve. However,
group operations in affine representation require field inversions, which are the most expensive
among field operations. To avoid inversions, several point representations in homogeneous (pro-
jective)coordinates have been proposed in the literature. The choice of a coordinate system for
point representation in the elliptic curve group largely depends upon the so-called [i]/[m]-ratio,
the ratio between the cost of a field inversion to that of a field multiplication. It is generally
assumed that for binary fields 3 ≤ [i]/[m] ≤ 10 and but it is significantly higher (30 or more) for
prime fields [16]. In this paper we consider affine (A) coordinates for curves defined over binary
fields and Jacobian (J ) coordinates, where the point P = (X : Y : Z) corresponds to the point
(X/Z2, Y/Z3) on the elliptic curve for curves defined over prime fields.

To denote cost of field operations, we will use [i], [s] and [m] to denote the cost of one
inversion, one squaring and one multiplication respectively. We shall always neglect the cost
of field additions. Also, over binary fields, we will neglect squarings as they are almost free
(if normal bases are used) or of negligible cost (linear operation) (see [19] for more details).
Moreover, over large prime fields, we will assume that [s] = 0.8[m].

For curves over binary fields, we will use several elliptic curve group operations along with
the quintupling operation presented in Section 3. These formulas have been listed in Table 2.1.
We have included only those algorithms which will be used in this work. One operation needs
a special mention: a repeated doubling formula (w-DBL) for these curves, originally proposed
by Guajardo and Paar in [17] and subsequently improved by Lopez and Dahab in [26], which
requires just one inversion to compute 2wP,w ≥ 1.

Table 1: Costs of various Elliptic Curve group operations. The costs for curves over binary fields
(E(F2m)) are in affine coordinates. Those for curves over prime fields (E(Fp)) are in Jacobian
coordinates.

Operation Output For E(F2m) For E(Fp)
proposed Cost proposed Cost

DBL(P ) 2P − 1[i] + 2[m] − 6[s] + 4[m]
ADD(P, Q) P +Q − 1[i] + 2[m] − 4[s] + 12[m]
mADD(P, Q) − − − [8] 3[s] + 8[m]
w-DBL(P ) 2wP [26] 1[i] + (4w − 2)[m] [20] 4w[m] + (4w + 2)[s]
DA(P,Q) 2P ±Q [6] 1[i] + 9[m] − -
TPL(P ) 3P [6] 1[i] + 7[m] [10] 10[m] + 6[s]
w-TPL 3wP − − [10] 10w[m] + (6w − 5)[s]
TA(P, Q) 3P ±Q [6] 2[i] + 9[m] - -

For curves over prime fields (char > 3), we will use Jacobian coordinates (J ). The following
formulas for group arithmetic are available to us: DBL, w-DBL, TPL, w-TPL and ADD, which
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Table 2: Number of multibase representation of small numbers using various bases.
n B = {2, 3} B = {2, 5} B = {2, 3, 5} B = {2, 3, 5, 7}
10 5 3 8 10
20 12 5 32 48
50 72 18 489 1266
100 402 55 8425 43777
150 1296 119 63446 586862
200 3027 223 316557 4827147
300 11820 569 4016749 142196718

compute 2P, 2wP, 3P, 3wP and P + Q respectively. Also, if the base point is given in affine
coordinates (Z = 1), then the cost of the so-called mixed addition (mADD) (J + A → J )
requires fewer computation than generic addition. Also,DBL and TPL are less expensive when
a = −3 in (2). In Table 2.1, we summarize the complexity of these different elliptic curve
primitives.

All ECDLP based cryptographic primitives, like encryption, decryption, signature generation
and verification, need the operation of scalar multiplication. Given an integer d and an elliptic
curve point P , it is the operation of computing dP . Efficiency of the scalar multiplication
depends largely upon efficiency of the algorithms used for group arithmetic and representation
of the scalar. In this work, we present two new algorithms for efficient group arithmetic and a
new representation of the scalar using three bases. This combination considerably accelerates
the computation of scalar multiplication in ECC.

2.2 Multibase Number Representation of an Integer

Let k be an integer and let B = {b1, · · · , bl} be a set of “small” integers. A representation of k
as a sum of powers of elements of B (Σm

j=1sjb
ej1

1 · · · b
ejl

l , where sj is sign) is called a multibase
representation of n using the base B. The integer m is the length of the representation. Double
base representation or double base number system (DBNS) [12, 13, 10] is a special case with
|B| = 2. In the current article we are particularly interested in multibase representations with
B = {2, 3, 5}.

The double base number system is highly redundant. Also,these representations are very
short in length. The multibase representations are even shorter and more redundant than the
DBNS. The number of representations of n grows very fast in the number of base elements. For
example, 100 has 402 DBNS representation (base 2 and 3), 8425 representations using the bases
2, 3 and 5 and has 43777 representations using the bases 2, 3, 5, and 7 (considering only positive
summands, i.e. sj = 1). The number of representation for some small integers n have been
provided in Table 2.2. The multibase representation are very sparse too. One can represent a
160 bit integer using around 23 terms using B = {2, 3} and around 15 terms using B = {2, 3, 5}
(see [12] for a result on length of DBNS representations).

In this article, unless otherwise stated, by a multibase representation of n we mean a repre-
sentation of the form

n = Σisi2bi3ti5qi

where si = ±1. We will refer to terms of the form 2a3b5c as 3-integers. A general multibase
representation, although very short, is not suitable for a scalar multiplication algorithm. So we
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are interested in a special representation with restricted exponents.
Definition: A multibase representation n = Σisi2bi3ti5qi using the bases B = {2, 3, 5} is called
a step multibase representation (SMBR) if the exponents {bi}, {ti} and {pi} form three separate
monotonic decreasing sequences.

Needless to mention, an integer n has several SMBR, the simplest one being the binary
representation. If n is represented in SMBR, then we can write it using Horner’s rule and an
addition chain (like Double-base chain in [10]) for scalar multiplication can easily be developed.

2.2.1 Conversion to SMBR

An integer can be converted to a multibase representation using Greedy Algorithm:

Greedy Algorithm
while(k >0)
let z be the largest number 2b3t5p ≤ k;
output (b, t, p)
replace k by k − z

endwhile

The greedy algorithm produces near canonical (shortest) representations. We can implement the
approximation step of the algorithm by using an three index array T [0..max2, 0..max3, 0..max5],
where the array element T [i, j, k] is 2i3j5k and max2 max3 max5 are maximum possible powers
of 2, 3, and 5 respectively. Choosing max2 = 160, max3 = 103 and max5 = 80, the greedy
algorithm returned multibase representations with 15 terms on the average. However these are
not SMBR. mGreedy Algorithm as described in Algorithm 1 converts an integer into SMBR.
mGreedy terminates because k gets reduced in each iteration. Also it outputs an SMBR for n and

Algorithm 1 mGreedy Algorithm for Conversion into SMBR
Input: k a positive integer; max2,max3,max5 > 0, the largest allowed binary, ternary and

quinary exponents and the array T [0..max2; 0..max3; 0..max5].
Output: The sequence (si, bi, ti, pi)i>0 such that k =

∑m
i=1 si 2

bi 3ti 5pi , with b1 ≥ . . . ≥ bm ≥
0, t1 ≥ . . . ≥ tm ≥ 0, p1 ≥ . . . ≥ pm ≥ 0.

1: s← 1
2: while k > 0 do
3: for(b=0 to max2, t=0 to max3, p=0 to max5)

z = Tab[b, t, p], the best approximation of k
4: print (s, b, t, p)
5: max2← b, max3← t, max5← p
6: if k < z then
7: s← −s
8: k ← |k − z|

it runs faster than Greedy. Because, it dynamically restricts the search space by restricting the
highest possible exponents in an iteration to the exponents obtained in the preceding iteration.
We executed the mGreedy Algorithm several times with different sets of initial values for max2,
max3 and max5. We found that in the best case (max2 = 160, max3 = 103, max5 = 70),
there were about 37 terms in the expansion on average. Smaller values for max2, max3, max5
makes the program run faster, but returns slightly longer representations.
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If in one of the first few approximations T [bi, ti, pi] for k obtained by mGreedy one or two
of bi, ti, pi are very small, then those indices becomes zero and the expansion of k degenerate
to double or even to the single base expansion. This considerably lengthens multibase repre-
sentations in the step format. This situation can be avoided by putting further restrictions on
the search for the best approximation in each iteration. Let c1, c2 and c3 be three fractions less
than 1. Let 2b3t5p be the best approximation for k in some iteration. Then in the next iteration
mGreedy replaces max2 by b, max3 by t and max5 by p and searches for the best approximation
for k in T [0..max2; 0..max3; 0..max5] again. Instead of searching the array T [ ], from [0, 0, 0] to
[max2,max3,max5] we now restrict the lower limit to [c1×max2, c2×max3, c3×max5]. This
does not allow the any exponent to become very small at once and prevents the representation
from being degenerate into a single or double base format. Also, the new algorithm runs faster as
the search space in each iteration is smaller than the unrestricted version. With this restriction,
the mGreedy (with max2 = 160, max3 = 103, max5 = 70, c1 = .4.c2 = .3; c3 = .25) returns
an SMBR of average length less than 30 terms for integers of 160 bits (almost 20 % shorter).
Smaller values for max2, max3, max5, (e.g. 80, 40, 25 respectively) runs the the program quite
faster, but returns longer expansions (30-32 terms).

We investigated on two more types of representations using three bases 2, 3 and 5: (1) SMBR
with small anomalies and (2) SMBR with non-trivial digits.

SMBR with small anomalies: In this type of representation, the powers of 2, 3 and 5 form
monotonic decreasing sequences except for some small deviations in some terms. Let w1, w2 and
w3 be the small permissible anomalies for the binary, ternary and quinary exponents respectively.
Then a multibase representation Σisi2bi3ti5pi is a step representation with (w1, w2, w3)-anomalies
if {bi}, {ti}, and {pi} form monotonic decreasing sequences with a few exceptional terms for
which |bi − bi−1| ≤ w1 or |ti − ti−1| ≤ w2 , |pi − pi−1| ≤ w3 hold good. Such representations can
be used for scalar multiplication if the points 2a3b5c for 0 ≤ a ≤ w1, 0 ≤ b ≤ w2, 0 ≤ c ≤ w3 can
be precomputed and stored (see [14]). By choosing wi’s to be as small as 2, it was seen that
the length of a MBNS representation can be made quite shorter (24-25 terms).

SMBR with non-trivial digits So far we have considered representations Σisi2bi3ti5pi ,
where si ∈ {1, 0,−1}. Let D = {7, 11, 13, 17, 19, 23, 29, 31, · · ·} be set of integers relatively prime
to 2, 3, and 5. Let Dj be the set of first j integers from D. Let us consider the MBNS
representation of the type Σisi2bi3ti5pi where ±si ∈ Dj . Such representations are also very
short and can be used for scalar multiplication if the points sP for s ∈ Dj can be precomputed
(see [14]).

3 Efficient Formulas to Compute 5P

In this section we present two new quintupling formulas for elliptic curve points, one for curves
over prime fields (char> 3) and the other for curves over fields of characteristic 2. The detailed
derivation of these formulas have been presented in Appendix A

3.1 Quintupling in Curves over Prime Fields

Let P (X : Y : Z) be a point on the elliptic curve (2) over a prime field. Let 5P have coordinates
(X5 : Y5 : Z5). Then X5, Y5 and Z5 can be computed as follows:

X5 = XV 2 − 2Y UW, (4)
Y5 = Y (E3(4V − L2)− 64TL3),
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Table 3: Cost of the quintupling formulas for various types of elliptic curves

Curve Condition Cost
y2 = x3 + ax+ b general 9[s] + 14[m]

over a = −3 7[s] + 14[m]
K = Fp after a DBL/TPL/QPL 8[s] + 17[m]

y2 = x3 + ax2 + b
over K = F2m general 1[1] + 5[s] + 13[m]

Z5 = ZV,

where, T = 8Y 4 (2[s]), M = 3X2+aZ4 (3[s]+1[m]), E = 12XY 2−M2 (1[s]+1[m]), L = ME−
T (1[m]), U = 4Y L (1[m]), V = 4TL−E3 (1[s] + 2[m]), N = V − 4L2 (1[s]), W = EN (1[m]).

The quantities in the braces are the cost of computing the corresponding subexpressions.
Besides, computing X5, Y5 and Z5 from these subexpressions require 1[s]+3[m], 3[m] and 1[m].
Hence, the cost of computing 5P by these formulas is 9[s] + 14[m].

This is the first explicit formula in literature to compute the multiplication-by-5 mapping
for generic curves over arbitrary finite fields of odd characteristics. Hence we have no other
formula to compare efficiency. Let us check the its efficiency vis-a-vis methods for computing
5P . We can compute 5P by 2(2P ) +P or by 3P + 2P . We can compute 5P by 2(2P ) +P with
11[s] + 14[m] ≈ 22.8[m] (if P is in affine) or 14[s] + 20[m] ≈ 31.2[m] (if P is in Jacobian). Using
the formula 2P+3P , we can compute 5P with 22[m]+12[s] ≈ 31.6[m] or 26[m]+16[s] ≈ 38.8[m]
according as P is in affine or in Jacobian coordinates.

We will refer to the formula computing 5P as QPL. If a = −3, then M = 3X2 + aZ4 can be
computed as 3(X+Z2)(X−Z2) with a cost of 1[s]+1[m] saving 2[s]. Hence like DBL and TPL,
QPL is also cheaper over special curves with a = −3. Also, just as in case of (w-)DBL and (w′-
)TPL, an algorithm to compute 5uP can be designed which will be cheaper than u invocation
of QPL. That is because for every invocation of QPL, one has to compute Zi = V Zi−1 and then
compute aZ4

i = aV 4Z4
i−1. This step should normally take 1[m] + 2[s]. But as aZ4

i−1 and V 2 are
already computed in the last QPL operation, by saving these subexpressions, one can compute
aZ4

i = aV 4Z4
i−1 by just one [m] and one [s], saving one [s]. Also, it is interesting to note that

this gain can also be obtained from a previous DBL or TPL. We have summarised the cost of
QPL in Table 3.1

3.2 Quintupling in Curves over Binary Fields

As the [i]/[m] ratio in binary fields is known be quite lesser in binary fields, affine elliptic curve
group arithmetic is preferable. Hence we propose the new quintupling formula for such curves
in affine coordinates. Let P (x, y) be a point on an elliptic curve given by Equation (3) over a
binary field. Let the 5-fold of P be given by, 5P = (x5, y5). x5 and y5 can be computed as
follow:

Let us define the following polynomials: A = x4+x3+b, B = x2(A+x3), C = A3+Bx3, D =
A2(A2 +B) Then,

x5 = x+
xBD

C2
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y5 = y + x5 +
xAD2

C3
+ (x2 + y)

BD

C3
(5)

Given P (x, y), let us check how much of computation is required to compute 5P using the
above formula. Below we list the subexpressions (and costs) required to compute x5 and y5. 1.
A (2[s] + 1[m]), 2. B (1[m]), 3. C (1[s] + 2[m]), 4. D (1[m]), 5. 1/C (1[i]), 6. 1/C2, 1[s] 7.
x5 (1[s] + 2[m]), 8. 1/C3 (1[m]) 9. xAD2+(x2+y)(B+D)

ψ3
5

(4[m]) 10. Total: 1[i] + 5[s] + 13[m].
Let us consider the efficiency of the proposed formula. Again, we do not have any previous

formula to compare with. We can compute 5P as 2(2P )+P . Using the generic ADD and DBL,
it will cost 3 inversions. We can reduce one inversion by using composite formula double-and-add
(DA) (see [6]). Using DA, computing 5P costs 2[i] + 11[m]. If we compute 2P first and apply
triple-and-add (TA)(see [6]) to P and 2P , (3 × P + 2P ), then the cost would again involve 3
inversions, as TA requires 2 inversions. Using the repeated doubling formula proposed in [26]
and ADD, it costs 2[i] + 8[m]. So, the proposed formula is better than all these methods if
[i]/[m] ratio is 5 or more.

4 The Scalar Multiplication Algorithms

The scalar multiplication algorithms used in this work are generalizations to 3 bases of the
algorithms used in [10]. Without going into routine details, we add that the computation can
be immunized against side-channel attacks using standard techniques proposed in the literature.
Algorithm 2 for curves over binary fields uses the group operations like ADD, DBL, w-DBL, DA
(double-and-add), TA (triple-and-add) for efficient computation.

Algorithms 2 and 3 describe the proposed scalar multiplication algorithms to be used in
conjunction with multibase representation for curves over binary and prime fields respectively.
Note that Algorithm 2 requires b1 doublings, t1 triplings and p1 quintuplings. The number of
additions depends upon the expansion of k. It is precisely the number of terms in the expansion
in which both the binary and ternary exponents are zero. Otherwise, the addition is always
carried out by invoking a composite operation like double-and-add (DA) or triple-and-add(TA).
Thus we need a very few number of additions for the computations.

Algorithm 3 uses the following algorithms for efficient point arithmetic: DBL, w-DBL, TPL,
w-TPL, QPL, w-QPL and mADD (mixed addition, A + J → J ). If b1, t1, p1 are the highest
powers of 2, 3 and 5 occurring in the expansion of the scalar, then the algorithm needs b1
doublings, t1 triplings and p1 quintuplings. However, most of these operations are done through
aggregated algorithms (w-DBL, w-TPL and w-QPL), which increases the over all efficiency of
Algorithm 3. If there are n terms in the SMBR of the scalar, then the number of mixed additions
required is n− 1, which for all the types of representations of the scalar exponent considered in
this work, is less than 30.

5 Scalar Multiplication Results

So far we have not been able to give a theoretical analysis of efficiency of the scalar multiplication
algorithms considered in this work. We will present their average performance seen in applying
them to huge number (103 to 106) randomly generated scalars.

We randomly generated 1 million 160-bit integers and stored in a file. All the experiments
were conducted by retrieving integers from this file, so that the same integers were used for all
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Algorithm 2 Scalar Multiplication for Curves over Fields of Even Characteristic.
Input: An integer k =

∑m
i=1 si 2

bi3ti5pi , with si ∈ {−1, 1}, and such that b1 ≥ b2 ≥ . . . ≥
bm ≥ 0, t1 ≥ t2 ≥ . . . ≥ tm ≥ 0 and p1 ≥ p2 ≥ . . . ≥ pm ≥ 0 and a point P ∈ E(Fq)

Output: the point kP ∈ E(Fq)
1: Z ← s1P
2: for i = 1, . . . ,m− 1 do
3: u← bi − bi+1

4: v ← ti − ti+1

5: x← pi − pi+1

6: if u = 0 then
7: Z ← (5xZ)
8: if v 6= 0 then
9: Z ← 3(3v−1Z) + si+1P //(TA used here)

10: else
11: Z ← Z + si+1P
12: else
13: Z ← 5xZ
14: Z ← 3vZ
15: Z ← 2u−1Z
16: Z ← 2Z + si+1P //(DA used here)
17: Return Z

Algorithm 3 Scalar Multiplication Algorithm for curves of Odd Characteristics
Input: An integer k =

∑m
i=1 si 2

bi3ti , with si ∈ {−1, 1}, and such that b1 ≥ b2 ≥ . . . ≥ bm ≥ 0,
and t1 ≥ t2 ≥ . . . ≥ tm ≥ 0; and a point P ∈ E(K)

Output: the point kP ∈ E(K)
1: Z ← s1P
2: for i = 1, . . . ,m− 1 do
3: u← bi − bi+1

4: v ← ti − ti+1

5: x← pi − pi+1

6: Z ← u-DBL(Z)
7: Z ← v-TPL(Z)
8: Z ← x-QPL(Z)
9: Z ← Z + si+1P

10: Return Z
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the experiments. This is to minimize bias in estimates coming in due consideration of different
set of integers for different scenario. In this section, we will present the results we obtained in
our experiments.

We present the experimental results in the Tables 4, 5, 6 below. We use the following
terminology in these tables.

• max2, max3, max5: maximum powers for 2, 3 and 5 allowed to occur in SMBR expansions.

• mlen: stands for minimum of lengths of expansion seen for all the integers expanded into
SMBR.

• Mlen: maximum length observed.

• alen: observed average length.

• cost: average cost of scalar multiplication for all the randomly generated integers.

5.1 Scalar Multiplication without Precomputation

Let us first consider the cost of scalar multiplication using 3 bases without any precomputation.
We conducted several experiments using various values of max2, max3 and max5 and also
various values of c1, c2 and c3. In Table 4, we have presented some of the results. Observe
that for both kinds of curves, the best results were obtained when the highest possible powers
of max2, max3 and max5, i.e. 160, 103 and 70, were chosen. However for these values the
conversion from binary to MBNS is the slowest as the search space for the greedy algorithm is
very big. Also, it was found that the maximum powers of 2, 3 and 5 observed in these expansions
were much smaller. So, we choose smaller values for max2, max3 and max5 and observed that
in these cases not only the conversion is very fast, but also the results are also quite competitive.

Table 4: Costs of elliptic curves Scalar Multiplication for 160-bit multipliers. The values of
c1, c2, c3 have been chosen as 0.4, 0.3 and 0.25 respectively.

max2 max3 max5 Mlen mlen alen Fp-Cost F2m-Cost
160 103 70 46 21 30.35 1715.13[m] 96.67[i]+ 693.7[m]
100 90 40 54 19 31.86 1745.65[m] 101.6[i]+731.5[m]
100 90 20 55 19 33.12 1727.25[m] 108.8[i]+704.2[m]
100 90 10 54 19 31.86 1745.65[m] 112.6[i]+691.1[m]
100 90 0 64 25 40.24 1758.75[m] 113.0[i]+677.2[m]

5.2 Scalar Multiplication with Precomputations

We conducted a huge number of experiments for scalar multiplication in 3-base expansion using
precomputations. As mentioned earlier, we considered two kinds of precomputations: (1) SMBR
with small anomalies and (2) MBNS with non-trivial digits. In former case, we choose w1, w2, w3

between 0 and 2, requiring storage of 1 to 26 precomputed points. The MBSR representations
obtained in this case are very sparse (24.4 terms with a storage of 7 points). Some typical results
have been presented in Table 5.
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Also, we conducted experiments using the other special SMBR, i.e. SMBR with non-trivial
larger coefficients. We allowed the SMBR to used various digit sets, starting from D1 = {7} to
D8 = {7, 11, 13, 17, 19, 23, 29, 31}. Use of Di requires storage of i points. It was found that the
representations are even sparser than SMBR with anomalies. For example, with storage of 7
points, the multibase representation of a 160 bit integer could be 19.87 terms on average. Also,
the computation scalar multiplication is quite cheaper than previous cases. Some typical results
have been presented in Table 6.

Table 5: Costs of elliptic curves Scalar Multiplication for 160-bit multipliers. The values of
c1, c2, c3 have been chosen as 0.4, 0.3 and 0.25 respectively.

max2 max3 max5 w1 w2 w3 #Points alen Fp-Cost F2m-Cost
84 36 16 1 0 0 1 31.01 1707.8[m] 97.7[i]+676.5[m]
84 36 16 0 0 1 1 29.4 1662.8[m] 90.7[i]+681.3[m]
84 36 16 1 0 1 3 28.2 1647.1[m] 88.8[i]+681.8[m]
84 36 16 1 1 0 3 28.5 1651.5[m] 87.5[i]+681.3[m]
84 36 16 0 1 1 3 25.9 1619.6[m] 85.5[i]+ 680.3[m]
84 36 16 1 1 1 7 24.4 1604.37[m] 83.8[i]+ 680.4[m]

Table 6: Costs scalar multiplication for 160-bit multipliers represented in three bases with larger
digits. The values of c1, c2, c3 have been chosen as 0.3, 0.3 and 0.25 respectively. Column # Points
indicates the number of points to be precomputed and stored

max2 max3 max5 #Points alen Fp-Cost F2m-Cost
84 36 16 1 25.67 1612.23[m] 87.3[i]+ 672.07[m]
84 36 16 2 24.5 1593.81[m] 83.18[i]+ 666.26[m]
84 36 16 3 22.86 1569.99[m] 81.17[i]+ 662.75[m]
84 36 16 4 21.76 1554.5[m] 79.25[i]+ 661.34[m]
84 36 16 5 21.14 1545.68[m] 77.98[i]+ 660.74[m]
84 36 16 6 20.32 1535.93[m] 76.8[i]+ 660.6[m]
84 36 16 7 19.87 1531.57[m] 76.16[i]+ 659.12[m]

5.3 Comparison

Let us compare the performance of the proposed scalar multiplication scheme to some of the
schemes existing in literature. Some of the most recent scalar multiplication algorithms for
general curves have been proposed in [6, 10, 14, 15, 21].

In [21], the authors have proposed a efficient scalar multiplication algorithm based on Mont-
gomery’s ladder. Their scheme does not require precomputation and is secure against side-
channel attacks. In [6], several formulas for efficient arithmetic has been proposed and a novel
representation of the scalar in powers of 2 and 3 has been proposed, which is used for scalar mul-
tiplication. We refer to this scheme as binary/ternary scheme. In [10], the authors have proposed
two schemes based on double base number systems and have obtained very good results. [14]
has extended that work by considering use of DBNS with precomputations. The authors have
computed efficiency of their scheme and compared with several schemes with scalars of 200, 300,
... bits. In [15] the authors have proposed a new point tripling formula based on decomposi-
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tion to 2 isogenies. They have pointed out efficiency of scalar multiplication schemes. We will
compare our schemes with the methods proposed in these works.

Although our scheme in the current form is not secure against side-channel attacks [24, 25],
side-channel resistance can be attained by some routine work. For example, attacks like sim-
ple power analysis attacks can be resisted by using some schemes like side-channel atomicity
proposed in [5] which has almost no performance penalty. Also, attacks similar to differen-
tial power attacks can be resisted using curve randomization [22] or point randomization [9]
countermeasures, which have a fixed cost (less than 50[m]).

Let us first consider the scalar multiplication schemes for curves over prime fields without
precomputation. Let the size of the elliptic curve group be of 2160-order. For such scenario, the
scheme proposed in [21] requires 2638[m] to compute the scalar multiplication. The best scheme
proposed in [10] requires 1863[m] using double base number system. Of the several schemes
proposed in [15] using the efficient tripling formula proposed in same work, the best scheme for
this scenario is sextuple and add method. This method requires 1957[m] for the special curves
used by them and almost the same amount of computation for arbitrary curves. Our best scheme
(max2 = 160, max3 = 103, max5 = 70) (see Table 4), takes only 1715.13[m] on average.

If the system admits precomputation and storage of a few point, then we can resort to the
two methods using SMBR with small anomalies or SMBR with non-trivial digit sets. In [15], the
best performance reported for this scenario is 1623[m] with 8 points of storage with 3−NAF3

method. As can be checked from Tables 5 and 6 the methods proposed in this work invariably
perform better even with lesser storage. The best method proposed in [14] for 200 bit scalars is
the DBChain method with 8 non-trivial coefficients (S8-DBChain). To compare our scheme with
their method, we experimented with 200 bit scalars. With max2 = 105, max3 = 60, max5 = 35
and c1 = 0.4, c2 = 0.3, c3 = 0.25, length of SMBR was seen to be 23.58. While length of the
proposed DBNS representation was reported to be 25.9, Also, for 200 bit scalars, SMBR based
scalar multiplication took 1952.12[m] computation on average in comparison to 2019[m] reported
in [14]. We did not proceed to test with larger scalars of more than 200 bits. But we have all
indications to believe that SMBR will beat DBNS.

For curves over binary fields, the proposed schemes perform even better. We summarize
the comparisons in Table 7. In the table, binary and NAF refer to the traditional Binary
and NAF based double-and-add algorithms. The DB-chain method refers to the one proposed
in [10] and binary/ternary refer to a method proposed in [6]. The last column of the table

Table 7: Average number of field operations using the binary, NAF, ternary/binary and DB-
chain approaches for n = 160 bits, and [i]/[m] = 8

Algorithm [i]/[m] = 8
[i] [m] ≈ [m]

binary 160 881 2161
NAF 160 692 1972
ternary/binary 129 787 1819
DB-chain 114 789 1701
This work 97 693 1469

is approximate cost obtained by the number of inversion to the [i]/[m]-ratio and adding the
number of multiplication to it. The method proposed in this work is more than 14% more
efficient than the best of previously known schemes. The scheme can be further improved using
precomputations (see Tables 4 and 5).
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6 Conclusion

In this work we have presented two efficient formulas for point quintupling in ECC over binary
and prime fields. Also, we have proposed two scalar multiplication algorithms to take advantage
of the proposed formulas. These algorithms use a multibase representation of the scalar using 2,
3 and 5 as bases. Also, we have dealt with the situation where the system admits precomputation
and storage of some precomputed points. Our empirical results indicate that all the proposed
schemes, with or without precomputation, outperform the corresponding best previously known
scalar multiplication schemes.
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A Proof of Quintupling Formulas

We prove the correctness of the proposed quintupling formulas in this section.

A.1 Proof of quintupling formula for curves over prime fields

The division polynomials ψn, 0 ≤ n ≤ 4, for elliptic curves over prime fields 2 are given by,

ψ0 = 0
ψ1 = 1
ψ2 = 2y
ψ3 = 3x4 + 6ax2 + 12bx− a2 (6)
ψ4 = 4y(x6 + 5ax64 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3)

For n ≥ 5, the division polynomials are given by the recursions,

ψ2n = ψn(ψn+2ψ
2
n−1 − ψn−2ψ

2
n+1)

ψ2n+1 = ψn+2ψ
3
n − ψ3

n+1ψn−1 (7)

Using the recursion formulas given in Eq 7, we get,

ψ5 = ψ4ψ
3
2 − psi33ψ1

ψ6 = ψ3(ψ5ψ
2
2 − ψ1ψ

2
4)

ψ7 = ψ5ψ
3
3 − ψ3

4ψ2 (8)

Let P (x, y) be a point on the elliptic curve. We define the following polynomials. Let t = 8y4,
m = 3x2 + a, e = 12xy2 −m2, l = me− t, u = 4yl, v = tl− e3, n = v − l2 and w = en. We
see that,

e = 12xy2 −m2

= 12x(x3 + ax+ b)− (3x2 + a)2

= 3x4 + 6ax2 + 12bx− a2

= ψ3 (9)

Again, we have,

l = me− t

= (3x2 + a)(3x4 + 6ax2 + 12bx− a2)− 8y4

= (3x2 + a)(3x4 + 6ax2 + 12bx− a2)− 8(x3 + ax+ b)2

= x6 + 5ax64 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3 (10)
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Table 8: Cost of computing 5P for curves over fields of odd characteristic.

subexpression cost subexpression cost
t = 8y4 2[s] m = 3x2 + a [s]
e = 12xy2 −m2 [m] + [s] l = me− t [m]
u = 4yl [m] v = tl− e3 2[m] + [s]
n = v − 4l2 [s] w = en [m]
1/v [i] 1/v2, 1/v3 [s] + [m]
x5 = x− (2y).u.w.1/v2 3[m]
y5 = y.{e3.(4v − n2)− 64(tl.l2)}.1/v3 4[m]
TOTAL 1[i] + 7[m] + 14[s]

Comparing this with the expression for ψ4, we get,

ψ4 = 4yl
= u

Also, it is simple to check that

ψ5 = v

ψ6 = 2yen2

ψ7 = ve3 − 16tl3 (11)

We know that for any positive integer k, kP is given by,

kP = (x− ψn−1ψn+1

ψ2
n

,
ψn+2ψ

2
n−1 − ψn−2ψ

2
n+1

4yψ3
n

)

Hence, if 5P = (x5, y5) then, substituting the values above we get,

x5 = x− 2yuw
v2

y5 = y
e3(4v − n2)− 64tl3

v3
(12)

Thus we obtain a formula for quintupling a point on the curve (2) in affine coordinates. In
Table A.1 it is shown that cost of this formula is 1[i] + 7[s] + 14[m]. Since inversions are too
costly in a prime field, the affine formula does not look very attractive. Suppose, the point P (x, y)
is given in affine, but we compute the result in Jacobian coordinates, say 5P = (X5 : Y5 : Z5),
then its is simple to check that,

X5 = xv2 − 2yuw

Y5 = y(e3(4v − n2)− 64tl3)
Z5 = v (13)
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The cost of this computation (to compute 5P in Jacobian from P in affine) is only 6[s]+12[m] ≈
16.8[m]. If we compute 5P by 2(2P ) + P , then the cost will be 13[s] + 14[m] ≈ 24.4[m]. The
quintupling formula requires almost 8[m] less. Instead if one computes 5P as 2P + 3P , then
the cost will be: 2[m] + 4[s] for 2P , 9[m] + 4[s] for 3P and 12[m] + 4[s] for ‘+’, a total cost of
23[m] + 12[s] ≈ 32.6[m]. The quintuple formula again ”wins big”.

If the point P is given in Jacobian coordinates, then the same approach can be used to
compute 5 fold of P . If P = (X : Y : Z) and 5P = (X5 : Y5 : Z5), then

X5 = XV 2 − 2Y UW
Y5 = Y (E3(4V −N2)− 64TL3)
Z5 = ZV (14)

where, T = 8Y 4, M = 3X2 + aZ4, E = 12XY 2 −M2, L = ME − T , U = 4Y L, V = 4TL−E3,
N = V − 4L2, W = EN . Also, it can be checked that the cost of computation is almost the
same except for M = 3X2 +aZ4 and Z5 = ZV , which takes 2[s]+ 2[m] extra. Hence the cost of
computation for QPLJ is 14[m]+8[s]. It is routine to check that this is cheaper than computing
5P as 2(2P ) + P or 2P + 3P in Jacobian arithmetic.

A.2 Quintupling in Curves over Binary Fields

The same technique as above can be applied to curves over binary fields to obtain efficient
quintupling formula for elliptic curves over fields of even characteristic. For nonsupersingular
curves over fields of characteristic 2, the division polynomials are given by

ψ1 = 1
ψ2 = x

ψ3 = x4 + x3 + a6

ψ4 = x6 + a6x
2 (15)

= x2(x4 + a6) (16)

The higher degree division polynomials can be obtained by applying the the following recurrence
relations:

ψ2n+1 = ψn+2ψ
3
n − ψn−1ψ

3
n+1

ψ2ψ2n = ψn+2ψnψ
3
n−1 − ψn−2ψnψ

2
n+1 (17)

Using first of these recurrences with n = 2 and second one with n = 3, we get,

ψ5 = ψ4ψ
3
2 − ψ1ψ

3
3

= ψ4x
3 − ψ3

3

ψ6 = (ψ5ψ3ψ
2
2 − ψ1ψ3ψ

2
4)/ψ2 (18)

= (ψ5ψ3x
2 − ψ3ψ

2
4)/x
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Using the above division polynomials, we can derive the expressions for 5-fold of a point P (x, y)
on the curve using the following relation with n = 5:

[n]P = (x+
ψn+1ψn−1

ψ2
n

, y + ψ2on+
ψ2
n+1ψn−2

ψ2ψ3
n

+ h4
ψn+1ψn−1

ψ2ψ2
n

)

where,

ψ2on = x+
ψn+1ψn−1

ψ2
n

and
h4 = (x2 + y)

If the point 5P has the coordinates (x5, y5), then it is an simple exercise to see that

x5 = x+
ψ6ψ4

ψ2
5

y5 = y + x5 +
ψ6ψ

′
6ψ3

ψ3
5

+ (x2 + y)(
ψ′6ψ4

ψ3
5

) (19)

If we define polynomials as

A = x4 + x3 + b

B = x2(A+ x3)
C = A3 +Bx3 (20)
D = A2(A2 +B)

then as can be checked, one has, ψ3 = A, ψ4 = B, ψ5 = C and ψ6 = xD. Substituting these
values in the Equations (19), we get the quintupling formula (5).
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