
Direct Reduction of String (1, 2)-OT to Rabin’s OT

Kaoru Kurosawa

Department of Computer and Information Sciences, Ibaraki University,
4-12-1 Nakanarusawa, Hitachi, Ibaraki, 316-8511, Japan.

Email: kurosawa@mx.ibaraki.ac.jp

Takeshi Koshiba

Division of Mathematics, Electronics and Informatics,
Graduate School of Science and Engineering, Saitama University,

255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan.
Email: koshiba@tcs.ics.saitama-u.ac.jp

Abstract

It is known that string (1, 2)-OT and Rabin’s OT are equivalent. However, two steps are
required to construct a string (1, 2)-OT from Rabin’s OT. The first step is a construction
of a bit (1, 2)-OT from Rabin’s OT, and the second step is a construction of a string (1, 2)-
OT from the bit (1, 2)-OT. No direct reduction is known. In this paper, we show a direct
reduction of string (1, 2)-OT to Rabin’s OT by using a deterministic randomness extractor.
Our reduction is much more efficient than the previous two-step reduction.
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1 Introduction

Suppose that Alice (database company) has two secret strings, s0 and s1. Bob (user) wants to
buy one sc of them. But he wants to keep his privacy. That is, it must be that Alice does not
know which one Bob bought. On the other hand, Alice wants to keep her privacy. That is, it
must be that Bob does not know s1−c. A two-party protocol which realizes the above goal is
called a string (1, 2)-OT. The protocol is called a bit (1, 2)-OT if s0 and s1 are single bits.

On the other hand, suppose that Alice wants to send a mail to Bob. However, the mail
system is so bad that Bob receives the mail with probability 1/2. Notice that Alice does not
know if Bob received or not. A two-party protocol which realizes the above situation is called
Rabin’s OT.

It is known that a string (1, 2)-OT, a bit (1, 2)-OT and Rabin’s OT are all equivalent. That
is, there is a reduction between any two of them. Brassard et al. showed reductions of string
(1, 2)-OT to bit (1, 2)-OT [2, 1]. Crépeau showed a reduction of 1-bit (1, 2)-OT to Rabin’s
OT [4].

However, no direct reduction is known from string (1, 2)-OT to Rabin’s OT. Hence this
reduction must be two steps. The first step is a construction of a bit (1, 2)-OT from Rabin’s
OT, and the second step is a construction of a string (1, 2)-OT from the bit (1, 2)-OT.

In this paper, we show a direct reduction of string (1, 2)-OT to Rabin’s OT by using a
deterministic randomness extractor. Our reduction is much more efficient than the previous
two-step reduction. To construct L-bit (1, 2)-OT, the former invokes Rabin’s OT almost 2L

times while the latter invokes it more than 21sL times, where s is a security parameter.
Rabin’s OT is equivalent to an erasure channel. Hence our result implies that we can

construct a string (1, 2)-OT efficiently from an erasure channel.
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2 Preliminaries

2.1 (1, 2)-Oblivious Transfer

In L-bit (1, 2)-OT, Alice has two secret strings s0, s1 ∈ {0, 1}L and Bob has a secret bit c. Then
the following three conditions must be satisfied.

• At the end of the protocol, Bob receives sc. This condition is called completeness.

• But Bob learns no information other than sc. This condition is called sender’s privacy.

• On the other hand, Alice has no information on c. This condition is called receiver’s
privacy.

More formally, we define sender’s privacy as follows. For two random variables P and Q, we
say that P and Q are ε-close if

|P − Q| =
1
2

∑
α

|Pr(P = α) − Pr(Q = α)| ≤ ε.

For i = 0, 1, let Si denote the random variable induced by si ∈ {0, 1}L. Let view denote
the view of Bob (receiver) which consists of his random coin tosses and the messages that he
received from Alice. Let V iew denote the random variable induced by view. Let Si(view) be
the random variable induced by si conditioned on V iew = view.

We assume that S0 and S1 are independent of each other.

Definition 2.1 We say that L-bit (1, 2)-OT satisfies (ε, δ)-statistical sender’s privacy if for any
(cheating) receiver Bob, either S0(view) is ε-close to S0 with probability more than 1 − δ, or
S1(view) is ε-close to S1 with probability more than 1 − δ, where the probability is taken over
view. That is,

Pr
view

(|Si(view) − Si| < ε) > 1 − δ.

We say that L-bit (1, 2)-OT satisfies perfect sender’s privacy if it satisfies (0, 0)-statistical
sender’s privacy.

2.2 Rabin’s Oblivious Transfer

In Rabin’s OT, Alice has a secret bit b. At the end of the protocol, Bob receives b with probability
1/2. On the other hand, Alice does not know if Bob received b or not. (Rabin’s OT can be
viewed as an erasure channel.)

2.3 Reduction of Crépeau

Crépeau showed a reduction of 1-bit (1, 2)-OT to Rabin’s OT [4]. In his reduction, Rabin’s OT
must be invoked at least 64s/3 > 21s times, where s is a security parameter such that

• Completeness: Pr(Honest Bob receives sc) > 1 − 2−s, and

• (0, 2−s)-statistical sender’s privacy is satisfied.

However, no direct reduction of string (1, 2)-OT to Rabin’s OT is known.
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3 Deterministic Extractor

An (n, k)-bit-fixing source is a distribution X on {0, 1}n on which n − k bits are fixed and the
remaining k bits are uniform and independent each other. A deterministic bit-fixing source
extractor is a function E : {0, 1}n → {0, 1}L which on input an arbitrary (n, k)-bit-fixing source,
outputs L bits that are statistically-close to uniform.

Definition 3.1 (bit-fixing source on S). A distribution X = (Xi1 ,Xi2 , · · · ,Xin) over {0, 1}n is
a bit-fixing source on S = {i1, · · · , ik} ⊆ {1, · · · , n} if the joint distribution of Xi1 ,Xi2 , · · · ,Xik

is uniformly distributed over {0, 1}k and for every i �∈ S, Xi is a fixed constant.

Definition 3.2 ((n, k)-bit-fixing source). A distribution X over {0, 1}n is an (n, k)-bit-fixing
source if there exists a subset S = {i1, · · · , ik} ⊆ {1, · · · , n} such that X is a bit-fixing source on
S.

Definition 3.3 (deterministic extractor). A function E : {0, 1}n → {0, 1}L is a deterministic
(k, ε)-bit-fixing source extractor if for every (n, k)-bit-fixing source X, the distribution E(X)
(obtained by sampling x from X and computing E(x)) is ε-close to the uniform distribution on
L bit strings.

Kurosawa, Johansson and Stinson showed the first deterministic extractor under the name
of almost (n − k)-resilient functions [9]. Canetti, Dodis, Halevi, Kushilevitz and Sahai showed
a probabilistic construction of deterministic extractors [3]. Kamp and Zuckerman [8] and then
Gabizon, Raz and Shaltiel [7] showed an explicit construction of deterministic extractors. The
deterministic extractor of [7] extracts (1 − o(1))k bits whenever k > (log n)c for some universal
constant c > 0. For k � √

n, the extracted bits have statistical distance 2−nΩ(1)
from uniform,

and for k ≤ √
n, the extracted bits have statistical distance k−Ω(1) from uniform. For k � √

n,
their construction is described as follows.

Proposition 3.1 For every constant 0 < γ < 1/2, there exists an integer n′ (depending on γ)
such that: for any n > n′ and any k, there is an explicit deterministic (k, ε)-bit-fixing source
extractor E : {0, 1}n → {0, 1}L, where L = k − n1/2+γ and ε = 2−Ω(nγ).

Consider k = n1/2+α for some constant 0 < α < 1/2. We can choose any γ < α and extract
L = n1/2+α − n1/2+γ bits.

4 Direct Reduction of String (1, 2)-OT to Rabin’s OT

No direct reduction of string (1, 2)-OT to Rabin’s OT is known. In this section, we show a direct
and efficient reduction of string (1, 2)-OT to Rabin’s OT.

4.1 Proposed Reduction

We show how to realize string (1, 2)-OT from p-OT directly and efficiently, where p-OT is a
generalization of Rabin’s OT. In p-OT, Alice has a secret bit b. At the end of the execution of
the protocol, Bob receives b with probability p. On the other hand, Alice does not know if Bob
received b or not. Rabin’s OT is a special case such that p = 1/2.
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Alice and Bob agree on a positive integer n and 0 < δ <
√

2p/3. Let N = n(p − δ/
√

2) and
k = n(p − 3δ/

√
2)/2. Suppose that there exists a deterministic (k, ε)-bit-fixing source extractor

E : {0, 1}N → {0, 1}L.
Then our L-bit (1, 2)-OT is described as follows.

1. Alice chooses x1, · · · , xn ∈ {0, 1} randomly.

2. For i = 1, · · · , n, Alice and Bob execute p-OT on xi.

3. Bob chooses U0, U1 ⊆ {1, · · · , n} such that |U0| = |U1| = N , U0 ∩ U1 = ∅ and he knows xi

for each i ∈ Uc. He then sends (U0, U1) to Alice.

4. Suppose that
U0 = {i1, · · · , iN}, U1 = {j1, · · · , jN}.

Define
R0 = (xi1 , · · · , xiN ), R1 = (xj1 , · · · , xjN

).

Alice sends y0 = E(R0) ⊕ s0 and y1 = E(R1) ⊕ s1 to Bob.

5. Bob computes sc = E(Rc) ⊕ yc.

4.2 Security

Now we will prove that the above protocol implements L-bit (1, 2)-OT correctly with probability
more than 1 − 2e−nδ2

. More formally, it satisfies

• Completeness. Pr(Honest Bob receives sc) > 1 − 2e−nδ2
, and

• (ε, 2e−nδ2
)-statistical sender’s privacy.

Proposition 4.1 (Hoeffding) [6] Let x1, x2, · · · , xn be independent Bernoulli variables. If Pr(xi =
1) = p for 1 ≤ i ≤ n, then for all 0 ≤ γ ≤ 1, we have

Pr(
∣∣∣∣
∑n

i=1 xi

n
− p

∣∣∣∣ ≥ γ) ≤ 2e−2nγ2
.

Let
X = {xi | Bob received xi at step 2}.

Then by applying the Hoeffding Bound,

n

(
p − δ√

2

)
≤ |X| ≤ n

(
p +

δ√
2

)

with probability more than 1 − 2e−nδ2
. Therefore,

1. There exists Uc ⊆ {1, · · · , n} such that |Uc| = n(p−δ/
√

2) and he knows xi for each i ∈ Uc.
Hence honest Bob can receive sc with probability more than 1 − 2e−nδ2

.
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2. Bob knows at most M = n(p + δ/
√

2) bits among x1, · · · , xn with probability more than
1−2e−nδ2

. On the other hand, |U0|+ |U1| = 2n(p− δ/
√

2). Hence Bob has no information
on the rest of

|U0| + |U1| − M = 2n

(
p − δ√

2

)
− n

(
p +

δ√
2

)
= n

(
p − 3δ√

2

)
= 2k

bits. Hence either R0 or R1 is a (N, k)-bit-fixing source for Bob. Therefore he has (almost)
no information on either s0 or s1 because E is a deterministic (k, ε)-bit-fixing source
extractor and yi = E(Ri) ⊕ si for i = 0, 1. It means that ε-statistical sender’s privacy is
satisfied.

4.3 Comparison

Rabin’s OT is a special case such that p = 1/2. Suppose that p = 1/2 in our protocol. Then
we obtain L-bit (1, 2)-OT which satisfies (ε, 2e−nδ2

)-statistical sender’s privacy for any 0 < δ <√
2/6 if there exists a deterministic (k, ε)-bit-fixing source extractor E : {0, 1}N → {0, 1}L with

N = n(0.5 − δ/
√

2) and k = n(0.5 − 3δ/
√

2).
If we use a deterministic extractor of Gabizon, Raz and Shaltiel [7], then we have

L = (1 − o(1))k = (1 − o(1))n(
1
2
− 3√

3
δ) ≈ n/2.

It means that we invoke Rabin’s OT approximately n ≈ 2L times to construct L-bit (1, 2)-OT.
On the other hand, the previous reduction of L-bit (1, 2)-OT to Rabin’s OT requires 2-step

reduction. In the first step, we can construct a 1-bit (1, 2)-OT from Rabin’s OT by using the
reduction of Crépeau [4]. In the second step, we can construct an L-bit (1, 2)-OT from the 1-bit
(1, 2)-OT. The first step requires at least 21s invocations of Rabin’s OT as shown in Sec.2.3,
where s is the security parameter. Brassard and Crépeau showed the second step which runs
n = 2L+ s′ instances of 1-bit (1, 2)-OT, where s′ is a security parameter [1]. Hence the previous
reduction requires at least 21sL invocations of Rabin’s OT.

See the following table for comparison. From this table, we see that our reduction is much
more efficient than the previous reduction.

the number of invocations of Rabin’s OT
to construct L-bit (1, 2)-OT

Previous at least 21sL

This paper almost 2L

5 Discussion

5.1 Technical Difference From Crépeau’s Reduction

Technical differences between our reduction and Crépeau’s reduction [4] are as follows. The
main difference is that we use a deterministic extractor E : {0, 1}N → {0, 1}L while Crépeau
used E : {0, 1}N → {0, 1} such that

E(x1, · · · , xN ) = x1 ⊕ · · · ⊕ xN .

Using deterministic extractors allows us to construct a direct and efficient reduction of L-bit
(1, 2)-OT to Rabin’s OT.

Another difference is that he used Bernshtein’s Law of large numbers while we use Hoeffding
bound which is more tight.
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5.2 Informal Lower Bound

It is very hard to derive a lower bound on the number t of invocations of Rabin’s OT to construct
L-bit (1, 2)-OT. Hence we consider an ideal model such that if t instances of Rabin’s OT are
executed, then Bob receives the bit b that Alice sent in t/2� instances, and nothing in the rest
of the instances.

In this section, we derive a lower bound on t in this ideal model, and show that our reduction
almost satisfies the equality. For each i, we assume that

Pr(Si = α) > 0

for any α ∈ {0, 1}L.

Theorem 5.1 In the ideal model, suppose that there exists a protocol which realizes L-bit (1, 2)-
OT from t instances of Rabin’s OT. Also suppose that perfect sender’s privacy is satisfied. Then
we have

t ≥ 2L.

(Proof) Consider an L-bit (1, 2)-OT protocol which invokes Rabin’s OT t times. Suppose that
Alice sent a bit xi in the ith invocation of Rabin’s OT for i = 1, · · · , t. Without loss of generality,
suppose that Bob received X = (x1, · · · , xu) in the first u = t/2� invocations of Rabin’s OT,
and nothing for i = u + 1, · · · , t.

Fix the view of Bob arbitrarily. From the perfect sender’s privacy, Bob has no information
on either s0 or s1. Without loss of generality, suppose that Bob has no information on s0. Then
for any L-bit string α ∈ {0, 1}L,

Pr(S0(view) = α) = Pr(S0 = α) > 0.

On the other hand, if Bob knows the erased (xu+1, · · · , xt), then he must be able to compute
s0. This can be seen as follows. Suppose that Bob is honest and he has c = 0. Then he receives
some part of X, and can compute s0. Also, Alice has no information on c. Therefore, if Bob
knows the whole X, then he can compute s0.

This means that there exists an onto mapping F from {0, 1}t−u to {0, 1}L. It implies that
t − u ≥ L. Then

L ≤ t − u = t − t/2� = �t/2� ≤ t/2.

Hence t ≥ 2L.
Q.E.D.
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