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Abstract. Although cryptographic implementation tasks are often un-
dertaken by expert programmers, a plethora of performance and security
driven options, as well as more mundane software engineering issues, still
make this a challenge. In an attempt to transfer expert knowledge into
automated tools, we investigate the use of domain specific language and
compilation techniques for cryptographic software, focusing on ECC in
particular. Specifically, we describe experiments for specialisation of fi-
nite field arithmetic from general purpose code, and the description and
optimisation of ECC point arithmetic using a cryptography-aware lan-
guage and compiler. Our main results show that it is possible to allow
description of ECC based software in a manner close to the original
mathematics, while allowing the automatic production of an executable
whose performance is close to that of a hand-optimised implementation.

1 Introduction

The increasing ubiquity of mobile computing devices has presented program-
mers with a problem. On one hand, such devices are required to be as compact
and low-power as possible; on the other hand they are increasingly required to
perform significant computational tasks. This dichotomy is further complicated
by the issue of security which represents a restrictive overhead within many
applications. Not only must the device execute algorithms that satisfy the ap-
plication context, for example the use of digital signatures on smart-cards, but
increasingly they must implement countermeasures against physical attack. An
example is the concept of side-channel attack. By targeting the algorithm imple-
mentation rather than the mathematical underpinnings, such attacks are often
able to recover secret information from a device simply by passive monitoring of
features such as timing variation [15], power consumption [16] or electromagnetic
emission [1].

Elliptic Curve Cryptography (ECC) offers a popular solution to the problem
of implementing security using public key cryptography in constrained environ-
ments. The security of RSA, the most popular algorithm in other domains such
as e-commerce, is based on the hardness of integer factorisation; ECC is based



on the the Elliptic Curve Discrete Logarithm Problem (ECDLP). Since there is
no known sub-exponential time algorithm to solve the ECDLP, ECC keys can
be shorter than their RSA analogues while achieving the same security level: a
160-bit ECC key is roughly equivalent to a 1024-bit RSA key. This means an
ECC based system is typically more efficient and utilises less resources than one
based on RSA. Furthermore, flexibility in the mathematics that underpins ECC
means that countermeasures against side-channel attack are both well studied
and readily available; see for example [7][Chapters 4 and 5].

At face value, ECC based cryptographic schemes seem an ideal partner for
mobile computing. However, the programmer is still faced with the problem of
actually implementing said schemes. This presents two further hurdles. Firstly,
the programmer is expected to be expert in an an extremely broad and fast mov-
ing field. The assumption that such a rich body of research can be absorbed and
applied without error is tenuous for even the most expert programmer. Secondly,
the programming tools presented to the developer to assist the construction of
software within this specific context are relatively rudimentary. In particular,
conventional programming languages and compilers are less than ideal: they do
not support the types and operations required and thus cannot perform the opti-
misation and analysis typically offered to the programmer. Often, cryptographic
software is described in a pseudo-high-level language: there are structured con-
trol flow statements but operations are otherwise at the level one would expect
in a low-level language. The compiler cannot apply even basic optimisations such
as register allocation when non-native types are used; it certainly cannot detect
or resolve security related errors as it might do with errors relating to functional
correctness. Standard software engineering issues such as maintainability add
even further to this increasingly difficult task.

The natural solution is to investigate the use of domain specific languages and
compilation techniques for cryptography. We attack the problem simultaneously
in two directions. Firstly, we allow cryptographic software to be written in a do-
main specific language. The central principle is that concepts of cryptographic
interest, particularly those relating to implementation, should be conveyed to
the cryptography-aware compiler by the programmer via first class language
features. The hope is that programmers will derive similar benefits to those
experienced by switching from low-level assembly languages to higher-level lan-
guages. That is, by expressing their programs in a more natural manner and
offering automated analysis, optimisation and transformation, a programmer
will improve their productivity, reduce their rate of error and generally pro-
duce software of a higher quality. Secondly, we use specialisation techniques to
automatically construct efficient run-time support systems from generic library
code. By having the high-level program communicate system parameters to the
compiler, it can generate a run-time that specifically matches the needs of that
program and thus can be more efficient than the general library code.

The paper is organised as follows. We use Section 2 to present background
material including brief overview of the fundamentals behind ECC and a de-
scription of our experimental platform. In Section 3 we present an implementa-



tion of curve arithmetic that utilises domain specific programming language and
compilation techniques. Methods for optimising this implementation are then
demonstrated in Section 4: we focus on automatic specialisation of field arith-
metic in Section 4.1, placement of modular reduction operations in Section 4.2,
and cache conscious ordering of field operations in Section 4.3. Finally we present
some conclusions and areas for further work in Section 5.

2 Background

An Introduction to ECC Elliptic Curve Cryptography (ECC) was invented
during the mid 1980s in independent work by Miller [18] and Koblitz [13], then
generalised to include Hyperelliptic Curve Cryptography (HECC) by Koblitz [14]
in 1989. We concentrate here only on ECC, for further reading on all issues
covered in this basic introduction, see Menezes et al. [11], Blake et. al [6, 7] or
Cohen et al. [8].

An elliptic curve E over the finite field K is defined by the general Weierstrass
equation

E(K) : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

for ai ∈ K. The K-rational points on a curve E, i.e. those (x, y) ∈ K2 which
satisfy the curve equation, plus the point at infinite O, form an additive group
under a group law defined by the chord-tangent process. Using basic coordinate
geometry and given two points P1 = (x1, y1) and P2 = (x2, y2), one constructs
arithmetic to compute the point P3 = (x3, y3) = P1 + P2 as follows:

x3 = λ2 + a1λ− a2 − x1 − x2

y3 = (x1 − x3)λ − y1 − a1x3 − a3

where

λ =




3x2
1+2a2x1+a4−a1y1
2y1+a1x1+a3

if P1 = P2

y1−y2
x1−x2

if P1 6= P2

We term the case where P1 6= P2 (resp. P1 = P2) point addition (resp. point
doubling). Calculating the negation of a point, i.e. finding −P1 given P1, is
computationally easy and so subtraction is usually performed using a negation
following by an addition.

The point arithmetic described above includes an inversion in K, which is an
expensive operation, to compute the value λ. To eliminate it, one can consider the
use of projective coordinates and represent points on E using a triple (x, y, z) ∈
K3 rather than simply (x, y) ∈ K2. Of many systems, one of the most common is
the use of Jacobian projective coordinates, a map between projective and affine
spaces given by

(X, Y, Z) 7→ (X/Z2, Y/Z3)



where the curve equation is now given by the homogenised Weierstrass equation

E : Y 2 + a1XY Z + a3Y Z3 = X3 + a2X
2Z2 + a4XZ4 + a6Z

6.

One can show that the resulting point arithmetic can be constructed without
inversions in K. Furthermore, for specific K we simplify the general Weierstrass
equation via a change of variables; the most common cases of K = Fp, for some
large prime p > 3, and K = F2n , for some integer n, yield

E(Fp) : Y 2 = X3 + aXZ4 + bZ6

for a, b ∈ Fp and

E(F2n) : Y 2 + XY Z = X3 + aX2Z2 + bZ6

for a, b ∈ F2n . For E(Fp) it is common to fix a = −3 since this simplifies
arithmetic on points.

With all of this in mind, the efficiency of ECC based schemes depends on
three main features: the efficiency of arithmetic in K, the efficiency of arithmetic
involving points on E and the efficiency of the exponentiation algorithm to
compute point multiplications.

An Introduction to the Experimental Platform To provide a consistent
experimental platform for the rest of the paper we selected a typical embedded
processor solution from ARM. More specifically, we selected the ARM946E-S
macro-cell [2] which incorporates a 32-bit ARM9 processor core. Although the
core can be clocked much faster, we opted to use a modest 16 MHz. The processor
core supports the ARM Thumb instruction set and a range of DSP extensions,
although we do not use either. The macro-cell allows the processor core to be
coupled internally to a configurable amount of Harvard style cache memory. For
each of the data and instruction caches, we opted for the smallest 4-way set
associative format with a 4-kB capacity arranged in 32-byte lines. Configured
as such, the macro-cell is ideal for deployment in applications where high per-
formance, low cost, small size and low power are key. ARM cites the embedded,
media, communication and networking markets as targets; the macro-cell plays
a central role in the Nintendo DS and Nokia N-Gage products. Development for,
and simulation of, the ARM946E-S was performed using the ARM Developer
Suite (ADS) 1.2. Although it is not perfectly accurate, we used the ARMulator
instruction set simulator to obtain run-time statistics since this afforded a good
compromise between ease and accuracy of experimentation.

3 Implementation of Curve Arithmetic

The basic purpose of a compiler for a high-level language is to translate a pro-
gram into a lower-level (or executable) form. Essentially this mechanises the
processes that an expert programmer might perform by hand and, as a result,



λ1 ← 3(x1 − z2
1)(x1 + z2

1)
z3 ← 2y1z1

λ2 ← 4x1y
2
1

x3 ← λ2
1 − 2λ2

λ3 ← 8y4
1

y3 ← λ1(λ2 − x3)− λ3

dbl( x1 : gfp, y1 : gfp, z1 : gfp )
: gfp, gfp, gfp

{
l1 : gfp := 3 * ( x1 - z1**2 )

* ( x1 + z1**2 );
z3 : gfp := 2 * y1 * z1;
l2 : gfp := 4 *x1 * y1**2;
x3 : gfp := l1**2 - 2 * l2;
l3 : gfp := 8 * y1**4;
y3 : gfp := l1 * ( l2 - x3 ) - l3;

return x3, y3, z3;
}

Fig. 1. Two descriptions of point doubling P3 = (x3, y3, z3) = 2 · P1 given P1 =
(x1, y1, z1) using Jacobian projective coordinates on E(Fp). The left-hand side
is described in terms of the original formula from [6][Page 60], the right-hand
side is the associated translation into CAO.

removes the associated tedium and error. Since the compiler is empowered with
knowledge about the semantics of operations and types in the language, it can
manipulate the program into a high-quality result while allowing the program
specification to exist in a form which is natural to the programmer.

As such, an ideal route to implementation of ECC point arithmetic would be
to simply write down formula, using a high-level programming language, as one
finds them in a text book and then execute the compiled result. However, using a
language which supports the types and operations required, such as Magma [9],
seldom results in an efficient result. Conversely, using a language which supports
efficient compilation, such as C, seldom results in easy translation since there is
typically no native support for required types and operations.

As a means of allowing common compilation techniques to be applied to
natural descriptions of ECC, we use the CAO language and associated compiler
system [20]. Figure 1 demonstrates how one might translate text book formula
for point doubling, using Jacobian projective coordinates on E(Fp), into a CAO
function. Notice that the CAO function is able to naturally express the original
formula since the language is equipped with a type system that includes Fp. The
CAO compiler is able to produce the NTL [22] based implementation detailed
in Figure 2, which closely matches that one would construct by hand, using a
range of standard optimisation techniques.



void dbl( ZZ_p& x3, ZZ_p& y3, ZZ_p& z3,
ZZ_p& x1, ZZ_p& y1, ZZ_p& z1 )

{
ZZ_p t0, t1, t2, t3, t4;

sqr( t2, z1 ); sub( t1, x1, t2 ); add( t0, t1, t1 );
add( t1, t0, t1 ); add( t0, x1, t2 ); mul( t4, t1, t0 );
add( t0, x1, x1 ); add( t1, t0, t0 ); sqr( t0, y1 );
mul( t3, t1, t0 ); sqr( t0, t0 ); add( t0, t0, t0 );
add( t0, t0, t0 ); add( t2, t0, t0 ); add( t0, y1, y1 );
mul( z3, t0, z1 ); sqr( t1, t4 ); add( t0, t3, t3 );
sub( x3, t1, t0 ); sub( t0, t3, x3 ); mul( t0, t4, t0 );
sub( y3, t0, t2 );

}

Fig. 2. The result of automatically compiling a CAO implementation of point
doubling, shown in Figure 1, into an NTL based function (with slight hand
modification used to improve readability).

4 Optimisation of Curve Arithmetic

4.1 Specialisation of Field Arithmetic

The description of ECC in Section 2 highlights the pivotal role of field arithmetic
in overall performance. However, general purpose software libraries are often less
than ideal in this context. Perhaps the most succinct written description of the
problem is given by Avanzi [3] while discussing issues of performance in HECC.
He states that general purpose software libraries:

... all introduce fixed overheads for every procedure call and loop, which
are usually negligible for very large operands, but become the dominant
part of the computations for small operands such as those occurring in
curve cryptography.

In part, this is an obvious statement. Expert programmers routinely optimise
and specialise their programs to avoid such overheads, potentially with some
assistance from their compiler. This is especially true given that there are various
ECC standards which specify a limited range of parameterisations. One can
easily specialise for these particular cases. However, it is a vastly important
statement from a software engineering perspective. Most programmers are not
expert, especially in the context of cryptography where they may not even fully
understand the underlying mathematics; they are bound by deadlines as well
as performance targets; they might need to port their code to many different
platforms and environments rather than for one-off use in a research paper.

To combat this problem, we investigated the feasibility of automatically gen-
erating special purpose field arithmetic code from a corpus of general purpose



SECT163R1 SECT233R1 SECT283R1 SECT409R1 SECT571R1
Add Sqr Mul Add Sqr Mul Add Sqr Mul Add Sqr Mul Add Sqr Mul

A 5 77 577 7 68 937 7 115 961 10 102 1454 15 212 3545
B 1 27 386 1 33 743 2 42 756 4 48 1166 6 66 3017
C 1 27 373 1 30 681 2 36 719 4 44 1454 6 77 3077

SECP192R1 SECP224R1 SECP256R1 SECP384R1 SECP521R1
Add Sqr Mul Add Sqr Mul Add Sqr Mul Add Sqr Mul Add Sqr Mul

A 9 178 188 10 234 248 11 283 301 13 571 618 30 1099 1179
B 7 58 60 7 76 80 9 147 159 9 221 261 20 384 747
C 7 58 60 7 76 80 9 147 159 9 221 261 20 384 747

Fig. 3. A comparison, with time in terms of microseconds, between three differ-
ent implementations of arithmetic in F2n and Fp for standard values of n and
p.

library code. The idea is that once the programmer has specified parameters in
a high-level program, the compiler can specialise the generic library code into
an efficient run-time and link it to the application. As such, Table 3 compares
the performance of three different implementations of arithmetic in the field F2n

and Fp for values of n and p that match those used in the SECG recommended
domain parameters [21]. We focused on the core operations of field addition,
squaring and multiplication. Although field inversion would also be required for
a full ECC implementation, the use of projective coordinates means this oper-
ation is not significantly relevant to performance. The three implementations
were constructed as follows:

Implementation A Entirely generic implementation in the sense that the same,
correctly parameterised code would work for any n or p. For arithmetic
in F2n the standard table based coefficient thinning method was used for
squaring [11][Pages 52-53], multiplication was performed using the right-
to-left comb method [11][Pages 48-51], the reduction used a generic word-
wise approach [11][Pages 53-56]. For arithmetic in Fp standard integer addi-
tion [11][Page 20], multiplication [11][Page 31] and squaring [11][Page 35]
were used; modular reduction was performed using the method of Bar-
rett [11][Page 36].

Implementation B Same as Implementation A except that several core func-
tions were specialised by hand to remove some of the obvious bottlenecks
in performance. For example, in the arithmetic for F2n both the addition
and vector shift functions were turned into macros with their inner loops
fully unrolled so as to remove function call and loop overheads. The stan-
dard specialised reduction functions were implemented and utilised for each
field [11][Pages 44-46 and 53-56].

Implementation C Has the same forms of specialisation as Implementation B
but applied automatically using the Tempo 1.202 [10] specialisation system.



In order to specialise a given C function, the user specifies an execution con-
text which details variables that will have static, constant values or dynamic,
changing values. Tempo uses the value of static variables to perform aggres-
sive transformations such as constant propagation, loop unrolling and dead
code elimination; the end result is a function that is semantically the same
as the original when the execution context is the same as that specified.
The input to Tempo was taken directly from Implementation A with the only
other inputs being constants relating to the field parameterisation that de-
fined the execution context. The one caveat to this is the reduction function
for arithmetic in Fp which was automatically generated using an external
program that implemented the method of Solinas [23].

We used the ARM C compiler in all cases, with assembly language inserts to
accelerate specific code segments and all compiler options tuned for speed. Com-
parison between Implementations A and B reveal what one would expect: the
specialised version is quicker because the main overheads have been eliminated
by hand. The more interesting result is that Implementation C which was gen-
erated automatically from Implementation A matches the performance of the
hand specialised code in Implementation B: it actually often performs better,
due to a more aggressive loop unrolling strategy than that undertaken by hand,
until the point where it became too aggressive and misses in the instruction
cache hampered the result. In hindsight it should not be surprising that Tempo
was able to perform well with the given library code since the specialisation is
mainly related to loop unrolling, constant propagation and some static control
flow: essentially the specialisation requires no specific domain knowledge.

The key thing to note is that this positive result in terms of performance was
achieved in a fraction of the time in terms of programming effort. With the caveat
that any specialisation needs to be performed in context with the application
using the field arithmetic in order to achieve good results, we can easily realise
our goal of compiler assisted implementation by specialising a general purpose
library into a special purpose run-time for said application. There is no need for
the error prone and tedious specialisation by hand for each set of parameters;
this acts as an aid to expressiveness in the library code, programmer productivity
and portability of the entire system.

4.2 Lazy Reduction

Avanzi [3][Section 2.2] utilises what he terms lazy modular reduction techniques
to improve the performance of his results. Lazy reduction removes specific mod-
ular reduction operations, combining them in others so that their cost is amor-
tised. When working with the finite field Fp for example, this relaxes the con-
straint that intermediate results are strict members of Fp but improves perfor-
mance by potentially eliminating computation.

An easy example of the potential for lazy reduction is presented by use of
Barrett reduction [4] to implement arithmetic in Fp. Working on a processor
with word-size w one represents p using a vector of k base-b digits where b = 2w.



Index Operation Reduction
0 λ1 ← z2

1 redmul

1 λ2 ← x1 − λ1 redsub

2 λ3 ← x1 + λ1

3 λ4 ← λ2 · λ3 redmul

4 λ5 ← λ4 + λ4

5 λ6 ← λ5 + λ4

6 λ7 ← y1 · z1

7 z3 ← λ7 + λ7 redmul

8 λ8 ← y2
1 redmul

9 λ9 ← x1 · λ8

10 λ10 ← λ9 + λ9

Index Operation Reduction
11 λ11 ← λ10 + λ10 redmul

12 λ12 ← λ2
6 redmul

13 λ13 ← λ11 + λ11 redadd

14 x3 ← λ12 − λ13 redsub

15 λ14 ← λ2
8

16 λ15 ← λ14 + λ14

17 λ16 ← λ15 + λ15

18 λ17 ← λ16 + λ16 redmul

19 λ18 ← λ11 − x3 redsub

20 λ19 ← λ6 · λ18 redmul

21 y3 ← λ19 − λ17 redsub

Table 1. Sequence of operations with delayed reduction for point doubling P3 =
(x3, y3, z3) = 2 · P1, given P1 = (x1, y1, z1) (Jacobian projective coordinates on
E(Fp)).

Barrett presents a method for taking an integer 0 ≤ x < b2k and reducing it
modulo p without the need for an expensive division operation. If p does not
occupy a full k words, this leaves some unused storage. Consider for example
the specification of the SECP521R1 curve [21] where p = 2521 − 1, a value that
requires seventeen 32-bit words of storage but does not occupy 23 bits in the top
word. One would normally input values to the reduction function in the range
[0..p2), represented in 2k words, as the result of a multiplication. However, given
this specific value of p the function can comfortably accept values in, for example,
the range [0..16p2) due to the fact that 16p2 < b2k . The key issue is that for
this sort of suitable p, the cost of reduction with the relaxed input range is no
more than with the strict range: this is ideal for combination with the idea of
lazy reduction.

Montgomery representation [19] offers another efficient way to perform arith-
metic in Fp. To define the Montgomery representation of x, denoted xM , one
selects an R = bt > p for some integer t; the representation then specifies that
xM ≡ xR (mod p). To compute the product of xM and yM held in Montgomery
representation, one interleaves a standard integer multiplication with an efficient
reduction technique tied to the choice of R. We term the conglomerate opera-
tion Montgomery multiplication and denote it by zM = xM ? yM . Ordinarily,
one has that xM , yM , zM ∈ [0 . . . p) but it is possible to construct a redundant,
or non-reduced Montgomery representation so that the input ranges are relaxed
to xM , yM ∈ [0 . . . εp) for some suitable value of ε; roughly, this means selecting
R = bt > ε2p.

For example, Walter [24] selects ε = 2 in order to remove the need for the
conditional, final subtraction in the implementation of ?. For suitable p and ε this
again gives potential for combination with the idea of lazy reduction. However,
there is one extra caveat in realising this combination. Consider the integer



Algorithm 1: An algorithm to automatically find lazy reduction points.
Input : A straight-line function F , a bound on computation I and

initial weight Tinit.
Output: A set of lazy reduction points S, or ⊥ on failure.

S ←⊥
for T = Tinit downto 0 do

for i = 0 upto I do
Pick a set R ⊂ F of reduction sites so as to satisfy:
1. if d defines symbol r, which is later input to an operation

requiring a fully reduced operand, place a reduction after d.
2. otherwise place reductions randomly so there are T in total.

Check that the ranges of symbols in F satisfy:
1. for each symbol s, the symbol is within the maximum range.
2. for each definition d, the source operands are within the

range specified by the operation.
3. for each definition d, the target operands are within the

range of some reduction operation.

if R passes all constraints then
Evaluate c = cost(R), the cost of placed reductions.
if S =⊥ or c < cost(S) then

S ← R
return S

multiplication of two values held in Montgomery form z = xM · yM = xyR2,
and a standard value held in Montgomery form wM = wR. Unlike with the
use of Barrett reduction, where values are simply integers and the reduction
is simply accelerated, Montgomery form imposes a further constraint in that
one cannot add together z and wM or, more generally, unreduced and reduced
representations.

Defining Reasonable Constraints Our task is to take a program F and
automatically select a set R ⊂ F of points after which reduction operations will
be placed. We assume that F is straight-line and fairly short (which holds or
can be made to hold for most ECC related functions); that arguments to F are
fully reduced and that both return values and global variables need to be fully
reduced at the end of the program.

Because of the large degree of freedom involved, we use a Monte Carlo ap-
proach to form a solution, guided by a number of constraints on features such
as input and output ranges for given operations. For example, for a sequence of
additions, subtractions and multiplications in Fp we might impose the following
constraints:

1. The values of intermediate results cannot exceed the cmax.



2. We demand that
– x, y ∈ [0..cadd), and z ∈ [0..2 · cadd) for z = x + y type operations.
– x, y ∈ [0..p), and z ∈ (−p..p) for z = x− y type operations.
– x, y ∈ [0..cmul), and z ∈ [0..c2

mul) for z = x · y type operations.
3. We distinguish three reduction operations

– y = redadd(x) = x mod p where x ∈ [0..credadd
) and y ∈ [0..p).

– y = redsub(x) = x mod p where x ∈ (−credsub
.. + credsub

) and y ∈ [0..p).
– y = redmul(x) = x mod p where x ∈ [0..credmul

) and y ∈ [0..p)

For example, we might parameterise our constraint set as

cmax = 16p2 credadd
= 2p

cadd = 8p2 credsub
= p

cmul = 4p credmul
= 16p2

to roughly match the SECP521R1 curve [21] implemented using either Barrett
or Montgomery based arithmetic.

An Optimisation Algorithm Algorithm 1 gives a sketch of the (somewhat
naive) automated approach. Using the parameterisation above and run on the
code sequence for point doubling on E(Fp), our approach automatically produces
the weight 13 solution shown in Table 1 after just a second or so of processing.
This solution would be suitable, for example, in the case of the SECP521R1
curve [21]. Notice that the fact that our redundant representation has relaxed the
ranges of input operands to the reduction operation redmul means that we can
accumulate several additive operations as unreduced intermediates, and include
their reduction in a subsequent call to redmul with no extra cost. The solution
is not guaranteed to be optimal, but good quality solutions are found quickly; it
is vital to see that this automation frees the programmer from performing the
task manually, and ensures easy maintainability should F be changed and hence
require re-optimisation.

4.3 Cache Consciousness

Cache memories [12], which the ARM946E-S is enabled with, are small areas of
very fast memory placed between the processor and main memory. They hold a
subset of main memory, the aim being to hold the working set of a program and
hence accelerate memory access. However, the effectiveness of a given cache is
largely determined by the composition of the access stream; typical caches work
best when two principles of locality hold within the access stream. Temporal
locality means that recently accessed memory addresses are likely to be accessed
again in the near future. Spatial locality means that two addresses close to each
other in memory will be accessed close together in time. As such, it can be
attractive to restructure programs to better take advantage of the underlying
cache memories; see [17] for an overview of common optimisation techniques.



Index Original Reordered
0 λ1 ← z2

1 λ1 ← z2
1

1 λ2 ← x1 − λ1 λ2 ← x1 − λ1

2 λ3 ← x1 + λ1 λ3 ← x1 + λ1

3 λ4 ← λ2 · λ3 λ4 ← λ2 · λ3

4 λ5 ← λ4 + λ4 λ7 ← y1 · z1

5 λ6 ← λ5 + λ4 λ5 ← λ4 + λ4

6 λ7 ← y1 · z1 λ6 ← λ5 + λ4

7 z3 ← λ7 + λ7 z3 ← λ7 + λ7

8 λ8 ← y2
1 λ12 ← λ2

6

9 λ9 ← x1 · λ8 λ8 ← y2
1

10 λ10 ← λ9 + λ9 λ14 ← λ2
8

Index Original Reordered
11 λ11 ← λ10 + λ10 λ9 ← x1 · λ8

12 λ12 ← λ2
6 λ10 ← λ9 + λ9

13 λ13 ← λ11 + λ11 λ11 ← λ10 + λ10

14 x3 ← λ12 − λ13 λ13 ← λ11 + λ11

15 λ14 ← λ2
8 x3 ← λ12 − λ13

16 λ15 ← λ14 + λ14 λ15 ← λ14 + λ14

17 λ16 ← λ15 + λ15 λ16 ← λ15 + λ15

18 λ17 ← λ16 + λ16 λ17 ← λ16 + λ16

19 λ18 ← λ11 − x3 λ18 ← λ11 − x3

20 λ19 ← λ6 · λ18 λ19 ← λ6 · λ18

21 y3 ← λ19 − λ17 y3 ← λ19 − λ17

Table 2. Two orderings of operations for the point doubling P3 = (x3, y3, z3) =
2 · P1, given P1 = (x1, y1, z1), using Jacobian projective coordinates on E(Fp).

With this in mind, consider the operation sequences in Table 2 which im-
plement ECC point doubling on E(Fp). The left-hand sequence is what one
might call the natural ordering in the sense that it is converted directly from
the formula [6][Page 60]. The right-hand sequence has been reordered slightly
and, while it preserves the same semantics (i.e. it computes the same result), one
can think of it as having different locality properties. Specifically, the right-hand
sequence exhibits better temporal locality in the instruction stream, since access
to instructions that implement similar operations are grouped close together. To
highlight the effect of this, we implemented the two sequences using the previ-
ously described, automatically specialised field arithmetic for the SECP521R1
curve [21]. Keeping in mind that each operation is implemented using a poten-
tially long sequence of machine instructions, we found that over many executions
the right-hand sequence caused about 100 less misses in the instruction cache,
per-execution, than the left-hand sequence. Many factors would influence the
previous result: the cache architecture, linking and relocation of the executable
image, any form of multi-tasking, use of cache locking and so on. It should be
clear however that even though the saving is small, the use of compiler techniques
to automatically realise this saving is attractive.

An Optimisation Algorithm The technique of reordering the operations in
Table 2 to match some goal (locality is the guiding heuristic) is a simpler version
of that previously used to improve side-channel security (indistinguishability is
the guiding heuristic) [5]. This suggests that the algorithm used to perform
the latter optimisation could be successfully adapted to reorder sequences of
instructions so that they are more cache-friendly. The result is applied early in
the CAO compilation process, and is based on the generic optimisation algorithm
described in Algorithm 2. The optimiser makes S attempts to find an optimal
permutation of the input instruction sequence. In each of these attempts, the



original function is taken as the starting solution. The inner loop uses a set
of randomised heuristics which mutate the instruction sequence by introducing
sound permutations (i.e. respecting inter-instruction dependencies) to obtain a
neighbour solution. This solution is accepted if it does not represent a relative
cost increase greater than the current threshold value. The threshold varies with
t, starting at a larger value and gradually decreasing. The number of iterations S
and T must be adjusted according to the size of the problem. The cost function
tries to capture temporal locality quality

n∑
i=1

δIiω(Ii) + δOi[1]φ(Oi[1]) + δOi[2]φ(Oi[2]).

It accumulates the potential cache-induced overhead associated with the oper-
ation (Ii) and operands (Oi[1] and Oi[2]) at each of the n instructions in the
candidate solution. It is parameterised with weight information (functions ω and
φ) which provide a relative measure of the impact of a cache miss for each opera-
tion and operand. This weight information can also be used to bias the algorithm
towards favouring instruction cache locality or data cache locality. The δ values
represent the distance, i.e. the index difference, to the previous instruction where
the same operation/operand has occurred (for first occurrences this is taken to
be the full size of the function). The intuition behind this cost function is that
cache misses are more likely as the distance between repetitions increases.

We used the algorithm described above to improve the temporal locality of
two test case functions related to elliptic curve cryptography. The first function
is the ECC point doubling example described Table 2. The other test case is
significantly larger in size and corresponds to a point doubling for the general
case of the explicit formulae for genus 2 hyper-elliptic curves over finite fields
using affine coordinates. The results we obtained confirm the validity of this
high-level approach, which produces a (admittedly marginal, but completely
free) performance enhancement around 3%.

5 Conclusions

Thanks to a wealth of research and associated literature, implementation of ECC
has been demystified to the extent that its use is no longer exclusively restricted
to expert programmers. A balance to this increase in understanding is the wide
range of options as regards implementation and parameterisation: even when the
right algorithms and parameters are selected, the engineering and programming
tasks involved in construction of a working ECC cryptosystem are far from
trivial.

To address the issue of high-performance ECC implementation, we investi-
gated the use of compilation techniques to automatically assist a programmer.
The overarching goal is that the knowledge and experience of aforementioned
expert practitioners can be (partially) transfered into mechanised tools to im-
prove both productivity software quality. We introduced the CAO language and



Algorithm 2: An optimisation algorithm to improve temporal data and
instruction locality within a function.
Input : Instruction sequence and weight values for operations/operands.
Output: Reordered sequence with quasi-optimal temporal locality.

result← F
best← cost(x)
for s = 1 upto S do

x← F
cost← cost(x)
for t = 1 upto T do

x′ ← neighbour(x)
thresh← threshold(t, T )
cost′ ← cost(x′)
if (cost′/cost− 1) < thresh then

x← x′

cost← cost′
if cost < best then

result← x
best← cost

return result

associated compiler as a means of naturally describing cryptographically inter-
esting programs. These programs can be analysed by the compiler and undergo
cryptography-aware analysis, transformation and optimisation phases.
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