
New Constructions of Fuzzy Identity-Based Encryption∗

Joonsang Baek† Willy Susilo‡ Jianying Zhou†

Abstract

In this paper we construct two new fuzzy identity-based encryption (IBE) schemes in
the random oracle model. Not only do our schemes provide public parameters whose size is
independent of the number of attributes in each identity (used as public key) but they also
have useful structures which result in more efficient key extraction and/or encryption than
the random oracle version of Sahai and Water’s fuzzy IBE scheme, considered recently by
Pirretti et al. We prove that the confidentiality of the proposed schemes is relative to the
Bilinear Decisional Bilinear Diffie-Hellman problem.

1 Introduction

Motivation. The concept of fuzzy identity-based encryption (IBE) recently introduced by Sahai
and Waters [11] is to provide an error-tolerance property for IBE. Namely, in fuzzy IBE, a user
with the secret key for the identity ω can decrypt a ciphertext encrypted with the public key ω′

if ω and ω′ are within a certain distance of each other. We note that in contrast to the previous
approaches [8, 4], the biometric measurement in fuzzy IBE, which is used as an identity, does
not need to be kept secret [11]. However, it must be ensured that an attacker cannot convince
the key issuing authority to believe that he owns a biometric identity that he does not possess.
As noted in [11], fuzzy IBE can directly be applied to the situation where a user is traveling
and another party wants to encrypt at an ad-hoc meeting between them. Another application
of fuzzy IBE is “attribute-based encryption [11, 6, 9]” where a party can encrypt data to all
users that have a certain set of attributes, e.g. {company, division, department}.
Related Work. Since Sahai and Water’s work, fuzzy IBE has been discussed in the context of
the attribute-based encryption (ABE). Very recently, Goyal et al. [6] proposed an ABE scheme
that provides fine-grained sharing of encrypted data. Piretti et al. [9] used Sahai and Waters’
“large universe” construction of fuzzy IBE, which we simply call “Sahai-Waters construction”,
to realize their secure information management architecture. They also observed that if the
random oracle [1] is employed, computational overhead of the Sahai-Waters construction can
greatly be reduced. We remark that the random oracle not only reduces computational overhead
but also provides a very short public parameters whose size is independent of the number of
attributes associated with an identity or the number of attributes in the defined universe, which
is crucial in the storage constrained applications.
Our Contribution. In this paper, we go one step beyond Pirreti et al.’s results by presenting
fuzzy IBE schemes in the random oracle model, which are structurally different from the Sahai-
Waters construction. We show that the structural difference results in more efficient schemes
than even the random oracle version of the Sahai-Waters construction considered by Pirretti et
al. [9]. We prove that our schemes meet the security requirements as defined in [11] assuming
that the Decisional Bilinear Diffie-Hellman (DBDH) problem is hard.

∗A short version of this paper is accepted to present at ASIACCS 2007. This is a full version.
†Institute for Infocomm Research, Singapore
‡University of Wollongong, Australia

1

2 Preliminaries

Computational Primitives. We first review the definition of the admissible bilinear pairing
[2, 7], denoted by e. Let G1 and G2 be groups of the same order q which is prime. (By G∗1
and ZZ∗q , we denote G1 \ {1} where 1 is the identity element of G1, and ZZq \ {0} respectively).
Suppose that G1 is generated by g. Then, e : G1 × G1 → G2 has the following properties: 1)
Bilinear: e(ga, gb) = e(g, g)ab, for all a, b ∈ ZZq and 2) Non-degenerate: e(g, g) 6= 1.

A computational problem that will be used throughout this paper is the DBDH problem,
a decisional version of the Bilinear Diffie-Hellman problem on which Boneh and Franklin’s
IBE scheme [2] is based. Informally, the DBDH problem refers to the problem where, given
(g, ga, gb, gc) for random a, b, c ∈ ZZ∗q , a polynomial-time attacker A is to distinguish e(g, g)abc

from e(g, g)γ for random γ ∈ ZZ∗q .
Fuzzy IBE and Its Security. The generic fuzzy IBE scheme [11] consists of the following
algorithms.

• Setup(): Providing some security parameter as input, the Private Key Generator (PKG)
runs this algorithm to generate its master key mk and public parameters params which
contains an error tolerance parameter d. Note that params is given to all interested parties
while mk is kept secret.

• Extract(mk, ID): Providing the master key mk and an identity ID as input, the PKG runs
this algorithm to generate a private key associated with ID, denoted by DID.

• Encrypt(params, ID′,M): Providing the public parameters params, an identity ID′, and a
plaintext M as input, a sender runs this algorithm to generate a ciphertext C ′.

• Decrypt(params, DID, C
′): Providing the public parameters params, a private key DID

associated with the identity ID and a ciphertext C ′ encrypted with an identity ID′ such
that |ID′ ∩ ID| ≥ d as input, a receiver runs this algorithm to get a decryption, which is
either a plaintext or a “Reject” message.

A first security requirement of fuzzy IBE is “indistinguishability of encryptions under fuzzy
selective-ID, chosen plaintext attack (IND-FSID-CPA)” [11]. (Note that the “selective-ID at-
tack” [3] refers to the attack in which an attacker commits ahead of time an identity that it
intends to attack.) The formal definition based on the game between an attacker A and the
“Challenger” is as follows.

In Phase 1, A outputs a challenge identity ID∗. In Phase 2, the Challenger then runs the
Setup algorithm to generate a master key mk and public parameters params. The Challenger
gives params to A while keeps mk secret from A. In Phase 3, A issues private key extraction
queries, each of which is denoted by ID. A restriction here is that for all ID, |ID ∩ ID∗| < d. In
Phase 4, A outputs equal-length messages M0 and M1. Upon receiving (M0,M1), the Challenger
picks β ∈ {0, 1} at random and creates a challenge ciphertext C∗ = Encrypt(params, ID∗,Mβ).
The Challenger returns C∗ to A. In Phase 5, A issues a number of private key extraction queries
as in Phase 3. In Phase 6, A outputs its guess β′ ∈ {0, 1}.

We define A’s guessing advantage by |Pr[β′ = β]− 1
2 |.

Notice that a stronger notion “indistinguishability of encryptions under fuzzy selective-ID,
chosen ciphertext attack (IND-FSID-CCA)” can also be defined by giving A an access to a
decryption oracle.

Another important security requirement for a fuzzy IBE scheme is the security against col-
luding attack, which implies that no group of users should be able to combine their keys in such
a way that they can decrypt a ciphertext that none of them alone could [11].

2

3 Proposed Fuzzy IBE Schemes

In the rest of the paper, ∆a,S denotes the Lagrange coefficient for a ∈ ZZ∗q (q, a prime) and a set
S of elements in ZZ∗q . Notice that

∆a,S(x) =
∏

a∈S,b6=a

x− b

a− b
.

Without loss of generality, we assume that an identity is a set of n different elements in ZZ∗q .
For example, each of n strings of arbitrary length with an index i ∈ Z can be hashed using some
collision-resistant hash function whose range is ZZ∗q .
Efficient Fuzzy IBE-I (EFIBE-I) Scheme. As mentioned earlier the hash function H in
our first fuzzy IBE scheme is assumed to be a random oracle, which gives rise to very short
public parameters. However, we note that our scheme has a different structure compared to the
random oracle version of the Sahai-Waters construction considered in [9]. The unique feature of
EFIBE-I is that its private key extraction algorithm (Extract) is structurally simple and highly
efficient.

• Setup(): Generate a group G1 of prime order q. Construct a bilinear map e : G1×G1 → G2,
where G2 is a group of the same order q. Pick a generator g of the group G1. Pick
g1 ∈ G1 at random. Pick s ∈ ZZ∗q at random and compute g2 = gs. Choose a hash
function H : ZZ∗q → G1. Select a tolerance parameter d. Output a public parameter
params = (q, g, e,G1,G2,H, g1, g2, d) and a master key mk = (q, g, e,G1,G2,H, g1, g2, s).

• Extract(mk, ID), where ID = (µ1, . . . , µn): Pick a random polynomial p(·) of degree d− 1
over ZZq such that p(0) = s and compute a private key Dµi = (γµi , δµi) = (H(µi)p(µi), gp(µi))
for i = 1, . . . , n. Return DID = (Dµ1 , . . . , Dµn).

• Encrypt(params, ID′,M), where ID′ = (µ′1, . . . , µ
′
n) and M ∈ G2: Pick r ∈ ZZ∗q at random

and compute

C ′ = (ID′, U, Vµ′1 , . . . , Vµ′n ,W)

= (ID′, gr, (g1H(µ′1))
r, . . . , (g1H(µ′n))r, e(g1, g2)rM)

• Decrypt(params, DID, C
′), where C ′ is encrypted with ID′ such that |ID′ ∩ ID| ≥ d (Recall

that ID = (µ1, . . . , µn)).: Choose an arbitrary set S ⊆ ID ∩ ID′ such that |S| = d and
compute

M =
e(

∏
µj∈S γ

∆µj,S(0)
µj , U)

∏
µj∈S e(Vµj , δ

∆µj,S(0)
µj)

·W

(Here, notice that µ′j = µj if µj ∈ S). Return M .

3

The above decryption algorithm is correct as

e(
∏

µj∈S γ
∆µj,S(0)
µj , U)

∏
µj∈S e(Vµj , δ

∆µj,S(0)
µj)

·W =
e(

∏
µj∈S γ

∆µj,S(0)
µj , gr)

∏
µj∈S e((g1H(µj))r, δ

∆µj,S(0)
µj)

·W

=
e(

∏
µj∈S γ

∆µj,S(0)
µj , gr)

∏
µj∈S e((g

∆µj,S(0)

1 H(µj)
∆µj,S(0))r, gp(µj))

·W

=
e(

∏
µj∈S γ

∆µj,S(0)
µj , gr)

∏
µj∈S e(g

∆µj,S(0)p(µj)

1 H(µj)
∆µj,S(0)p(µj), gr)

·W

=
e(

∏
µj∈S γ

∆µj,S(0)
µj , gr)

e(
∏

µj∈S g
∆µj,S(0)p(µj)

1 , gr)e(
∏

µj∈S γ
∆µj,S(0)
µj , gr)

·W

=
1

e(gs
1, g

r)
· e(g1, g2)rM =

1
e(g1, g2)r

· e(g1, g2)rM = M.

We now prove the following theorem regarding the security of EFIBE-I in the IND-FSID-CPA
sense.

Theorem 1 The EFIBE-I scheme is IND-FSID-CPA secure in the random oracle model as-
suming that the DBDH problem is hard.

Proof. Assume that an attacker A breaks IND-FSID-CPA of EFIBE-I with probability greater
than ε within time t making qH random oracle queries and qex private key extraction queries.
We show that using A, one can construct a DBDH attacker B.

Suppose that B is given (q, g, e, G1, G2, ga, gb, gc, τ), where τ is either e(g, g)abc or e(g, g)γ

for random γ ∈ ZZ∗q , as an instance of the DBDH problem. By ε′ and t′, we denote B’s winning
probability and running time respectively. B can simulate the Challenger’s execution of each
phase of IND-FSID-CPA game for A as follows.
Simulation of Phase 1. Suppose that A outputs a challenge identity ID∗ = (µ∗1, . . . , µ

∗
n).

Simulation of Phase 2. B sets g1 = gb and g2 = gc, and gives A (q, g, e,G1,G2,H, g1, g2, d) as
params, where d ∈ ZZ+ and H is a random oracle controlled by B as follows.

Upon receiving a query µ to H:

If there exists 〈µ, (l, h)〉 in HList, return h. Otherwise, do the following:

If µ = µ∗i for some i ∈ [1, n], choose l ∈ ZZ∗q at random and compute h = gl/g1.

Else choose l ∈ ZZ∗q at random and compute h = gl.
Add 〈µ, l, h〉 to HList and return H(µ) = h as answer.

Simulation of Phase 3. B answers A’s private key extraction queries as follows.

Upon receiving a private key extraction query ID = (µ1, . . . , µn) such that |ID ∩ ID∗| < d:

Let Γ = ID ∩ ID∗; Let Γ′ be any set such that Γ ⊆ Γ′ ⊆ ID and |Γ′| = d − 1; Let
S = Γ′ ∪ {0}.
For every µi ∈ Γ′, run the above H-oracle simulator to get 〈µi, li, hi〉 in HList, pick
λi ∈ ZZ∗q at random and compute Di = (hλi

i , gλi).

4

For every µi ∈ ID\Γ′, run the above H-oracle simulator to get 〈µi, li, hi〉 in HList and
compute

Di =
((∏

µj∈Γ′
h

∆µj,S(µi)λj

i

)
g
∆0,S(µi)li
2 ,

(∏

µj∈Γ′
g
∆µj,S(µi)λj

)
g
∆0,S(µi)
2

)
.

Return (Dµ1 , . . . , Dµn).

Now define λi = p(µi) for a random polynomial p(·) of degree d − 1 over ZZ∗q such that
p(0) = c. Notice that when µi ∈ Γ′, the simulated Di’s and those of Di’s in the real attack
are identically distributed. Notice also that even when µi /∈ Γ′, the above simulation is
still correct. – Since µi /∈ Γ′ means µi /∈ Γ, hi = H(µi) = gli by the simulation of H. Thus,
noting that g2 = gc, we have

Di =
((

g
li(

∑
µj∈Γ′ ∆µj,S(µi)p(µj)))

gli∆0,S(µi)c, g
∑

µj∈Γ′ ∆µj,S(µi)p(µj)
g∆0,S(µi)c

)

=
(
g

li(
∑

µj∈Γ′ ∆µj,S(µi)p(µj)+∆0,S(µi)p(0))
, g

∑
µj∈Γ′ ∆µj,S(µi)p(µj)+∆0,S(µi)p(0)

)

= (glip(µi), gp(µi)) = (H(µi)p(µi), gp(µi)).

Consequently, the simulated key (Dµ1 , . . . , Dµn) is distributed the same as the one in the
real attack.

Simulation of Phase 4. B creates a challenge ciphertext C∗ as follows.

Upon receiving (M0,M1):

Choose β ∈ {0, 1} at random.

Search HList to get l∗1, . . . , l
∗
n that correspond to each of ID∗ = (µ∗1, . . . , µ

∗
n).

Compute gal∗i for i = 1, . . . , n.

Return C∗ = (ga, gal∗1 , . . . , gal∗n , τMβ) as a challenge ciphertext.

Simulation of Phase 5. B answers A’s random oracle/private key extraction queries as in Phase
3.
Simulation of Phase 6. A outputs its guess β′. If β′ = β, B outputs 1. Otherwise, it outputs 0.

Analysis. Notice in the above simulation thta if τ = e(g, g)abc then τMβ = e(gb, gc)aMβ =
e(g1, g2)aMβ. Notice also that gal∗i = (gl∗i)a = (g1H(µ∗i))

a for i = 1, . . . , n from the construction
of the random oracle H. Hence the challenge ciphertext C∗ created above is distributed the same
as the one in the real attack. On the other hand, if τ = e(g, g)γ for γ ∈ ZZ∗q chosen uniformly at
random, τMβ is uniform inG2. As justified in the simulation of Phase 3, B perfectly simulates the
random oracle H and the key private key extraction. Hence, we get Pr[B(g, ga, gb, gc, e(g, g)abc) =
1] = Pr[β′ = β], where |Pr[β′ = β]− 1

2 | > ε, and Pr[B(g, ga, gb, gc, e(g, g)γ) = 1] = Pr[β′ = β] =
1
2 , where γ is uniform in G2. Consequently, we get

|Pr[B(g, ga, gb, gc, e(g, g)abc) = 1]− Pr[B(g, ga, gb, gc, e(g, g)γ) = 1]| >
∣∣∣
(1
2
± ε

)− 1
2

∣∣∣ = ε.

B’s running time is computed as t′ > t + (qH + qex)O(Te), where Te denotes the computing
time for an exponentiation in G1. ut

By the same argument as [11], the EFIBE-I scheme prevents collusion attacks since each
users’ private key components are generated with different random polynomials.– Even if mul-
tiple users collude, they will not be able to combine their private key components to form a key
which is useful to compromise the confidentiality of the scheme.

5

Efficient Fuzzy IBE-II (EFIBE-II) Scheme. Our second fuzzy IBE scheme bears some
similarities to the second scheme based on the DBDH problem [11]. However, its private key
extraction has been simplified by using the outputs of the chosen random polynomial as random
exponents for g1, in contrast to the scheme in [11] which introduces extra random exponents and
hence incurs extra exponentiations. More precisely, our scheme computes ((g1H(µi))p(µi), gp(µi))
instead of (gp(µi)

1 H(µi)ri , gri) [11] to generate a private key associated with an identity ID′ =
(µ′1, . . . , µ

′
n).

A description of the scheme is as follows.

• Setup(): Generate a group G1 of prime order q. Construct a bilinear map e : G1×G1 → G2,
where G2 is a group of the same order q. Pick a generator g of the group G1. Pick
g1 ∈ G1 at random. Pick s ∈ ZZ∗q at random and compute g2 = gs. Choose a hash
function H : ZZ∗q → G1. Select a tolerance parameter d. Output a public parameter
params = (q, g, e,G1,G2,H, g1, g2, d) and a master key mk = (q, g, e,G1,G2,H, g1, g2, s).

• Extract(mk, ID), where ID = (µ1, . . . , µn): Pick a random polynomial p(·) of degree d− 1
over ZZq such that p(0) = s and compute a private key Dµi = (γµi , δµi) = ((g1H(µi))p(µi), gp(µi))
for i = 1, . . . , n. Return DID = (Dµ1 , . . . , Dµn).

• Encrypt(params, ID′,M), where ID′ = (µ′1, . . . , µ
′
n) and M ∈ G2: Pick r ∈ ZZ∗q at random

and compute

C ′ = (ID′, U, Vµ′1 , . . . , Vµ′n ,W)

= (ID′, gr,H(µ′1)
r, . . . , H(µ′n)r, e(g1, g2)rM)

• Decrypt(params, DID, C
′), where C ′ is encrypted with ID′ such that |ID′ ∩ ID| ≥ d (Recall

that ID = (µ1, . . . , µn)).: Choose an arbitrary set S ⊆ ID ∩ ID′ such that |S| = d and
compute

M =

∏
µj∈S e(Vµj , δ

∆µj,S(0)
µj)

e(
∏

µj∈S γ
∆µj,S(0)
µj , U)

·W

(Here, notice that µ′j = µj if µj ∈ S). Return M .

The above decryption algorithm is correct as
∏

µj∈S e(Vµj , δ
∆µj,S(0)
µj)

e(
∏

µj∈S γ
∆µj,S(0)
µj , U)

·W =

∏
µj∈S e(H(µj)r, g

p(µj)∆µj,S(0))

e(
∏

µj∈S(g1H(µj))
p(µj)∆µj,S(0)

, gr)
·W

=

∏
µj∈S e(H(µj)

p(µj)∆µj,S(0)
, gr)

e(
∏

µj∈S(g1H(µj))
p(µj)∆µj,S(0)

, gr)
·W

=

∏
µj∈S e(H(µj)

p(µj)∆µj,S(0)
, gr)

e(
∏

µj∈S g
p(µj)∆µj,S(0)

1 , gr)
· W

e(
∏

µj∈S H(µj)
p(µj)∆µj,S(0)

, gr)

=
1

e(
∏

µj∈S g
p(µj)∆µj,S(0)

1 , gr)
· e(g1, g2)rM

=
1

e(gs
1, g

r)
· e(g1, g2)rM =

1
e(g1, g2)r

· e(g1, g2)rM = M.

We then prove the following theorem regarding the security of EFIBE-II in the IND-FSID-
CPA sense.

6

Theorem 2 The EFIBE-II scheme is IND-FSID-CPA secure in the random oracle model as-
suming that the DBDH problem is hard.

Proof. Assume that an attacker A breaks IND-FSID-CPA of EFIBE-II with probability greater
than ε within time t making qex private key extraction queries. We show that using A, one can
construct a DBDH attacker B.

Suppose that B is given (q, e, G1, G2, g, ga, gb, gc, τ), where τ is either e(g, g)abc or e(g, g)γ

for random γ ∈ ZZ∗q , as an instance of the DBDH problem. By ε′ and t′, we denote B’s winning
probability and running time respectively. B can simulate the Challenger’s execution of each
phase of IND-FSID-CPA game for A as follows.
Simulation of Phase 1. Suppose that A outputs a challenge identity ID∗ = (µ∗1, . . . , µ

∗
n).

Simulation of Phase 2. B sets g1 = gb and g2 = gc, and gives A (q, g, e,G1,G2,H, g1, g2, d) as
params, where d ∈ ZZ+ and H is a random oracle controlled by B as follows.

Upon receiving a query µ to H:

If there exists 〈(µ, l), h〉 in HList, return h. Otherwise, do the following:

If µ = µ∗i for some i ∈ [1, n], choose l ∈ ZZ∗q at random and compute h = gl.

Else choose l ∈ ZZ∗q at random and compute h = gl/g1.
Add 〈µ, l, h〉 to HList and return h = H(µ) as answer.

Simulation of Phase 3. B answers A’s private key extraction queries as follows.

Upon receiving a private key extraction query ID = (µ1, . . . , µn) such that |ID ∩ ID∗| < d:

Let Γ = ID ∩ ID∗; Let Γ′ be any set such that Γ ⊆ Γ′ ⊆ ID and |Γ′| = d − 1; Let
S = Γ′ ∪ {0}.
For every µi ∈ Γ′, run the above H-oracle simulator to get 〈µi, li, hi〉 in HList, pick
λi ∈ ZZ∗q at random and compute Di = ((g1hi)λi , gλi). Let λi = p(µi).

For every µi ∈ ID\Γ′, run the above H-oracle simulator to get 〈µi, li, hi〉 in HList and
compute

Di =
((∏

µj∈Γ′
(g1hi)

∆µj,S(µi)λj
)
g
∆0,S(µi)li
2 ,

(∏

µj∈Γ′
g
∆µj,S(µi)λj

)
g
∆0,S(µi)
2

)
.

Return (Dµ1 , . . . , Dµn).

Now define λi = p(µi) for a random polynomial p(·) of degree d − 1 over ZZ∗q such that
p(0) = c. Notice that when µi ∈ Γ′, the simulated Di’s and those of Di’s in the real attack
are identically distributed. Notice also that even when µi /∈ Γ′, the above simulation is
still correct. – Since µi /∈ Γ′ means µi /∈ Γ, g1hi = gli . Noting that g2 = gc, we have

Di =
((

g
li(

∑
µj∈Γ′ ∆µj,S(µi)p(µj)))

gli∆0,S(µi)c, g
∑

µj∈Γ′ ∆µj,S(µi)p(µj)
g∆0,S(µi)c

)

= (g
li(

∑
µj∈Γ′ ∆µj,S(µi)p(µj)+∆0,S(µi)p(0))

, g
∑

µj∈Γ′ ∆µj,S(µi)p(µj)+∆0,S(µi)p(0)
)

= (glip(µi), gp(µi)) = ((g1hi)p(µi), gp(µi))
= ((g1H(µi))p(µi), gp(µi)).

Consequently the simulated key (Dµ1 , . . . , Dµn) is distributed the same as the one in the
real attack.

7

Simulation of Phase 4. B creates a challenge ciphertext C∗ as follows.

Upon receiving (M0,M1):

Choose β ∈ {0, 1} at random.

Search HList to get l∗1, . . . , l
∗
n that correspond to each of ID∗ = (µ∗1, . . . , µ

∗
n).

Compute gal∗i for i = 1, . . . , n.

Return C∗ = (ga, gal∗1 , . . . , gal∗n , τMβ) as a challenge ciphertext.

Simulation of Phase 5. B answers A’s random oracle/private key extraction queries as in Phase
3.
Simulation of Phase 6. A outputs its guess β′. If β′ = β, B outputs 1. Otherwise, it outputs 0.

Analysis. Note that if τ = e(g, g)abc, τMβ = e(gb, gc)aMβ = e(g1, g2)aMβ. Note also that
gal∗i = (gl∗i)a = H(µ∗i)

a for i = 1, . . . , n from the construction of the random oracle H. Hence the
challenge ciphertext C∗ created above is distributed the same as the one in the real attack. On
the other hand, if τ is uniform and independent inG2, i.e. τ = e(g, g)γ for some γ ∈ ZZ∗q uniformly
chosen at random, so is τMβ. As justified in the simulation of Phase 3, B perfectly simulates the
random oracle H and the key private key extraction. Hence, we get Pr[B(g, ga, gb, gc, e(g, g)abc) =
1] = Pr[β′ = β], where |Pr[β′ = β]− 1

2 | > ε, and Pr[B(g, ga, gb, gc, e(g, g)γ) = 1] = Pr[β′ = β] =
1
2 , where γ is uniform in G2. Consequently, we get

|Pr[B(g, ga, gb, gc, e(g, g)abc) = 1]− Pr[B(g, ga, gb, gc, e(g, g)γ) = 1]| >
∣∣∣
(1
2
± ε

)− 1
2

∣∣∣ = ε.

B’s running time is calculated as t′ > t+ qHO(Te), where Te denotes the computing time for
an exponentiation in G1. ut

Finally we note that from the same reason as EFIBE-I, EFIBE-II is also secure against
collusion attacks.

Finally we remark that EFIBE-I and EFIBE-II can be extended to achieve chosen ciphertext
security, i.e. IND-FSID-CCA, using the Fujisaki-Okamoto transform [5] in the random oracle
model or the simulation-sound NIZK proofs [10] without depending on the random oracle model,
as discussed in [11].

4 Comparisons

Table 1 summarizes the size of various parameters and the cost of computing sub-algorithms of
the proposed fuzzy IBE schemes and the random oracle version of the Sahai-Waters construction
[9], which we denote by SW-RO.

Notice that both Extract and Encrypt algorithms of EFIBE-II are more efficient than those
of SW-RO. The Extract algorithm of EFIBE-I is the most efficient among the three schemes but
its Encrypt is slightly less efficient than those of EFIBE-II and SW-RO.

5 Concluding Remarks

We expect that our new fuzzy IBE schemes will serve as efficient building blocks for biometric
authentication systems or attribute-based encryption systems.

Construction of fuzzy IBE schemes that have the exactly the same structures as ours (that
is, non-random oracle version of our schemes using the technique of [11]) is an interesting open
problem.

8

EFIBE-I EFIBE-II SW-RO
Size of params\ 2|G1| 2|G1| 2|G1|
{q, g, e,G1,G2, d}
Size of DID 2n|G1| 2n|G1| 2n|G1|
Size of C \ ID (n + 1)|G1| (n + 1)|G1| (n + 1)|G1|

+|G2| +|G2| +|G2|
Cost of Extract n(TH + 2Te) n(TH + Tm n(TH + Tm

+2Te) +3Te)
Cost of Encrypt n(Tm + Te n(Te + TH) n(Te + TH)

+TH) + 2Te +2Te + Tp +2Te + Tp

+Tp + T ′m +T ′m +T ′m
Cost of Decrypt d(Te + Tm) d(Te + Tm) d(Te + Tm)

+d(Te + Tp) +d(Te + Tp) + d(Te + Tp)
+Tp + T ′i +Tp + T ′i +Tp + T ′i
+T ′m +T ′m +T ′m

Security Rel. to DBDH DBDH DBDH

Table 1: Comparisons of Various Fuzzy IBE Schemes. Abbreviations: |S| – the bit-length of an element
in set (or group) S; n – the number of elements in an identity; Te – the computation time for a single
exponentiation in G1; TH – the computation time for a function H modeled as a random oracle; Tm –
the computation time for a single multiplication in G1; Ti – the computation time for a single inverse
operation in G1; Tp – the computation a single fora single pairing operation; T ′m – the computation time
for a single multiplication in G2; T ′i – the computation time for a single inverse operation in G2; d – an
error tolerance parameter

References

[1] M. Bellare and P. Rogaway, Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols, In ACM CCS ’93, pp. 62–73, ACM Press, 1993.

[2] D. Boneh and M. Franklin, Identity-Based Encryption from the Weil Pairing, In Crypto
’01, LNCS 2139, pp. 213–229, Springer-Verlag, 2001.

[3] R. Canetti, S. Halevi, and J. Katz, A Forward-Secure Public-Key Encryption Scheme,
Advances in Cryptology - In Eurocrypt 2003, LNCS 2656, pp. 255–271, Springer-Verlag,
2003.

[4] Y. Dodis, L. Reyzin and A. Smith, Fuzzy Extractors: How to Generate Strong Keys from
Biometrics and Other Noisy Data, In Eurocrypt ’04, LNCS 3027, pp. 523 – 540, Springer-
Verlag, 2004.

[5] E. Fujisaki and T. Okamoto, Secure Integration of Asymmetric and Symmetric Encryption
Schemes, In Crypto ’99, LNCS 1666, pp. 537 – 554, Springer-Verlag, 1999.

[6] V. Goyal, O. Pandey, A. Sahai and B. Waters, Attribute-Based Encryption for Fine-Grained
Access Control of Encrypted Data, In ACM CCS ’06, 2006, to appear.

[7] A. Joux: The Weil and Tate Pairings as Building Blocks for Public Key Cryptosystems,
Algorithmic Number Theory Symposium (ANTS-V) ’02, LNCS 2369, pp. 20–32, Springer-
Verlag, 2002.

[8] A. Juels and M. Wattenberg, A Fuzzy Commitment Scheme, In ACM CCS ’99, pp. 28–36,
ACM Press, 1999.

9

[9] M. Pirretti, P. Traynor, P. McDaniel and B. Waters, Secure Attribute-Based Systems, In
ACM CCS ’06, 2006, to appear.

[10] A. Sahai, Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-Ciphertext
Security, In FOCS ’99, pp. 543–553, IEEE Computer Society.

[11] A. Sahai and B. Waters, Fuzzy Identity-Based Encryption, Advances in Cryptology - In
Eurocrypt 2005, LNCS 3494, pp. 457–473, Springer-Verlag, 2005.

10

