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Abstract: Provable security based on complexity theory provides an efficient way for providing the convincing 
evidences of security. In this paper, we present a definition of generic ID-based signature schemes (GIBSS) by 
extending the definition of generic signature schemes, and prove the Forking lemma for GIBSS. That is, we provide 
the Forking lemma for ID-based signature schemes. The theoretical result can be viewed as an extension of the 
Forking Lemma due to Pointcheval and Stern for ID-based signature schemes, and can help to understand and 
simplify the security proofs. Then we propose a new and efficient ID-based signature scheme built upon bilinear 
maps. We prove its security under k-CAA computational assumption in the random oracle model.  
Key words: ID-based signatures, Forking Lemma, provable security, existential forgery. 

1   Introduction 

In 1984, Shamir [1] proposed ID-based public key cryptography (ID-PKC) to simplify key management 
procedures of traditional certificate-based public key infrastructures (PKIs). In ID-PKC, users within a system could 
use their online identifiers (combined with certain system-wide information) as their public keys; a trusted third 
party called a private key generator (PKG) generated private keys for users. The direct obtainment of public keys in 
ID-PKC entirely eliminated the need for certificates and greatly reduced the problems with key management. 
ID-based public key cryptography has become a good alternative for certificate-based public key setting, especially 
when efficient key management and moderate security are required.  

While ID-based signature schemes rapidly emerged after 1984, it is only in 2001 that bilinear maps over an 
elliptic curve were used to yield the first entirely practical and secure ID-based encryption scheme (IBE) [2]. 
Subsequently several ID-based signature schemes based on bilinear maps were proposed, e.g. [3, 4, 5, 6]. 

A convincing line of research has tried to provide “provable” security for cryptographic schemes. 
Unfortunately, provable security is at the cost of a considerable loss in terms of efficiency. Another way to achieve 
some kind of provable security is to identify concrete cryptographic objects such as hash functions with ideal 
random objects and to use arguments from relativized complexity theory. The model underlying this approach is 
often called the “random oracle model” that is proposed by Bellare and Rogaway [7]. We use the word “arguments” 
for security results proved in this model. As usual, these arguments are relative to well-established hard algorithm 
problems such as factorization or the discrete logarithm. In 2000, Pointcheval and Stern [8] offered some security 
arguments for standard signature schemes in the random oracle model, and provided the famous Forking lemma for 
generic signature schemes. The security notion of an ID-based signature scheme is defined to be secure against 
existential forgery on adaptively chosen message and ID attack (EUF-ACMIA) [3], which is a natural ID-based 
version of the standard adaptively chosen message attack (EUF-ACM) [9]. 

Inspired by Pointcheval’s results, this paper presents security arguments for generic ID-based signature 
schemes in the random oracle model. The rest of this paper is organized as follows: In Section 2, we recall some 
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preliminary works. In Section 3, we provide the forking lemma for generic ID-based signature schemes. In Section 
4, we describe a new and efficient ID-based signature scheme using bilinear maps and present the security proof of 
our scheme. Finally, we end the paper with a brief conclusion. 

2   Preliminaries 

2.1   Bilinear map groups and related computational problem 

Letλ be a security parameter and q be aλ -bit prime number. Let us consider groups , and of the 

same prime order q and let be generators of respectively and . We say that are bilinear 

map groups if there exists a bilinear map satisfying the following properties:  

1G 2G TG

,P Q 1G 2G 1 2( , , )TG G G

1 2ˆ : Te × →G G G

1. Bilinearity: , 1 2 ( , )P Q∀ ∈ ×G G  , qα β∀ ∈Z , ˆ ˆ( , ) ( , )e P Q e P Q αβα β = . 

2. Non-degeneracy: 1 P∀ ∈G , for all ˆ( , ) 1e P Q = 2Q∈G  iff P =O . 

3. Computability: 1 2 ( , )P Q∀ ∈ ×G G ,  is efficiently computable. ˆ( , )e P Q
4.  There exists an efficient, publicly computable (but not necessarily invertible) isomorphism      

2: 1ψ →G G such that ( )Q Pψ = . 

The computational assumption for the security of our scheme was previously proposed by S.Mitsunari et.al 
[10]. The problem was called k-CAA (collusion attack algorithm with k traitors) in Mitsunari et.al’s traitor tracing 
scheme. 

Definition 1 ( k-CAA ). For an integer k, , andR qx∈ Z 1P∈G , given 

1
1

1 1{ , , , , , , , }k q
k

P Q xP h h P P
h x h x

= ∈
+ +

… …Z  

to compute 
1 P

h x+
 for some . 1{ , , }kh h h∉ …

3   Forking lemma and generic ID-based signature schemes 

In 2000, Pointcheval and Stern presented a notion of generic signature schemes and the famous Forking 

Lemma. In this paper, we consider a special kind of ID-based signature schemes, which given the input message m, 

produce a triple ),,( 21 σσ h , where 1σ  randomly takes its values in a large set, h is the hash value of (m, 1σ ) and 

2σ  only depends on 1σ and h for a fixed private key SID. Each signature is independent of the previous ones. That 

is, we assume that no 1σ can appear with probability greater than 2 / 2λ , whereλ is the security parameter. We call 

this kind of pairing-based schemes as generic ID-based signature schemes (GIBSSs).  

Lemma 3.1 [The splitting lemma] [8] let A X Y⊂ × such that Pr[( , ) ]x y A ε∈ ≥ . For anyα ε< , 

define 
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{( , ) Pr [( , ) ] } and =( )\ ,y YB x y X Y x y A B X Y Bε α′∈ ′= ∈ × ∈ ≥ − ×  

Then the following statements hold: 

1. Pr[ ]B α≥ . 

2. ( , )x y B∀ ∈ , Pr [( , ) ]y Y x y A ε α′∈ ′ ∈ ≥ − . 

3. Pr[ ] /B A α ε≥ . 

Lemma 3.2 Let (Setup, Extract, Sign, Verify) be a generic ID-based signature scheme with security 

parameterλ , be a probabilistic polynomial time Turing machine whose input only consists of public data and 

which can only ask to the random oracle and private key extraction oracle. We denote by 

A

Hq the number of queries 

that can ask to the random oracle, with . Assume that, within a time bound T, produces, with 

probability 

A 0Hq > A

7 / 2Hq λε ≥ , a valid signature (m, ID, r, h, s). Then, within time 16 /HT q T ε′ ≤ , and with 

probability 1
9ε ′ ≥ , a replay of outputs two valid signatures (m, ID, r, h, s) and such that 

. 

A ( , , , , )m ID r h s′ ′

h h′≠

Proof: We assume that (.)H be the random oracle in the signing phase, and asks a polynomial number of 

questions to the random oracle

A

(.)H . These questions are distinct: for instance, can store questions and 

answers in a table. Let 

A

1, ,
HqQ Q… be the Hq distinct questions and let 1( , , )

Hqρ ρ ρ= … be the list of the 

Hq answers of (.)H , ω  which  has some random information. It is clear that a random choice 

of

A

(.)H exactly corresponds to a random choice of ρ . Then, for a random choice of ( , )Hω , with 

probabilityε , A outputs a valid signature (m, ID, r, h, s). Since H is a random oracle, it is easy to see that the 

probability for h to be equal to H(m, r) is less than 1/ 2λ , unless it has been asked during the attack. So, it is 

likely that the question (m, r) is actually asked during a successful attack. Accordingly, we define ( , )Ind Hω to 

be the index of this question: (m, r)＝ （we let( , )Ind HQ ω ( , )Ind Hω = ∞ if the question is never asked）. We 

then define the sets 

{( , ) ( ) succeeds & ( , ) },HS H Ind Hω ω ω= ≠ ∞   A  

{( , ) ( )  succeeds & ( , ) },  {1, , }.H
i HS H Ind H i i qω ω ω= = … A ∈  

We call S the set of the successful pairs ( , )Hω , and we note that the set{ {1, ,i }}S i q∈ …
Pr[ ] 1/ 2 6 / 7v S λ

H  is a partition of S. 

With those definitions, we find a lower bound for the probability of success, ε ε= ≥ − ≥ . 

Let I be the set consisting of the most likely indices i, { ,Pr[ ] 1/ 2 }i HI i S S q= ≥ . The following lemma claims 

that, in case of success, the index lies in I with probability at least 1
2 . 

Lemma 3.3 Pr[ ( , ) ] 1/ 2Ind H I Sω ∈ ≥ . 

Proof: By definitions of the sets , iS Pr[ ( , ) ] Pr[ ] 1 Pr[ ]i ii I i I
Ind H I S S S S Sω

∈ ∉
∈ = = −∑ ∑ . 
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Since the complement of I contains fewer than Hq elements, this probability is at least 1
21 1/ 2H Hq q− × ≥ .  

We now run the attacker 2 / ε times with randomω  and random H. Since Pr[ ] 6 / 7v S ε= ≥ , with 

probability greater than , we get at least one pair2/ 12/ 71 (1 6 / 7) 1 eεε −− − ≥ − ( , )Hω  in . It is easily seen 

that this probability is lower bounded by 

S
12 / 7 4

51 e−− ≥ . 

We now apply lemma 3.1 for each integer i : we denote by HI∈ i the restriction of H to the queries of index 

strictly less than i. Since , there exists a subset Pr[ ] / 2i HS v q≥ iΩ of executions such that, 

for any ( , ) ,  Pr [( , ) ] / 4 ,i H i i i HH H S H H v qω ω′ ′ ′∈Ω ∈ = ≥  

Pr[ ] 1/ 2.i iSΩ ≥  

Since all the subsets  are disjoint,  iS

,Pr [( )( , ) ]H ii I H S Sω ω∃ ∈ ∈Ω ∩ i  

Pr[ ( ) ]i i
i I

S S
∈

= Ω ∩∪  

Pr[ ]i i
i I

S S
∈

= Ω ∩∑  

Pr[ ]Pr[ ]i i i
i I

S S S
∈

= Ω∑  

( Pr[ ]) / 2i
i I

S S
∈

≥ ∑  

1
4≥  

We let β denote the index ( , )Ind Hω corresponding to the successful pair. With probability at least 1/4, 

Iβ ∈  and ( , )H Sβ βω ∈ ∩Ω . Consequently, with probability greater than 1/5, the 2 / ε attacks have 

provided a successful pair ( , )Hω , with ( , )Ind H Iβ ω= ∈ and ( , )H Sβω ∈ . Furthermore, if we replay the 

attack, with fixed ω but randomly chosen oracle H ′ such that H Hβ β′ = , we know that 

Pr [( , ) ] / 4H HH S H H v qβ β βω′ ′ ′∈ = ≥ . Then 

Pr [( , ) and ]H H S H Hβ β β β βω ρ ρ′ ′ ′∈ ≠ = ′  

                      Pr [( , ) ] Pr [ ]H HH S H Hβ β β β βω ρ ρ′ ′′ ′ ′≥ ∈ = − ＝  

                      / 4 1/ 2Hv q λ≥ −  

                      /14 Hqε≥  

where ( )H Qβ βρ = and ( )H Qβ βρ′ ′= . We replay the attack14 /Hq ε times with a new random oracle 
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H ′ such that H Hβ β′ = . With probability greater than , we get another 

success. 

14 /1 (1 /14 ) 3 / 5Hq
Hq εε− − >

Finally, after less than 2 / 14 /Hqε ε+ repetitions of the attack, with probability greater than 31 1
5 5 9× ≥ , we 

have obtained two valid signatures (m, ID, r, h, s) and ( , , , , )m ID r h s′ ′ ′ ′  with ( , ) ( , )Q m r m rβ ′ ′= = and 

distinct challenges . ( ) ( )h H Q H Q hβ β′ ′= ≠ =

Theorem 3.4 Let (Setup, Extract, Sign, Verify) be a generic ID-based signature scheme with security 

parameterλ , be a probabilistic polynomial time Turing machine whose input only consists of public data and 

which can only ask to the random oracle and private key extraction oracle. We denote by 

A

Hq the number of queries 

that can ask to the random oracle, with . Assume that, within a time bound T, produces, with 

probability 

A 0Hq > A

7 / 2Hq λε ≥ , a valid signature (m, ID, r, h, s). Then there is another machine which has control over 

and produces two valid signatures (m, ID, r, h, s) andA ( , , , , )m ID r h s′ ′ such that , in expected 

time

h h′≠

84480 /HT q T ε′ ≤ . 

Proof: It is better to see the resulting machine as an expected polynomial time Turing machine:  M

1. initializes j=0； M

2. runs A until it outputs a successful pairM ( , )H Sω ∈ and denotes by jN the number of calls to  

to obtain this success, and by

A

β the index ( , )Ind Hω ； 

3. replays, at most 140M j
jN α times, with fixedA ω  and random such thatH ′ H Hβ β′ = , 

where 8
7α = ； 

4. increments j and returns to 2, until it gets a successful forking.  M
For any execution of , we denote by J the last value of j and by N the total number of calls to . We want 

to compute the expectation of N. Since , and , then . We 

define , so that, 140

M A

Pr[ ]v S= 1jN ≥ 1/5Pr[ 1/ 5 ] (1 ) 3 / 4v
jN v v≥ = − ≥

log Hl qα= ⎡⎢ ⎤⎥ 28 /j
j HN qα ε≥ for any j l≥ , whenever . Therefore, for 

any

1/ 5jN ≥ v

j l≥ , when we have a first success in , with probability greater than 1/4, the index S ( , )Ind Hβ ω=  is in 

the set I and ( , )H Sβ βω ∈ ∩Ω . Furthermore, with probability greater than 3/4, . Therefore, with 

the same conditions as before, that is

1/ 5jN ≥ v

7 / 2Hq λε ≥ , the probability of getting a successful fork after at most 

28 /Hq ε iterations at step 3 is greater than 6
7 . 

For any , the probability for J to be greater or equal to t is less thant l≥ 3 61
4 4 7(1 )t l−− × × , which is less than 
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t lγ − , with 6
7γ = . Furthermore, since , 

1

1
[ ] (1 ) 1/

i

j i
E N iv v v

−∞

=
= − =∑

1

0 0

141 141[ ] ( [ ] 140 [ ] )
1

tj t j t
j j

j j
j j

E N J t E N E N
v v

αα α
α

+= =

= =

= ≤ + ≤ × ≤ ×
−∑ ∑  

So, the expectation of N is 

[ ] [ ]Pr[ ]
t

E N E N J t J t= = =∑  

                               
1141 ( ) Pr[
1

t

t
J t

v
α
α

+

≤ ≥
−∑ ]  

                               
1 11

0

165[ ( ) ( )
1 1

t tt l
t l

t t l

α α ]γ
ε α α

+ += −
−

= ≥

≤ +
− −∑ ∑  

                               
1165 1[ (

( 1) 1

l
t

t

α ) ]αγ
ε α α

+

≤ +
− − ∑  

                               
1165 1 1( )

( 1) 1 1

lα .
ε α α αγ

+

≤ +
− − −

 

Using the definition of and the values ofl α andγ , we obtain 

64 84480165[ ] (7 49) .
7

H Hq qE N
ε ε

≤ ⋅ ⋅ + =  

Lemma 3.5 Let (Setup, Extract, Sign, Verify) be a generic ID-based signature scheme with security 

parameterλ , be a probabilistic polynomial time Turing machine whose input only consists of public data and 

which can ask to the random oracle , private key extraction oracle and the signing oracle. We denote respectively by 

A

Hq and the number of queries that can ask to the random oracle and the number of queries that can ask to 

the signer. Assume that, within a time bound T, A produces, with probability

Sq A A

10( 1)( ) / 2S S Hq q q λε ≥ + + , a 

valid signature (m, ID, r, h, s). If the triples (r, h, s) can be simulated without knowing the secret key, with an 

indistinguishable distribution probability, then, a replay of the attacker A , where interactions with the signer are 

simulated, outputs two valid signatures (m, ID, r, h, s) and ( , , ,r h , )m ID s′ ′  such that , within time h h′≠

23 /HT q T ε′ ≤  and with probability 1/ 9ε ′ ≥ . 

Proof: As in the previous proof, we let 1, ,
HqQ Q… denote the Hq distinct queries to the random 

oracle, 1, ,
Hqρ ρ… the respective answers, and the queries（possibly all the same）to the signing 

oracle. Using the simulator, we can simulate the answers of the signer without knowledge of the secret key. For a 

1, ,
Sqm m… Sq
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message , the simulator answers a triple . Then, the attacker assumes thatim ( ) ( ) ( )( , , )i i ir h s ( ) ( )( , )i i
iH m r h=  

and stores it. The previous proof can be exactly mimicked, expect for the problem added by the simulations: there is 

some risk of “collisions” of queries, or supposed queries, to the random oracle. Recall that in the definition of 

generic ID-based signature schemes, we made the assumption that the probability for a “commitment” to be 

output by the signing oracle is less than

( )ir

2 / 2λ . Then, two kinds of collisions can appear: 

1. A pair that the simulator outputs also appears in the list of questions asked to the random 

oracle by the attacker (some question

( )( , )i
im r

jQ ). The probability of such an event is less than 

2 / 2 / 5H Sq q λ ε≤ . 

2. A pair that the simulator outputs is exactly similar to another pair produced by this simulator 

(some question ). The probability of such an event is less than . 

( )( , )i
im r

( )( , )j
jm r 2 / 2 2 / 2 /10Sq λ ε× ≤

Altogether, the probability of collisions is less than 3 /10ε . Therefore, 

,Pr [  succeeds and no-collisions]Hω A  

, ,Pr [ succeeds] Pr [collisions]H Hω ω≥ −A  

                                    3
10( )ε≥ 1-  

                                    7 /10ε≥  

This is clearly greater than 7 / 2Hq λ . We can then apply Lemma 3.2. Such a replay succeeds with probability 

1
9ε ′ ≥ , within time 16 10 / 7 23 /H HT q T q Tε ε′ ≤ × ≤ . 

Theorem 3.6 Let (Setup, Extract, Sign, Verify) be a generic ID-based signature scheme with security 

parameterλ , be a probabilistic polynomial time Turing machine whose input only consists of public data and 

which can ask to the random oracle , private key extraction oracle and the signing oracle. We denote respectively by 

A

Hq and the number of queries that can ask to the random oracle and the number of queries that can ask to 

the signer. Assume that, within a time bound T, A produces, with probability

Sq A A

10( 1)( ) / 2S S Hq q q λε ≥ + + , a 

valid signature (m, ID, r, h, s). If the triples (r, h, s) can be simulated without knowing the secret key, with an 

indistinguishable distribution probability, then there is another machine which has control over the machine 

obtained from A replacing interaction with the signer by simulation and produces two valid signatures (m, ID, r, h, 

s) and  such that ( , ,D r, , )m I h s′ ′ h h′≠  in expected time 120686 /HT q T ε′ ≤ .  

Proof: The collusion of the attacker and the simulator defines a Turing machine which can only ask to 

the random oracle and private key extraction. An execution of B is successful if it outputs a forgery, and if there is 

no collisions of queries to the random oracle during the process. Then, within a time bound T, has a probability of 

A S B

B
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success greater than 7 /10 7 / 2Hq λε ≥ . Using Theorem 3.4, within an expected number of steps bounded by 

84480 /(7 /10) 120686 /Hq T q THε ε≤ , one can provide two signatures (m, ID, r, h, s) and 

 such that( , , , , )m ID r h s′ ′ h h′≠ .                                                            
 

4   A new and efficient ID-based signature scheme 

The identity-based signature scheme is specified by four algorithms: 

Setup：Given a security parameter1 ( , the parameter generator follows the steps.  )λ λ ∈N
 Generate cyclic groups 1( , )+G , and (2( , )+G ,T )⋅G of prime order 2q λ> , an isomorphism ψ  

from to , and a bilinear pairing 2G 1G 1 2ˆ : Te × →G G G . Pick a random generator and 

set

2Q∈G
( )P Qψ= . 

 Pick a random and compute . *
qs∈Z pubP s= P

 Pick two cryptographic hash functions  and . * *
1 :{0,1} qH → Z *

2 1:{0,1} qH × →G Z
The public parameters are 1 2 1 2ˆ( , , , , , , , , , , )T pubpara q P Q P e H Hψ= G G G . 

Extract ： Given an identifier string of an entity, the algorithm computes 

 and , it returns a private key as . 

*{0,1}ID∈

1( ( ))IDQ s H ID= + P Q1
1( ( ))IDS s H ID −= + IDS

Sign：In order to sign a message , the signer performs as follows. *{0,1}m∈

 Pick a random and compute . *
qx∈Z 1r xP= ∈G

 Set . 2 ( , ) qh H m r= ∈Z
 Compute . 2( ) IDS x h S= + ∈G

Verify：The verifier computes , a signature2 ( , )h H m r= ( , )r Sσ = on a message of an entity with 

identity ID is valid if and only if . 

m
ˆ ˆ ˆ( , ) ( , ) ( ,IDe Q S e r Q e hP Q= )

Obviously, the new scheme is a GIBSS. We now prove that the triples ( , can be simulated without the 

knowledge of the signer’s secret key. 

, )r h S

Lemma 4.1 Given 1 2 1 2ˆ( , , , , , , , , , , )T pubq P Q P e H HψG G G and an identity ID ，

, . The following distributions are the same. 1( ( ))IDQ s H ID P= + 1( ( ))S s H ID Q−= + 1ID

*

*
      

      
      

      
( , , ) ( , , )       

      
( )        

R q

R q
R q

R q

ID

ID

c
x

h
h

r h S r h S S cQ
r xP r cQ hP

S x h S r

δ δ

⎧ ⎫∈
⎪ ⎪⎧ ⎫∈

∈⎪ ⎪⎪ ⎪
∈⎪ ⎪ ⎪ ⎪′= = =⎨ ⎬ ⎨ ⎬
=⎪ ⎪ ⎪ ⎪= −⎪ ⎪ ⎪ ⎪= +⎩ ⎭ ≠⎪ ⎪

⎩ ⎭

 and 

Z
Z Z
Z

O
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Proof: First we choose a triple ( , , )α β γ from the set of the signature: let ,*
1α ∈G qβ ∈Z , such 

that 

*
2γ ∈G

ˆ ˆ ˆ( , ) ( , ) ( ,IDe Q e Q e P Q)γ α β= ⋅ . We then compute the probability of appearance of this triple following 

each distribution of probabilities: 

[ ] 0

      
1Pr ( , , ) ( , , ) Pr        .

( 1)
 ( )

x

ID

xP
r h S h

q q
x h S

δ

α
α β γ β

γ
≠

=⎡ ⎤
⎢ ⎥= = = =⎢ ⎥ −
⎢ ⎥+ =⎣ ⎦

 

[ ] 1Pr ( , , ) ( , , ) Pr           .
( 1)

      

ID

r

r cQ hP
r h S h

q q
S cQ

δ

α
α β γ β

γ
′ ≠

= = −⎡ ⎤
⎢ ⎥= = = =⎢ ⎥ −
⎢ ⎥= =⎣ ⎦

O  

That is, we can construct a simulator , which produces triples ( , with an identical distribution from 

those produced by the signer, as follows: 

M , )r h S

Simulator  For input：M 1 2 1 2ˆ( , , , , , , , , , , )T pubq P Q P e H HψG G G and , IDQ

1.  randomly chooses ,M *
qc∈Z qh∈Z ; 

2. sets  andM S cQ= IDr cQ hP= − ; 

3．In the (unlikely) situation where r =O , we discard the results and restart the simulation; 

4． returns the triple . M ( , , )r h S

Theorem 4.2 In the random oracle model, assume that there is an adaptively chosen message and identity 

attacker F0 whose input only consists of public data, which has advantage 
2

10( 1)( ) /S S Hq q q qε ≥ + +  

against our scheme when running in a time T and makes queries to random oracle and queries 

to the signing oracle Sign(.). Then there exists an algorithm  that is able to solve problem in an 

expected time 

iq ( 1,2)iH i = Sq

2F
1

CAAHq −

1 2 1120686 ( ) /H H Sq q T q t ε+ , where  denotes a signing operation.  1t

Proof: From lemma 4.1, we can see that a valid signature of our scheme can be simulated without 

knowing the secret key, with an indistinguishable distribution probability. With the Theorem 3.6, using adversary 

, we can construct another adversary , given public key , can produces two valid 

signatures  and such that 

( , , )r h S

0F 1F IDQ

( , , , , )m ID r h S ( , , , , )m ID r h S′ ′ h h′≠ in expected time less than 

2
120686 /Hq T ε . Note that, can not ask to the signing oracle, but can ask to the random oracle and private 

key extraction oracle.  

1F

From the adversary , we can construct a probabilistic algorithm such that solves  

problem. Algorithm takes as input an instance , 

1F 2F 2F
1

CAAHq −

2F
1 1

1 1
0 1 1{ , , , ( , ( ) ), , ( , ( ) )}

H Hq qQ xQ h h h x Q h h x Q− −+ +…
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2Q∈G , ，
*

R qx∈ Z *
i R qh ∈ Z

1
( 0, , )Hi q= … and are both different, it aims at computing . ih 1

0( )h x Q−+

1．  generates2F 1 ˆ, , , , , , ,T P q e H H1 2ψG G , element of prime order , a publicly computable 

isomorphism 

P q

ψ  from to , and a bilinear pairing 2G 1G 1 2ˆ : Te × →G G G 1G , ( )P Qψ= , two 

hash functions  and ; * *
1 :{0,1} qH → Z *

2 1:{0,1} qH × →G Z

2．  sets2F ( )pubP xQ xPψ= = , 

3．  randomly chooses ，2F t
1

1 Ht q≤ ≤ ;  

4．  runs  with 2F 1F 1 2 1 2ˆ( , , , , , , , , , , )T pubpara q P Q P e H Hψ= G G G . During the execution,  

emulates ’s oracles as following: 

2F

1F

 ：For input1(.)H ID , checks if is defined. If not, he defines 2F 1( )H ID

0
1

     
( )

     i

h i
H ID

h i t
t=⎧

= ⎨ ≠⎩
 , and sets iID I← D , 1i i← + .  returns to. 2F 1( )H ID

 ：For input , checks if is defined. If not,  picks randomly , 

sets

2 (.)H ( , )m r 2F 2 ( , )H m r 2F qc∈Z

2 ( , )H m r c← .  returns to . 2F 2 ( , )H m r 1F

 ：For input(.)Extract iID , if ， randomly choosesi t= 2F 2M ∈G  and enters step 6; if , 

 sets  to be reply to . 

i t≠

2F 1( )i iS x h Q−= + 1F

5．If outputs two valid signatures  and 1F ( , , , , )m ID r h S ( , , , , )m ID r h S′ ′  such that , can 

compute as follows: 

h h′≠ 2F

1( ) ( )M h h S S−′ ′= − − . 

6.  outputs2F M which is returned as a result of  and stops. 1
0( )h x Q−+

From the above construction, when chosen by is exactly the index of identity of entity for 

which outputs signature, we believe that the result outputs must be correct, the probability that outputs 

correct results is no less than 

t 2F

1F 2F 2F

1
1/ Hq times the probability that  succeeds, ’s oracles are both emulated by . 

So the execution time of  increases fromT to

1F 1F 2F

0F 1ST q t+ , that is, the execution time of is no more than 1F
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2 1120686 ( ) /H Sq T q t ε+ . Then we can get the result of within the time 1
0( )h x Q−+

1 2 1120686 ( ) /H H Sq q T q t ε+ .                                                               

5   Conclusion 

 This paper successfully extends the Forking Lemma for ID-based signature schemes. Using the result of this 
paper, a large class of ID-based signature schemes, which we called generic ID-based digital signature schemes, can 
be proved to be secure easily in the random oracle model. Furthermore, we present a new and efficient ID-based 
signature scheme and the security proof of our scheme. 
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