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Abstract

In the setting of secure multiparty computation, a set of mutually distrustful parties wish
to securely compute some joint function of their private inputs. The computation should be
carried out in a secure way, meaning that no coalition of corrupted parties should be able to learn
more than specified or somehow cause the result to be “incorrect”. Typically, corrupted parties
are either assumed to be semi-honest (meaning that they follow the protocol specification) or
malicious (meaning that they may deviate arbitrarily from the protocol). However, in many
settings, the assumption regarding semi-honest behavior does not suffice and security in the
presence of malicious adversaries is excessive and expensive to achieve.

In this paper, we introduce the notion of covert adversaries, which we believe faithfully
models the adversarial behavior in many commercial, political, and social settings. Covert
adversaries have the property that they may deviate arbitrarily from the protocol specification
in an attempt to cheat, but do not wish to be “caught” doing so. We provide a definition of
security for covert adversaries and show that it is possible to obtain highly efficient protocols
that are secure against such adversaries. We stress that in our definition, we quantify over all
(possibly malicious) adversaries and do not assume that the adversary behaves in any particular
way. Rather, we guarantee that if an adversary deviates from the protocol in a way that would
enable it to “cheat”, then the honest parties are guaranteed to detect this cheating with good
probability. We argue that this level of security is sufficient in many settings.
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1 Introduction

1.1 Background

In the setting of secure multiparty computation, a set of parties with private inputs wish to jointly
compute some functionality of their inputs. Loosely speaking, the security requirements of such a
computation are that (i) nothing is learned from the protocol other than the output (privacy), (ii)
the output is distributed according to the prescribed functionality (correctness), and (iii) parties
cannot make their inputs depend on other parties’ inputs. Secure multiparty computation forms
the basis for a multitude of tasks, including those as simple as coin-tossing and agreement, and as
complex as electronic voting, electronic auctions, electronic cash schemes, anonymous transactions,
remote game playing (a.k.a. “mental poker”), and privacy-preserving data mining.

The security requirements in the setting of multiparty computation must hold even when some
of the participating parties are adversarial. It has been shown that, with the aid of suitable
cryptographic tools, any two-party or multiparty function can be securely computed [23, 12, 10,
3, 6], even in the presence of very strong adversarial behavior. However, the efficiency of the
computation depends dramatically on the adversarial model considered. Classically, two main
categories of adversaries have been considered:

1. Malicious adversaries: these adversaries may behave arbitrarily and are not bound in any
way to following the instructions of the specified protocol. Protocols that are secure in the
malicious model provide a very strong security guarantee, as honest parties are “protected”
irrespective of the adversarial behavior of the corrupted parties.

2. Semi-honest adversaries: these adversaries correctly follow the protocol specification, yet
may attempt to learn additional information by analyzing the transcript of messages received
during the execution. Security in the presence of semi-honest adversaries provides only a weak
security guarantee, and is not sufficient in many settings. Semi-honest adversarial behavior
primarily models inadvertent leakage of information, and is suitable only where participating
parties essentially trust each other, but may have other concerns.

Secure computation in the semi-honest adversary model can be carried out very efficiently, but,
as mentioned, provides weak security guarantees. Regarding malicious adversaries, it has been
shown that, under suitable cryptographic assumptions, any multiparty probabilistic polynomial-
time functionality can be securely computed for any number of malicious corrupted parties [12, 10].
However, this comes at a price. These feasibility results of secure computation typically do not yield
protocols that are efficient enough to actually be implemented and used in practice (particularly
if standard the simulation-based security is required). Their importance is more in telling us that
it is perhaps worthwhile searching for other efficient protocols, because we at least know that a
solution exists in principle. However, the unfortunate state of affairs today – many years after these
feasibility results were obtained – is that very few truly efficient protocols exist for the setting of
malicious adversaries. Thus, we believe that some middle ground is called for: an adversary model
that accurately models adversarial behavior in the real world, on the one hand, but for which
efficient, secure protocols can be obtained, on the other.

1.2 Our Work – Covert Adversaries

In this work, we introduce a new adversary model that lies between the semi-honest and malicious
models. The motivation behind the definition is that in many real-world settings, adversaries are
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willing to actively cheat (and as such are not semi-honest), but only if they are not caught (and as
such they are not arbitrarily malicious). This, we believe, is the case in many business, financial,
political and diplomatic settings, where honest behavior cannot be assumed, but where the compa-
nies, institutions and individuals involved cannot afford the embarrassment, loss of reputation, and
negative press associated with being caught cheating. It is also the case, unfortunately, in many
social settings, e.g. elections for a president of the country-club. Finally, in remote game playing,
players may also be willing to actively cheat, but would try to avoid being caught, or else they
may be thrown out of the game. In all, we believe that this type of covert adversarial behavior
accurately models many real-world situations. Clearly, with such adversaries, it may be the case
that the risk of being caught is weighed against the benefits of cheating, and it cannot be assumed
that players would avoid being caught at any price and under all circumstances. Accordingly, our
definition explicitly models the probability of catching adversarial behavior; a probability that can
be tuned to the specific circumstances of the problem. In particular, we do not assume that adver-
saries are only willing to risk being caught with negligible probability, but rather allow for much
higher probabilities.

The definition. Our definition of security is based on the classical ideal/real simulation paradigm.
Loosely speaking, our definition provides the following guarantee. Let 0 < ε ≤ 1 be a value (called
the deterrence factor). Then, any attempt to cheat by an adversary is detected by the honest
parties with probability at least ε. Thus, provided that ε is sufficiently large, an adversary that
wishes not to be caught cheating, will refrain from attempting to cheat, lest it be caught doing
so. Clearly, the higher the value of ε, the greater the probability adversarial behavior is caught
and thus the greater the deterrent to cheat. We therefore call our notion security in the presence
of covert adversaries with ε-deterrent. Note that the security guarantee does not preclude successful
cheating. Indeed, if the adversary decides to cheat then it may gain access to the other parties’
private information or bias the result of the computation. The only guarantee is that if it attempts
to cheat, then there is a fair chance that it will be caught doing so. This is in contrast to standard
definitions, where absolute privacy and security are guaranteed, for the given type of adversary.
We remark that by setting ε = 1, our definition can be used to capture a requirement that cheating
parties are always caught.

When attempting to translate the above described basic approach into a formal definition,
we obtain three different possible formulations, which form a hierarchy of security guarantees.
In Section 3 we present the three formulations, and discuss the relationships between them and
between the standard definitions of security for semi-honest and malicious adversaries. We also
present modular sequential composition theorems (like that of [4]) for all of our definitions. Such
composition theorems are important as security goals by themselves and as tools for proving the
security of protocols.

Protocol constructions. As mentioned, the aim of this work is to provide a definition of security
for which it is possible to construct highly efficient protocols. We demonstrate this by presenting
a generic protocol for secure two-party computation in our model that is only mildly less efficient
than the protocol of Yao [23], which is secure only for semi-honest adversaries. The first step of our
construction is a protocol for oblivious transfer that is based on homomorphic encryption schemes.
Highly efficient protocols under this assumption are known [1, 17]. However, these protocols do not
achieve simulation-based security. Rather, only privacy is guaranteed (with the plus that privacy
is preserved even in the presence of fully malicious adversaries). Having constructed an oblivious
transfer protocol that meets our definition, we use it in the protocol of Yao [23]. We modify Yao’s
protocol so that two garbled circuits are sent, and then a random one is opened in order to check

2



that it was constructed correctly (this follows the folklore cut-and-choose methodology for boosting
the security of Yao’s protocol for adversaries that may not be semi-honest). Our basic protocol
achieves deterrent ε = 1/2, but can be extended to greater values of ε at a moderate expense in
efficiency. (For example, 10 copies of the circuit yield ε = 9/10.)

Protocol efficiency. The protocol we present offers a great improvement in efficiency, when
compared to the best known results for the malicious adversary model. The exact efficiency depends
on the variant used in the definition of covert adversary security. For the weakest variant, our
protocol requires only twice the amount of work and twice the bandwidth of the basic protocol
of [23] for semi-honest adversaries. Specifically, it requires only a constant number of rounds, a
single oblivious transfer for each input bit, and has communication complexity O(n|C|) where n
is the security parameter and |C| is the size of the circuit being computed. For the intermediate
variant, the complexity is slightly higher, requiring twice the number of oblivious transfers than in
the weakest variant. For the strongest variant, the complexity increases to n oblivious transfers for
each input bit. This is still much more efficient than any known protocol for the case of malicious
adversaries. We view this as a “proof of concept” that highly efficient protocols are achievable in
this model, and leave the construction of such protocols for specific tasks of interest for future work.

1.3 Related Work

The idea of allowing the adversary to cheat as long as it will be detected was first considered by [9]
who defined a property called t-detectability; loosely speaking, a protocol fulfilling this property
provides the guarantee that no coalition of t parties can cheat without being caught. The work of [9]
differs to ours in that (a) they consider the setting of an honest majority, and (b) their definition
is not simulation based. Another closely related work to ours is that of [5] that considers honest-
looking adversaries. Such adversaries may deviate arbitrarily from the protocol specification, but
only if this deviation cannot be detected. Our definition differs from that of [5] in a number of
important ways. First, we quantify over all adversaries, and not only over adversaries that behave
in a certain way. Second, our definition provides guarantees even for adversaries that may be willing
to risk being caught cheating with non-negligible (or even constant) probability. Third, we place
the onus of detecting any cheating by an adversary on the protocol, and not on the chance that
the honest parties will analyze the distribution of the messages generated by the corrupted parties.
(See Section 3 for more discussion on why these differences are important.) Finally, we remark
that [5] considered a more stringent setting where all parties are either malicious or honest-looking.
In contrast, we consider a relaxation of the adversary model (where parties are either fully honest
or covert).

We remark that the idea of allowing an adversary to cheat with non-negligible probability as
long as it will be caught with good probability has been mentioned many times in the literature;
see [15, 20] for just two examples. We stress, however, that none of these works formalized this
idea. Furthermore, our experience in proving our protocol secure is that simple applications of
cut-and-choose do not meet our definition (and there are actual attacks that can be carried out on
the cut-and-choose technique used in [20], for example).

Our work studies a weaker definition of security than the standard one. Weaker definitions have
been used before in order to construct efficient protocols for specific problems. However, in the
past these relaxed definitions typically have not followed the simulation paradigm, but rather have
considered privacy via indistinguishability (and sometimes correctness); see [7] for one example.
Our work takes a completely different approach.
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2 Preliminaries and Standard Definitions

2.1 Preliminaries

A function µ(·) is negligible in n, or just negligible, if for every positive polynomial p(·) and all
sufficiently large n’s it holds that µ(n) < 1/p(n). A probability ensemble X = {X(a, n)}a∈{0,1}∗;n∈IN

is an infinite sequence of random variables indexed by a and n ∈ IN. (The value a will represent
the parties’ inputs and n the security parameter.) Two distribution ensembles X = {X(a, n)}n∈IN

and Y = {Y (a, n)}n∈IN are said to be computationally indistinguishable, denoted X
c≡ Y , if for every

non-uniform polynomial-time algorithm D there exists a negligible function µ(·) such that for every
a ∈ {0, 1}∗,

|Pr[D(X(a, n)) = 1]− Pr[D(Y (a, n)) = 1]| ≤ µ(n)

All parties are assumed to run in time that is polynomial in the security parameter. (Formally,
each party has a security parameter tape upon which that value 1n is written. Then the party is
polynomial in the input on this tape.)

2.2 Secure Multiparty Computation – Standard Definition

In this section we briefly present the standard definition for secure multiparty computation and
refer to [10, Chapter 7] for more details and motivating discussion. The following description and
definition is based on [10], which in turn follows [13, 21, 2, 4].

Multiparty computation. A multiparty protocol problem is cast by specifying a random process
that maps sets of inputs to sets of outputs (one for each party). We refer to such a process as a
functionality and denote it f : ({0, 1}∗)m → ({0, 1}∗)m, where f = (f1, . . . , fm). That is, for every
vector of inputs x = (x1, . . . , xm), the output-vector is a random variable y = (f1(x), . . . , fm(x))
ranging over vectors of strings. The ith party Pi, with input xi, wishes to obtain fi(x). We
sometimes denote such a functionality by (x) 7→ (f1(x), . . . , fm(x)). Thus, for example, the oblivious
transfer functionality is denoted by ((x0, x1), σ) 7→ (λ, xσ), where (x0, x1) is the first party’s input,
σ is the second party’s input, and λ denotes the empty string (meaning that the first party has no
output).

Adversarial behavior. Loosely speaking, the aim of a secure multiparty protocol is to protect
honest parties against dishonest behavior by other parties. In this section, we present the defini-
tion for malicious adversaries who control some subset of the parties and may instruct them to
arbitrarily deviate from the specified protocol. We also consider static corruptions, meaning that
the set of corrupted parties is fixed at the onset.

Security of protocols (informal). The security of a protocol is analyzed by comparing what an
adversary can do in a real protocol execution to what it can do in an ideal scenario that is secure by
definition. This is formalized by considering an ideal computation involving an incorruptible trusted
third party to whom the parties send their inputs. The trusted party computes the functionality on
the inputs and returns to each party its respective output. Loosely speaking, a protocol is secure if
any adversary interacting in the real protocol (where no trusted third party exists) can do no more
harm than if it was involved in the above-described ideal computation. One technical detail that
arises when considering the setting of no honest majority is that it is impossible to achieve fairness
or guaranteed output delivery. That is, it is possible for the adversary to prevent the honest parties
from receiving outputs. Furthermore, it may even be possible for the adversary to receive output
while the honest parties do not. We consider malicious adversaries and static corruptions in all of
our definitions in this paper.
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Execution in the ideal model. As we have mentioned, some malicious behavior cannot be
prevented (for example, early aborting). This behavior is therefore incorporated into the ideal
model. Let the set of parties be P1, . . . , Pm and let I ⊆ [m] denote the indices of the corrupted
parties, controlled by an adversary A. An ideal execution proceeds as follows:

Inputs: Each party obtains an input; the ith party’s input is denoted xi. The adversary A receives
an auxiliary input denoted z.

Send inputs to trusted party: Any honest party Pj sends its received input xj to the trusted
party. The corrupted parties controlled by A may either abort (by replacing the input xi

with a special aborti message), send their received input, or send some other input of the
same length to the trusted party. This decision is made by A and may depend on the values
xi for i ∈ I and its auxiliary input z. Denote the vector of inputs sent to the trusted party
by w (note that w does not necessarily equal x).

If the trusted party receives an input of the form aborti for some i ∈ I, it sends aborti to all
parties and the ideal execution terminates. Otherwise, the execution proceeds to the next
step.

Trusted party sends outputs to adversary: The trusted party computes (f1(w), . . . , fm(w))
and sends fi(w) to party Pi, for all i ∈ I (i.e., to all corrupted parties).

Adversary instructs trusted party to continue or halt: A sends either continue or aborti to
the trusted party (for some i ∈ I). If it sends continue, the trusted party sends fj(w) to party
Pj , for all j /∈ I (i.e., to all honest parties). Otherwise, if it sends aborti, the trusted party
sends aborti to all parties Pj for j /∈ I.

Outputs: An honest party always outputs the message it obtained from the trusted party. The
corrupted parties output nothing. The adversary A outputs any arbitrary (probabilistic
polynomial-time computable) function of the initial inputs {xi}i∈I and the messages {fi(w)}i∈I

obtained from the trusted party.

This ideal model is different from that of [10] in that in the case of an “abort”, the honest parties
output aborti and not a ⊥ symbol. This means that the honest parties know the identity of the
corrupted party who causes the abort. This is achieved by most multiparty protocols, including
that of [12], but not all (e.g., the protocol of [14] does not meet this requirement).

Let f : ({0, 1}∗)m → ({0, 1}∗)m be an m-party functionality, where f = (f1, . . . , fm), let A
be a non-uniform probabilistic polynomial-time machine, and let I ⊆ [m] be the set of corrupted
parties. Then, the ideal execution of f on inputs x, auxiliary input z to A and security parameter n,
denoted idealf,A(z),I(x, n), is defined as the output vector of the honest parties and the adversary
A from the above ideal execution.

Execution in the real model. We next consider the real model in which a real m-party
protocol π is executed (and there exists no trusted third party). In this case, the adversary A
sends all messages in place of the corrupted parties, and may follow an arbitrary polynomial-time
strategy. In contrast, the honest parties follow the instructions of π.

Let f be as above and let π be an m-party protocol for computing f . Furthermore, let A be
a non-uniform probabilistic polynomial-time machine and let I be the set of corrupted parties.
Then, the real execution of π on inputs x, auxiliary input z to A and security parameter n, denoted
realπ,A(z),I(x, n), is defined as the output vector of the honest parties and the adversary A from
the real execution of π.

5



Security as emulation of a real execution in the ideal model. Having defined the ideal and
real models, we can now define security of protocols. Loosely speaking, the definition asserts that a
secure party protocol (in the real model) emulates the ideal model (in which a trusted party exists).
This is formulated by saying that adversaries in the ideal model are able to simulate executions of
the real-model protocol. We will consider executions where all inputs are of the same length (see
discussion in [10]), and will therefore say that a vector x = (x1, . . . , xm) is balanced if for every i
and j it holds that |xi| = |xj |.

Definition 2.1 (secure multiparty computation): Let f and π be as above. Protocol π is said
to securely compute f with abort in the presence of malicious adversaries if for every non-uniform
probabilistic polynomial-time adversary A for the real model, there exists a non-uniform probabilistic
polynomial-time adversary S for the ideal model, such that for every I ⊆ [m], every balanced vector
x ∈ ({0, 1}∗)m, and every auxiliary input z ∈ {0, 1}∗:

{
idealf,S(z),I(x, n)

}
n∈IN

c≡
{
realπ,A(z),I(x, n)

}
n∈IN

We note that the above definition assumes that the parties (and adversary) know the input lengths
(this can be seen from the requirement that x is balanced and so all the inputs in the vector of inputs
are of the same length).1 We remark that some restriction on the input lengths is unavoidable,
see [10, Section 7.1] for discussion.

2.3 Functionalities that Provide Output to a Single Party

In the standard definition of secure computation, both parties receive output and these outputs
may be different. However, the presentation of our two-party protocol is far simpler if we assume
that only party P2 receives output. We will show now that this suffices for the general case. That
is, we claim that any protocol that can be used to securely compute any efficient functionality
f(x, y) where only P2 receives output, can be used to securely compute any efficient functionality
f = (f1, f2) where party P1 receives f1(x1, x2) and party P2 receives f2(x1, x2). For simplicity,
we will assume that the length of the output of f1(x1, x2) is at most n, where n is the security
parameter. This can be achieved by simply taking n to be larger in case it is necessary.

Let f = (f1, f2) be a functionality. We wish to construct a secure protocol in which P1 receives
f1(x1, x2) and P2 receives f2(x1, x2). As a building block we use a protocol for computing any
efficient functionality with the limitation that only P2 receives output. Let r, a, b ∈R {0, 1}n be
randomly chosen strings. Then, in addition to x1, party P1’s input includes the elements r, a and
b. Furthermore, define a functionality g (that has only a single output) as follows:

g((r, a, b, x1), x2) = (α, β, f2(x1, x2))

where α = r + f1(x1, x2), β = a · α + b, and the arithmetic operations are defined over GF [2n].
Note that α is a one-time pad encryption of P1’s output f1(x, y), and β is an information-theoretic
message authentication tag of α (specifically, aα + b is a pairwise-independent hash of α). Now,
the parties compute the functionality g, using a secure protocol in which only P2 receives output.
Following this, P2 sends the pair (α, β) to P1. Party P1 checks that β = a · α + b; if yes, it outputs
α− r, and otherwise it outputs abort2.

1In the case that no parties are corrupted, we assume that the adversary receives the length of the inputs as part
of its auxiliary input z.
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It is easy to see that P2 learns nothing about P1’s output f1(x1, x2), and that it cannot alter
the output that P1 will receive (beyond causing it to abort), except with probability 2−n. We
remark that it is also straightforward to construct a simulator for the above protocol. Applying the
composition theorem of [4] (for standard security) or Theorems 4.1 and 4.2 (for covert adversaries
– to be defined below), we have the following proposition:

Proposition 2.2 Assume that there exists a protocol for securely computing any functionality in
which only a single party receives output. Then, there exists a protocol for securely computing any
functionality in which both parties receive output. This holds also for security in the presence of
covert adversaries for any of Definitions 3.2, 3.4 and 3.5.

We remark that the circuit for computing g is only mildly larger than that for computing f . Thus,
the construction above is also efficient and has only a mild effect on the complexity of the secure
protocol (assuming that the complexity of the original protocol, where only P2 receives output, is
proportional to the size of the circuit computing f as is the case for our protocol below).

3 Definitions – Secure Computation with Covert Adversaries

3.1 Motivation

The standard definition of security (see Definition 2.1) is such that all possible (polynomial-time)
adversarial behavior is simulatable. Here, in contrast, we wish to model the situation that parties
may successfully cheat. However, if they do so, they are likely to be caught. There are a num-
ber of ways of defining this notion. In order to motivate ours, we begin with a somewhat naive
implementation of the notion, and show its shortcoming.

First attempt: Define an adversary to be covert if the distribution over the messages that it sends
during an execution is computationally indistinguishable from the distribution over the messages
that an honest party would send. Then, quantify over all covert adversaries A for the real world
(rather than all adversaries).2 A number of problems arise with this definition.

• The fact that the distribution generated by the adversary can be distinguished from the dis-
tribution generated by honest parties does not mean that the honest parties can detect this
in any specific execution. Consider for example a coin-tossing protocol where the honest dis-
tribution gives even probabilities to 0 and 1, while the adversary gives double the probability
to the 1 outcome. Clearly, the distributions differ. However, in any given execution, even an
outcome of 1 does not provide the honest players with sufficient evidence of any wrong-doing.
Thus, it is not sufficient that the distributions differ. Rather, one needs to be able to detect
cheating in each adversarial execution.

• The fact that the distributions differ does not necessarily imply that the honest parties have an
efficient distinguisher. Furthermore, in order to guarantee that the honest parties detect the
cheating, they would have to analyze all traffic during an execution. However, this analysis
cannot be part of the protocol because then the distinguishers used by the honest parties
would be known (and potentially bypassed).

2We remark that this is the conceptual approach taken by [5], and that there are important choices that arise when
attempting to formalize the approach. In any case, as we have mentioned, the work of [5] differs greatly because their aim was
to model all parties as somewhat adversarial.
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• Another problem is that, as mentioned in the introduction, adversaries may be willing to risk
being caught with more than negligible probability, say 10−6. With such an adversary, the
definition would provide no security guarantee. In particular, the adversary may be able to
always learn all parties’ inputs, and risk being caught in one run in a million.

Second attempt. To solve the aforementioned problems, we first require that the protocol itself
be responsible for detecting cheating. Specifically, in the case that a party Pi attempts to cheat, the
protocol may instruct the honest parties to output a message saying that “party Pi has cheated”
(we require that this only happens if Pi indeed cheated). This solves the first problem. To solve
the second problem, we explicitly quantify the probability that an adversary is caught cheating.
Roughly, given a parameter ε, a protocol is said to be secure against covert adversaries with ε-deterrent
if any cheating adversary will necessarily be caught with probability at least ε.

This definition captures the spirit of what we want, but is still problematic. To illustrate the
problem, consider an adversary that plays honestly with probability 0.99, and cheats otherwise.
Such an adversary can only ever be caught with probability 0.01 (because otherwise it is honest).
But ε = 1/2 for example, then such an adversary must be caught with probability 0.5, which is
impossible. We therefore conclude that an absolute parameter cannot be used, and the probability
of catching the adversary must be related to the probability that it cheats.

Final definition. We thus arrive at the following approach. First, as mentioned, we require that
the protocol itself be responsible for detecting cheating. That is, if a party Pi successfully cheats,
then with good probability (ε), the honest parties in the protocol will all receive a message that
“Pi cheated”. Second, we do not quantify only over adversaries that are covert (i.e., those that are
not detected cheating by the protocol). Rather, we allow all possible adversaries, even completely
malicious ones. Then, we require either that this malicious behavior can be successfully simulated
(as in Definition 2.1), or that the honest parties will receive a message that cheating has been
detected, and this happens with probability at least ε times the probability that successful cheating
takes place. We stress that in the when the adversary chooses to cheat, it may actually learn secret
information or cause some other damage. However, since it is guaranteed that such a strategy will
likely be caught, there is strong motivation to refrain from doing so.

As it turns out, the above intuition can be formalized in three different ways, which form a
hierarchy of security guarantees. In practice, the implementor should choose the formulation that
best suites her needs, and for which sufficiently efficient protocols exists. All three definitions
are based on the ideal/real simulation paradigm, as presented in Section 2. We now present the
definitions in order of security, starting with the weakest (least secure) one.

3.2 Version 1: Failed Simulation Formulation

The first formulation we present is based on allowing the simulator to fail sometimes, where by “fail”
we mean that its output distribution is not indistinguishable from the real one. This corresponds
to an event of successful cheating. However, we guarantee that the probability that the adversary
is caught cheating is at least ε times the probability that the simulator fails. The details follow.

Recall that we call a vector balanced if all of its items are of the same length. In addition,
we denote the output vector of the honest parties and adversary A in an ideal execution of f by
idealf,A(z),I(x, n), where x is the vector of inputs, z is the auxiliary input to A, I is the set of
corrupted parties, and n is the security parameter, and denote the analogous outputs in a real
execution of π by realπ,A(z),I(x, n). We begin by defining what it means to “detect cheating”:
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Definition 3.1 Let π be an m-party protocol, let A be an adversary, and let I be the index set of
the corrupted parties. A party Pj is said to detect cheating in π if its output in π is corruptedi; this
event is denoted outputj(realπ,A(z),I(x)) = corruptedi. The protocol π is called detection accurate
if for every j, k /∈ I, the probability that Pj outputs corruptedk is negligible.

We require that all protocols be detection accurate (meaning that only corrupted parties can be
“caught cheating”). This is crucial because otherwise a party that is detected cheating can just
claim that it is due to a protocol anomaly and not because it really cheated. The definition follows:

Definition 3.2 (covert security – failed simulation formulation): Let f and π be as in Defini-
tion 2.1, and let ε : IN → [0, 1] be a function. Protocol π is said to securely compute f in the
presence of covert adversaries with ε-deterrent if it is detection accurate and if for every non-uniform
probabilistic polynomial-time adversary A for the real model, there exists a non-uniform probabilis-
tic polynomial-time adversary S for the ideal model such that for every I ⊆ [m], every balanced
vector x ∈ ({0, 1}∗)m, every auxiliary input z ∈ {0, 1}∗, and every non-uniform polynomial-time
distinguisher D, there exists a negligible function µ(·) such that,

Pr
[
∃i ∈ I ∀j /∈ I : outputj(realπ,A(z),I(x, n)) = corruptedi

]

≥ ε(n) ·
∣∣∣Pr

[
D(idealf,S(z),I(x, n)) = 1

]
− Pr

[
D(realπ,A(z),I(x, n)) = 1

]∣∣∣− µ(n)

The parameter ε indicates the probability that successful adversarial behavior is detected (observe
that when such a detection occurs, all honest parties must detect the same corrupted party).
Clearly, the closer ε is to one, the higher the deterrence to cheat, and hence the level of security,
assuming covert adversaries. Note that the adversary can decide to never be detected cheating, in
which case the ideal and real distributions are guaranteed to be computationally indistinguishable,
as in the standard definition of security. In contrast, it can choose to cheat with some noticeable
probability, in which case the ideal and real output distribution may be distinguishable (while
guaranteeing that the adversary is caught with good probability). This idea of allowing the ideal
and real models to not be fully indistinguishable in order to model “allowed cheating” was used
in [11].

We stress that the definition does not require the simulator to “fail” with some probability.
Rather, it is allowed to fail with a probability that is at most 1/ε times the probability that the
adversary is caught cheating. As we shall see, this is what enables us to construct highly efficient
protocols. We also remark that due to the required detection accuracy, the simulator cannot fail
when the adversary behaves in a fully honest-looking manner (because in such a case, no honest
party will output corruptedi). Thus, security is always preserved in the presence of adversaries that
are willing to cheat arbitrarily, as long as their cheating is not detected.

Cheating and aborting. It is important to note that according to the above definition, a party
that halts mid-way through the computation may be considered a “cheat”. Arguably, this may be
undesirable due to the fact that an honest party’s computer may crash (such unfortunate events
may not even be that rare). Nevertheless, we argue that as a basic definition it suffices. This is
due to the fact that it is possible for all parties to work by storing their input and random-tape on
disk before they begin the execution. Then, before sending any message, the incoming messages
that preceded it are also written to disk. The result of this is that if a party’s machine crashes, it
can easily reboot and return to its previous state. (In the worst case the party will need to request
a retransmit of the last message if the crash occurred before it was written.) We therefore believe
that honest parties cannot truly hide behind the excuse that their machine crashed (it would be
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highly suspicious that someone’s machine crashed in an irreversible way that also destroyed their
disk at the critical point of a secure protocol execution).

Despite the above, it is possible to modify the definition so that honest halting is never consid-
ered cheating. This modification only needs to be made to the notion of “detection accuracy” and
uses the notion of a fail-stop party who acts semi-honestly, except that it may halt early.

Definition 3.3 A protocol π is non-halting detection accurate if it is detection accurate as in Def-
inition 3.1 and if for every honest party Pj and fail-stop party Pk, the probability that Pj outputs
corruptedk is negligible.

The definition of security in the presence of covert adversaries can then be modified by requiring
non-halting detection accuracy. We remark that although this strengthening may be desirable, it
may also be prohibitive. For example, we are able to modify our main protocol so that it meets this
stronger definition. However, in order to do so, we need to assume fully secure oblivious transfer,
for which highly efficient (fully simulatable) protocols are not really known.

3.3 Version 2: Explicit Cheat Formulation

The drawback of Definition 3.2 is that it allows the adversary to decide whether to cheat as a
function of the honest parties’ inputs or of the output. This is undesirable since there may be
honest parties’ inputs for which it is more “worthwhile” for the adversary to risk being caught. We
therefore wish to force the adversary to make its decision about whether to cheat obliviously of
the honest parties’ inputs. This brings us to an alternate definition, which is based on redefining
the ideal functionality so as to explicitly include the option of cheating. Aside from overcoming
the input dependency problem this alternate formulation has two additional advantages. First, it
makes the security guarantees that are achieved more explicit. Second, it makes it easy to prove a
sequential composition theorem (see below).

We modify the ideal model in the following way. Let ε : IN → [0, 1] be a function. Then, the
ideal execution with ε proceeds as follows:

Inputs: Each party obtains an input; the ith party’s input is denoted by xi; we assume that all
inputs are of the same length, denoted n. The adversary receives an auxiliary-input z.

Send inputs to trusted party: Any honest party Pj sends its received input xj to the trusted
party. The corrupted parties, controlled by A, may either send their received input, or send
some other input of the same length to the trusted party. This decision is made by A and
may depend on the values xi for i ∈ I and the auxiliary input z. Denote the vector of inputs
sent to the trusted party by w.

Abort options: If a corrupted party sends wi = aborti to the trusted party as its input, then the
trusted party sends aborti to all of the honest parties and halts. If a corrupted party sends
wi = corruptedi to the trusted party as its input, then the trusted party sends corruptedi to
all of the honest parties and halts.

Attempted cheat option: If a corrupted party sends wi = cheati to the trusted party as its
input, then the trusted party sends to the adversary all of the honest parties’ inputs {xj}j /∈I .
Furthermore, it asks the adversary for outputs {yj}j /∈I for the honest parties. In addition,

1. With probability ε, the trusted party sends corruptedi to the adversary and all of the
honest parties.
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2. With probability 1 − ε, the trusted party sends undetected to the adversary and the
outputs {yj}j /∈I to the honest parties (i.e., for every j /∈ I, the trusted party sends yj to
Pj).

The ideal execution then ends at this point.

If no wi equals aborti, corruptedi or cheati, the ideal execution continues below.

Trusted party answers adversary: The trusted party computes (f1(w), . . . , fm(w)) and sends
fi(w) to A, for all i ∈ I.

Trusted party answers honest parties: After receiving its outputs, the adversary sends either
aborti for some i ∈ I, or continue to the trusted party. If the trusted party receives continue
then it sends fj(w) to all honest parties Pj (j /∈ I). Otherwise, if it receives aborti for some
i ∈ I, it sends aborti to all honest parties.

Outputs: An honest party always outputs the message it obtained from the trusted party. The
corrupted parties output nothing. The adversary A outputs any arbitrary (probabilistic
polynomial-time computable) function of the initial inputs {xi}i∈I and the messages obtained
from the trusted party.

The output of the honest parties and the adversary in an execution of the above ideal model is
denoted by idealcε

f,S(z),I(x, n).
Notice that there are two types of “cheating” here. The first is the classic abort, except that

unlike in Definition 2.1, the honest parties here are informed as to who caused the abort. Thus,
although it is not possible to guarantee fairness here, we do achieve that an adversary who aborts
after receiving its output is “punished” in the sense that its behavior is always detected.3 The other
type of cheating in this ideal model is more serious for two reasons: first, the ramifications of the
cheat are greater (the adversary may learn all of the parties’ inputs and may be able to determine
their outputs), and second, the cheating is only guaranteed to be detected with probability ε.
Nevertheless, if ε is high enough, this may serve as a deterrent. We stress that in the ideal model
the adversary must decide whether to cheat obliviously of the honest-parties inputs and before
it receives any output (and so it cannot use the output to help it decide whether or not it is
“worthwhile” cheating). We define:

Definition 3.4 (covert security – explicit cheat formulation): Let f , π and ε be as in Definition 3.2.
Protocol π is said to securely compute f in the presence of covert adversaries with ε-deterrent if for
every non-uniform probabilistic polynomial-time adversary A for the real model, there exists a non-
uniform probabilistic polynomial-time adversary S for the ideal model such that for every I ⊆ [m],
every balanced vector x ∈ ({0, 1}∗)m, and every auxiliary input z ∈ {0, 1}∗:

{
idealcε

f,S(z),I(x, n)
}

n∈IN

c≡
{
realπ,A(z),I(x, n)

}
n∈IN

Definition 3.4 and detection accuracy. We note that in Definition 3.4 it is not necessary to
explicitly require that π be detection accurate because this is taken care of in the ideal model (in an
ideal execution, only a corrupted party can send a cheati input). However, if non-halting detection
accuracy is desired (as in Definition 3.3), then this should be explicitly added to the definition.

3Note also that there are two types of abort: in one the honest parties receive aborti and in the second they receive corruptedi.
This is included to model behavior by the real adversary that results in it being caught cheating with probability greater than
ε (and not with probability exactly ε as when the ideal adversary sends a cheati message).
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3.4 Version 3: Strong Explicit Cheat Formulation

The third, and strongest version follows the same structure and formulation of the previous version
(Version 2). However, we make the following slight, but important change to the ideal model. In
the case of an attempted cheat, if the trusted party sends corruptedi to the honest parties and the
adversary (an event which happens with probability ε), then the adversary does not obtain the
honest parties’ inputs. Thus, if cheating is detected, the adversary does not learn anything and the
result is essentially the same as a regular abort. This is in contrast to Version 2, where a detected
cheat may still be successful. (We stress that in the “undetected” case here, the adversary still
learns the honest parties’ private inputs and can set their outputs.) We denote the resultant ideal
model by idealscε

f,S(z),I(x, n) and have the following definition:

Definition 3.5 (covert security – strong explicit cheat formulation): Let f , π and ε be as in
Definition 3.2. Protocol π is said to securely compute f in the presence of covert adversaries with
ε-deterrent if for every non-uniform probabilistic polynomial-time adversary A for the real model,
there exists a non-uniform probabilistic polynomial-time adversary S for the ideal model such that
for every I ⊆ [m], every balanced vector x ∈ ({0, 1}∗)m, and every auxiliary input z ∈ {0, 1}∗:

{
idealscε

f,S(z),I(x, n)
}

n∈IN

c≡
{
realπ,A(z),I(x, n)

}
n∈IN

The difference between the regular and strong explicit cheat formulations is perhaps best exemplified
in the case that ε = 1. In both versions, any potentially successful cheating attempt is detected.
However, in the regular formulation, the adversary may learn the honest parties’ private inputs
(albeit, while being detected). In the strong formulation, in contrast, the adversary learns nothing
when it is detected. Since it is always detected, this means that full security is achieved.

3.5 Relations Between Security Models

Relations between covert security definitions. The three security definitions for covert
adversaries constitute a strict hierarchy, with version 1 being strictly weaker than version 2, which
is strictly weaker than version 3.

Proposition 3.6 Let π be a protocol that securely computes some functionality f in the presence of
covert adversaries with ε-deterrent by Definition 3.4. Then, π securely computes f in the presence
of covert adversaries with ε-deterrent by Definition 3.2.

Proof: Let f , π and ε be as in the proposition. Then, we first claim that π is detection accurate.
This is due to the fact that in the ideal model of Definition 3.4, honest parties only output corruptedi

for i ∈ I. Therefore, this must hold also in the real model, except with negligible probability (as
required by Definition 3.1). Now, letA be an adversary and let S be the simulator that is guaranteed
to exist for idealc by Definition 3.4. We claim that the simulator S also works for Definition 3.2.
In order to see this, let ∆ be the probability that S sends corruptedi or cheati for input for some
i ∈ I (this probability depends only on A, the corrupted parties’ inputs and the auxiliary input
z). Now, when S sends input corruptedi, the honest parties all output corruptedi with probability
1. In addition, when S sends input cheati, the honest parties all output corruptedi with probability
ε in the ideal model. It follows that the honest parties output corruptedi with probability at least
ε · ∆. It remains, therefore, to show that the ideal and real distributions can be distinguished
with probability at most ∆ (because then the probability that the adversary is caught cheating is
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at least ε times the maximum distinguishing “gap” between the ideal and real distributions).
However, this follows immediately from the fact that if S does not send any input of the form
corruptedi or cheati, then the ideal execution is the same as in the standard definitions (and so
the same as in Definition 3.2). Thus, in the event that S does not send corruptedi or cheati, the
ideal and real of Definition 3.2 are computationally indistinguishable. Since S sends corruptedi

or cheati with probability ∆, we obtain that the ideal distribution can be distinguished from the
real one with probability at most ∆ + µ(n) as desired.

The following proposition is straightforward and is therefore stated without a proof:

Proposition 3.7 Let π be a protocol that securely computes some functionality f in the presence of
covert adversaries with ε-deterrent by Definition 3.5. Then, π securely computes f in the presence
of covert adversaries with ε-deterrent by Definition 3.4.

So far we have shown that our three definitions form a hierarchy. The fact that the hierarchy is
strict is not difficult to show. In fact, the protocols that we present in Sections 6 (Protocol 6.1 and
its extensions in Section 6.2) demonstrate that the hierarchy is strict.

Relation to the malicious and semi-honest models. As a sanity check regarding our defini-
tions, we present two propositions that show the relation between security in the presence of covert
adversaries and security in the presence of malicious and semi-honest adversaries.

Proposition 3.8 Let π be a protocol that securely computes some functionality f with abort in the
presence of malicious adversaries, as in Definition 2.1. Then, π securely computes f in the presence
of covert adversaries with ε-deterrent, for any of the three formulations (Definitions 3.2, 3.4,
and 3.5) and for every 0 ≤ ε ≤ 1.

This proposition follows from the simple observation that according to Definition 2.1, there exists a
simulator that always succeeds in its simulation. Thus, Definition 3.2 holds even if the probability
of detecting cheating is 0. Likewise, for Definitions 3.4 and 3.5 the same simulator works (there is
simply no need to ever send a cheat input).

Next, we consider the relation between covert and semi-honest adversaries.

Proposition 3.9 Let π be a protocol that securely computes some functionality f in the presence
of covert adversaries with ε-deterrent, for any of the three formulations and for ε ≥ 1/poly(n).
Then, π securely computes f in the presence of semi-honest adversaries.

This proposition follows from the fact that due to the requirement of detection accuracy, no party
outputs corruptedi when the adversary is semi-honest. Since ε ≥ 1/poly(n) this implies that the
real and ideal distributions can be distinguished with at most negligible probability, as required.
We stress that if ε = 0 (or is negligible) then the definition of covert adversaries requires nothing,
and so the proposition does not hold for this case.

We conclude that, as one may expect, security in the presence of covert adversaries with ε-
deterrent lies in between security in the presence of malicious adversaries and security in the
presence of semi-honest adversaries. If 1/poly(n) ≤ ε ≤ 1 − 1/poly(n) then it can be shown
that the definition of security for covert adversaries is strictly different to the semi-honest and
malicious models. We remark that for Definitions 3.2 and 3.4 this holds for any ε ≥ 1/poly(n). For
Definition 3.5 and the case of ε = 1− µ(n), see below.

Strong explicit cheat formulation and the malicious model. The following proposition
shows that the strong explicit cheat formulation “converges” to the malicious model as ε ap-
proaches 1.
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Proposition 3.10 Let π be a protocol and µ a negligible function. Then π securely computes some
functionality f in the presence of covert adversaries with ε(n) = 1 − µ(n) under Definition 3.5 if
and only if it securely computes f with abort in the presence of malicious adversaries.

This is true since, by definition, either the adversary does not attempt cheating, in which case the
ideal execution is the same as in the regular ideal model, or it attempts cheating, in which case it is
caught with probability that is negligibly close to 1 and the protocol is aborted. In both cases, the
adversary gains no advantage, and the outcome can be simulated in the standard ideal model. We
stress that Proposition 3.10 does not hold for Definitions 3.2 and 3.4 because in these definitions
the adversary may learn the honest parties’ private inputs even when it is caught (something that
is not allowed in the malicious model).

4 Modular Sequential Composition

Sequential composition theorems for secure computation are important for two reasons. First, they
constitute a security goal within themselves. Second, they are useful tools that help in writing proofs
of security. As such, we believe that when presenting a new definition, it is of great importance
to also prove an appropriate composition theorem for that definition. In our case, we obtain
composition theorems that are analogous to that of [4] for all three of our definitions.

The basic idea behind these composition theorems is that it is possible to design a protocol that
uses an ideal functionality as a subroutine, and then analyze the security of the protocol when a
trusted party computes this functionality. For example, assume that a protocol is constructed that
uses oblivious transfer as a subroutine. Then, first we construct a protocol for oblivious transfer
and prove its security. Next, we prove the security of the protocol that uses oblivious transfer as
a subroutine, in a model where the parties have access to a trusted party computing the oblivious
transfer functionality. The composition theorem then states that when the “ideal calls” to the
trusted party for the oblivious transfer functionality are replaced by real executions of a secure
protocol computing this functionality, the protocol remains secure.

The f-hybrid model. We consider a hybrid model where parties both interact with each other
(as in the real model) and use trusted help (as in the ideal model). Specifically, the parties run
a protocol π that contains “ideal calls” to a trusted party computing a functionality f . These
ideal calls are just instructions to send an input to the trusted party. Upon receiving the output
back from the trusted party, the protocol π continues. We stress that honest parties do not send
messages from π between the time that they send input to the trusted party and the time that
they receive back output (this is because we consider sequential composition here). Of course, the
trusted party may be used a number of times throughout the π-execution. However, each time is
independent (i.e., the trusted party does not maintain any state between these calls). We call the
regular messages of π that are sent amongst the parties standard messages and the messages that
are sent between parties and the trusted party ideal messages.

Let f be a functionality and let π be an m-party protocol that uses ideal calls to a trusted
party computing f . Furthermore, let A be a non-uniform probabilistic polynomial-time machine
and let I be the set of corrupted parties. Then, the f -hybrid execution of π on inputs x, auxiliary
input z to A and security parameter n, denoted hybridf

π,A(z),I(x), is defined as the output vector
of the honest parties and the adversary A from the hybrid execution of π with a trusted party
computing f .

Sequential modular composition. Let f and π be as above, and let ρ be a protocol. Consider
the real protocol πρ that is defined as follows. All standard messages of π are unchanged. When a
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party Pi is instructed to send an ideal message x to the trusted party, it begins a real execution of
ρ with input x instead. When this execution of ρ concludes with output y, party Pi continues with
π as if y was the output received by the trusted party (i.e. as if it were running in the f -hybrid
model). A special case of the composition theorem of [4] for malicious adversaries states that if ρ
securely computes f , and π securely computes some functionality g in the f -hybrid model, then πρ

securely computes g (in the real model). Here, we prove an analogous theorem for covert adversaries
with ε-deterrent. Since our protocols here are for the two-party case, we prove the theorem only
for this special case. We also consider the simplified scenario where π contains only a single call to
f ; the more general case can be proven in a similar way (with the addition of a standard hybrid
argument). Finally, we assume that the lengths of the inputs to ρ can be derived given the input to
π and the security parameter. All of these assumptions/simplifications are true for our protocols
in this paper, and so suffice. A more general theorem can be derived in a straightforward manner.

We prove sequential modular composition theorems for all of our definitions of security in the
presence of covert adversaries. The proof for Definition 3.2 is based on the ideas in the composition
theorem of [4] while making necessary changes due to the difference in the models. The proofs for
Definitions 3.4 and 3.5 are an almost direct corollary of the theorem of [4] (after casting the models
of Definitions 3.4 and 3.5 in a different, yet equivalent, model). We present all theorems because,
to the best of our knowledge, none can be used to derive another.

4.1 Composition for Definition 3.2

In this section we prove a modular sequential composition theorem for the (weaker) Definition 3.2.

Theorem 4.1 Let f be a two-party probabilistic polynomial-time functionality and let ρ be a pro-
tocol that securely computes f in the presence of covert adversaries with ε1-deterrent. Let g be
a two-party functionality and let π be a protocol that securely computes g in the f-hybrid model
(using a single call to f) in the presence of covert adversaries with ε2-deterrent. Then, πρ securely
computes g in the presence of covert adversaries with ε-deterrent, where ε = min{ε1, ε2}. The above
all refer to Definition 3.2.

Proof Sketch: By the assumption in the theorem, we have that for every non-uniform probabilistic
polynomial-time adversaryAρ attacking ρ in the real model, there exists a non-uniform probabilistic
polynomial-time adversary Sρ for the ideal model with f such that for every I ⊆ [2], every balanced
vector x ∈ ({0, 1}∗)2, every z ∈ {0, 1}∗ and every non-uniform polynomial-time D, there exists a
negligible function µ such that:

Pr
[
∃i ∈ I ∀j /∈ I : outputj(realρ,Aρ(z),I(x, n)) = corruptedi

]

≥ ε1(n) ·
∣∣∣Pr[D(idealf,Sρ(z),I(x, n)) = 1]− Pr[D(realρ,Aρ(z),I(x, n)) = 1]

∣∣∣− µ(n) (1)

Furthermore, for every non-uniform probabilistic polynomial-time adversary Aπ attacking π in the
f -hybrid model, there exists a non-uniform probabilistic polynomial-time adversary Sπ for the ideal
model with g such that for every I ⊆ [2], every balanced vector x ∈ ({0, 1}∗)2, every z ∈ {0, 1}∗
and every non-uniform polynomial-time D, there exists a negligible function µ′ such that:

Pr
[
∃i ∈ I ∀j /∈ I : outputj(hybridf

π,Aπ(z),I(x, n)) = corruptedi

]

≥ ε2(n) ·
∣∣∣Pr[D(idealg,Sπ(z),I(x, n)) = 1]− Pr[D(hybridf

π,Aπ(z),I(x, n)) = 1]
∣∣∣− µ′(n) (2)
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We need to show that under the above assumptions, the real protocol πρ securely computes g in
the presence of covert adversaries with ε-deterrent, where ε = min{ε1, ε2}. In the case that I = φ
or I = {1, 2}, the proof is straightforward (if I = φ then no parties are corrupted and the proof is
like in the semi-honest case; if I = {1, 2} then both parties are corrupted and nothing needs to be
simulated). We will therefore focus on the case that I = {1} or I = {2}. The proof is the same
in both cases and so we will assume that I = {1}; we take this concrete case because it simplifies
notation.

Let A be an adversary that controls party P1 and attacks the real protocol πρ, and let x1 be
P1’s input and z the auxiliary input for A. We begin by modifying A to A′ in the following way:

1. Adversary A′ invokes A on its own input and forwards all π-messages between A (controlling
P1) and the honest party P2.

2. When A′ reaches the point in the execution where ρ begins, it defines an adversary Aρ who
receives auxiliary-input zρ that consists of an internal state of a machine, and input 0k where
n is the length of the input to ρ in π. (Recall that we assume that the length of the inputs
to ρ, or equivalently to f , are determined from the input to π and the security parameter.)
The machine Aρ runs the machine A from the initial state zρ and ignores its input entirely
(the input is needed for a technicality that machines have input of the appropriate length).
In addition, at the end of the execution of ρ, adversary Aρ outputs the current state of A.

3. After ρ concludes, adversary A′ takes the state output by Aρ and continues running A from
this state by forwarding the messages of π unmodified between A and the honest P2.

4. At the end of the execution of πρ, adversary A′ outputs whatever A does.

It is immediate that the output distribution from a real execution of πρ with A′ and an honest P2,
is identical to the output distribution of an execution of πρ with A and an honest P2. It is also
clear that Aρ is a real adversary for the protocol ρ. Therefore, by the assumption in the theorem,
there exists a simulator Sρ as described above in Eq. (1).

We now use A′ and Sρ to construct an adversary Aπ for the f -hybrid execution of π. Adversary
Aπ receives auxiliary-input z and input x1 and invokes A′ on these same inputs. However, when A′
reaches the point that it invokes Aρ upon auxiliary-input zρ, adversary Aπ invokes the simulator
Sρ upon auxiliary-input zρ instead. Ideal messages that Sρ wishes to send to the trusted party
computing f are sent by Aπ to its trusted party computing f . Likewise, outputs from the trusted
party are handed by Aπ back to Sρ. When Sρ concludes its execution, its output is interpreted by
Aπ as an internal state of A. The adversary Aπ then continues by running A′ from this internal
state.

We claim that for every polynomial-time distinguisher D and every x and z, there exists a
negligible function µ such that

Pr
[
outputρ

2(realπρ,A(z),I(x, n)) = corrupted1

]

≥ ε1(n) ·
∣∣∣Pr[D(hybridf

π,Aπ(z),I(x, n)) = 1]− Pr[D(realπρ,A(z),I(x, n)) = 1]
∣∣∣− µ(n) (3)

where outputρ
2 refers to the output of P2 within the subprotocol ρ only (i.e., here we consider the

probability that P2 outputs corrupted1 within ρ). Eq. (3) holds because otherwise this contradicts
the security of ρ. Specifically, the only difference between the real execution with A and the hybrid
execution with Aπ is that A runs Aρ in the real execution of ρ whereas Aπ runs Sρ instead. Thus,
if Eq. (3) does not hold, then Sρ does not “simulate” for Aρ as it should. More formally, if Eq. (3)
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does not hold when the probabilities are taken over the random tapes of the parties (and thus the
entire execution), then there exists a prefix of the execution up until the point that ρ begins such
that Eq. (3) does not hold, even conditioned on this prefix. Such an “execution prefix” is obtained
by fixing the portion of the random-tape of P2 that is used until this point in the protocol and
by fixing the random-tape of A. (Of course, these tapes can only be found non-uniformly.) Now,
this prefix defines an auxiliary-input zρ for Aρ in ρ that consists of A’s internal state after this
execution prefix. Furthermore, it defines the input x2 of the honest party P2 to ρ (the input x1

of P1 is implicitly defined by A and so can be set to an arbitrary value in order to obtain x). Fix
this input vector x and auxiliary input zρ. Next, we define a distinguisher D′ that receives the
outputs of the adversary and P2 and tries to determine if the execution was ideal or real. D′

works by internally simulating the execution until the end: it can do this because it has A′’s state
after the execution of ρ and its random-tape, and also has the input and output of P2 (the initial
input of P2 needed for this internal simulation can be provided to D′ as auxiliary input). Then, at
the end of the internal simulation, D′ applies D to the output of A′ and P2 and outputs whatever
D outputs. It follows that if there exists a polynomial-time distinguisher D for which Eq. (3) does
not hold, then there exists a polynomial-time distinguisher D′ and inputs x and zρ such that for
every negligible function µ(n)

Pr
[
output2(realρ,Aρ(zρ),I(x, n)) = corrupted1

]

≤ ε1(n) ·
∣∣∣Pr[D(idealf,Sρ(zρ),I(x, n)) = 1]− Pr[D(realρ,Aρ(zρ),I(x, n)) = 1]

∣∣∣− µ(n)

in contradiction to the security of ρ.
Next, we claim that by Eq. (2) it holds that for every polynomial-time distinguisher D and

every x and z, there exists a negligible function µ′ such that

Pr
[
output2(hybridf

π,Aπ(z),I(x, n)) = corrupted1

]

≥ ε2(n) ·
∣∣∣Pr[D(idealf,S(z),I(x, n)) = 1]− Pr[D(hybridf

π,Aπ(z),I(x, n)) = 1]
∣∣∣− µ′(n) (4)

This follows directly from the fact that Aπ is an f -hybrid adversary.
By combining Equations (3) and (4) we obtain that for every polynomial-time distinguisher D

and every x and z,

Pr
[
output2(realπρ,A(z),I(x, n)) = corrupted1

]

= Pr
[
output2(hybridf

π,Aπ(z),I(x, n)) = corrupted1

]

+ Pr
[
outputρ

2(realπρ,A(z),I(x, n)) = corrupted1

]

≥ ε2(n) ·
∣∣∣Pr[D(idealf,S(z),I(x, n)) = 1]− Pr[D(hybridf

π,Aπ(z),I(x, n)) = 1]
∣∣∣− µ′(n)

+ ε1(n) ·
∣∣∣Pr[D(hybridf

π,Aπ(z),I(x, n)) = 1]− Pr[D(realπρ,A(z),I(x, n)) = 1]
∣∣∣− µ(n)

≥ min{ε1, ε2}(n) ·
∣∣∣Pr[D(idealf,S(z),I(x, n)) = 1]− Pr[D(realπρ,A(z),I(x, n)) = 1]

∣∣∣− µ′(n)− µ(n)

where the last inequality is due to the fact that |a− b|+ |b− c| ≥ |a− c|, and replacing ε1 and ε2
with min{ε1, ε2} only makes the result smaller. We therefore conclude that πρ securely computes g
in the presence of covert adversaries with ε-deterrent, where ε = min{ε1, ε2}.
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4.2 Composition for Definitions 3.4 and 3.5

In this section, we prove an analogous modular sequential composition theorem for the stronger
Definitions 3.4 and 3.5. Before doing so, we define an (f, ε)-hybrid model that is the same as the
regular hybrid model except that the trusted party is as in idealcε (when considering Definition 3.4)
or as in idealscε (when considering Definition 3.5).

Theorem 4.2 Let ε : IN → [0, 1] be a function, let f be a multiparty probabilistic polynomial-time
functionality and let ρ be a secure protocol for computing f in the presence of covert adversaries
with ε-deterrent. Furthermore, let g be a multiparty functionality and let π be a secure protocol for
computing g in the (f, ε)-hybrid model in the presence of covert adversaries with ε-deterrent. Then,
πρ is a secure protocol for computing g in the presence of covert adversaries with ε-deterrent. The
above holds for Definitions 3.4 and 3.5 by taking the appropriate ideal model in each case.

Proof Sketch: Theorem 4.2 can be derived as an almost immediate corollary from the composition
theorem of [4] in the following way. First, define a special functionality interface that follows the
instructions of the trusted party in Definition 3.4 (respectively, in Definition 3.5). That is, define
a reactive functionality that receives inputs and write outputs (this functionality is modelled by
an interactive Turing machine). The appropriate reactive functionality here acts exactly like the
trusted party (e.g., if it receives a cheati message, then it tosses coins and with probability ε
outputs corruptedi to all parties and with probability 1 − ε gives the adversary all of the honest
parties’ inputs and lets it chooses their outputs). Next, consider the standard ideal model of
Definition 2.1 with functionalities of the above form. It is easy to see that a protocol securely
computes some functionality f under Definition 3.4 (resp., under Definition 3.5) if and only if
it is securely computes the appropriately defined reactive functionality under Definition 2.1. This
suffices because the composition theorem of [4] can be applied to Definition 2.1, yielding the result.4

We note that it is possible to generalize Theorem 4.2 so that ρ and π have different values of ε.
However, π must be proven secure with the ε-value of ρ in mind. That is, we can state the following
theorem: If ρ is a secure protocol for computing f in the presence of covert adversaries with ε′-
deterrent, and π is a secure protocol for computing g in the (f, ε′)-hybrid model in the presence of
covert adversaries with ε-deterrent, then πρ is a secure protocol for computing g in the presence of
covert adversaries with ε-deterrent.

5 Oblivious Transfer

In the oblivious transfer functionality [22, 8], a sender has two inputs (x0, x1) and a receiver has an
input bit σ. The sender receives no output (and, in particular, learns nothing about the receiver’s
bit), while the receiver learns xσ (but learns nothing about x1−σ). This variant of oblivious transfer
is often called 1-out-of-2 oblivious transfer.

In this section we will construct an efficient oblivious transfer protocol that is secure in the
presence of covert adversaries with ε-deterrent. We will first present the basic scheme that considers
a single oblivious transfer and ε = 1/2. We will then extend this to enable the simultaneous parallel

4Two remarks are in place here. First, the composition theorem of [4] is formally proven for standard (non-
reactive) functionalities and the case of an honest majority. Nevertheless, the proof can be extended to these cases in
a straightforward way with almost no changes. Second, the composition theorem of [4] assumes a strict polynomial-
time simulator. This is fine because we also required this in our definitions.
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execution of many oblivious transfers and also higher values of ε. Our constructions all rely on the
existence of secure homomorphic encryption schemes.

Homomorphic encryption. Let (G,E, D) be a public-key encryption scheme that has indistin-
guishable encryptions under chosen-plaintext attacks. We say that (G, E, D) is homomorphic if it
has the following homomorphic property:

1. The plaintext is taken from a finite Abelian group determined by the public key. For nota-
tional convenience, we assume here that the group is the “additive” group Zq; however, an
analogous construction works for the “multiplicative” group over Zq as well.

2. Given any public-key pk generated by the key generation algorithm G and any two ciphertexts
c1 = Epk(m1) and c2 = Epk(m2) under that key, it is possible to efficiently compute a random
encryption Epk(m1)+EEpk(m2) = Epk(m1+m2). Consequently, it is also possible to efficiently
compute Epk(m1 · α) for any known integer α. (This follows because repeated squaring – or
addition – can be used.)

We also assume that (G,E, D) has no decryption errors. Such encryption schemes can be con-
structed under the quadratic-residuosity, N -residuosity, decisional Diffie-Hellman (DDH) and other
assumptions; see [1, 17] for some references.

5.1 The Basic Protocol

Protocol 5.1 (oblivious transfer from errorless homomorphic encryption):

• Inputs: The sender S has a pair of strings (x0, x1) for input; the receiver R has a bit σ. Both
parties have the security parameter 1n as auxiliary input. (In order to satisfy the constraints
that all inputs are of the same length, it is possible to define |x0| = |x1| = k and give the
receiver (σ, 12k−1).)

• Assumption: We assume that the group determined by the homomorphic encryption scheme
with security parameter n is large enough to contain all strings of length k. Thus, if the
homomorphic encryption scheme only works for single bits, we will only consider k = 1 (i.e.,
bit oblivious transfer).

• The protocol:

1. The receiver R chooses two sets of two pairs of keys:

(a) (pk0
1, sk

0
1), (pk0

2, sk
0
2) ← G(1n) using random coins r0

G, and
(b) (pk1

1, sk
1
1), (pk1

2, sk
1
2) ← G(1n) using random coins r1

G

R sends (pk0
1, pk0

2) and (pk1
1, pk1

2) to the sender S.

2. Key-generation challenge:

(a) S chooses a random coin b ∈R {0, 1} and sends b to R.
(b) R sends S the random-coins rb

G that it used to generate (pkb
1, pkb

2).
(c) S checks that the public keys output by the key-generation algorithm G when given

input 1n and the appropriate portions of the random-tape rb
G equal pkb

1 and pkb
2. If

this does not hold, or if R did not send any message here, S outputs corruptedR and
halts. Otherwise, it proceeds.
Denote pk1 = pk1−b

1 and pk2 = pk1−b
2 .
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3. Let H be the message-space of the encryption scheme. Then, R chooses two random
values σ0, σ1 ∈R H with the constraint that σ0 + σ1 = σ.

(a) R computes

c1
0 = Epk1(σ0) c1

1 = Epk1(σ1)
c2
0 = Epk2(σ0) c2

1 = Epk2(σ1)

using random coins r1
0, r1

1, r2
0 and r2

1, respectively. (Note that c1
0 and c2

0 are en-
cryptions of the same value, and likewise c1

1 and c2
1. However, the encryptions use

independent randomness and different keys.)
(b) R sends c1

0, c
1
1 and c2

0, c
2
1 to S.

4. Encryption-generation challenge:

(a) S chooses a random bit b′ ∈R {0, 1} and sends b′ to R.
(b) R sends σb′ to S, together with r1

b′ and r2
b′ (i.e., R sends an opening to the ciphertexts

c1
b′ and c2

b′).
(c) S checks that c1

b′ and c2
b′ are both encryptions of the same value. If not (including

the case that no message is sent by R), S outputs corruptedR and halts. Otherwise,
it continues to the next step.

5. S uses the homomorphic property and c1
0, c

1
1, c

2
0, c

2
1 to compute Epk1(σ) = c1

0 +E c1
1 =

Epk1(σ0) +E Epk1(σ1) and Epk2(σ) = c2
0 + c2

1 = Epk2(σ0) +E Epk2(σ1). The sender S
chooses two random values s0, s1 ∈R G and uses the homomorphic property to compute

c̃0 = Epk1(x0 + σ · s0) and c̃1 = Epk2(x1 + (1− σ) · s1)

S sends c̃0 and c̃1 to R. (Notice that c̃0 is encrypted with key pk1 and c̃1 is encrypted
with key pk2.)

6. If σ = 0, the receiver R outputs x0 = Dsk1(c̃0). Otherwise, R outputs x1 = Dsk2(c̃1).

7. If at any stage during the protocol, S does not receive the next message that it expects to
receive from R or the message it receives is invalid and cannot be processed, it outputs
abortR (unless it was already instructed to output corruptedR). Likewise, if R does not
receive the next message that it expects to receive from S or it receives an invalid message,
it outputs abortS.

The intuition as to why Protocol 5.1 is secure is as follows. First note that if the receiver follows the
instructions of the protocol, it learns only a single value x0 or x1. This is because both c1

0 +E c1
1 and

c2
0 +E c2

1 are encryptions of the same bit σ. Thus, if σ = 0, then c̃1 is an encryption of a uniformly
distributed value due to the blinding by s1, and vice versa if σ = 1. (If σ /∈ {0, 1} then both c̃0

and c̃1 are encryptions of uniformly distributed values.) The first problem that arises is that the
receiver may not generate the encryptions c1

0, c
1
1, c

2
0, c

2
1 properly (and so it may be that c1

0+E c1
1 is an

encryption of 0 and c2
0 +E c2

1 is an encryption of 1). This is prevented by the encryption-generation
challenge. That is, the receiver may try to cheat in this way. However, then it is guaranteed to be
caught with probability 1/2. The above intuition relates to privacy. However, we need to prove
security via simulation. In order to do this, we have to show how to extract the receiver’s implicit
input and how to simulate its view. Extraction works by first providing the corrupted receiver
with the encryption-challenge bit b′ = 0 and then rewinding it and providing it with the challenge
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b′ = 1. If the corrupted receiver replies to both challenges, then the simulator can construct σ from
σ0 and σ1. A crucial point here is that if the receiver does not reply to both challenges then an
honest sender would output corruptedR with probability 1/2, and so this corresponds to a cheatR
input in the ideal world. The task of simulating the receiver’s view in this case is straightforward
once its input is extracted; see the proof below.

In the case that the sender is corrupted, it is easy to see that it cannot learn anything about
the receiver’s input due to the semantic security of the encryption scheme. However, as above, we
need to show how extraction and simulation works. Extraction here works by providing inconsistent
encryptions in c1

0, c
1
1, c

2
0, c

2
1. That is, these encryptions are generated so that c1

0+E c1
1 is an encryption

of 0 and c2
0 +E c2

1 is an encryption of 1. This ensures that c̃0 is an encryption of x0 and c̃1 is an
encryption of c̃1 (i.e., both the s0 and s1 masks are neutralized). An important point here is
that unlike a real receiver, the simulator can do this without being “caught”. Specifically, the
simulator generates the ciphertexts so that for some β it holds that c1

β and c2
β are to the same value

σβ, whereas c1
1−β and c2

1−β are to different values σ1−β and σ′1−β. (Importantly, σβ + σ1−β = 0
whereas σβ + σ′1−β = 1.) Then, the simulator “hopes” that the corrupted sender asks it to open
the ciphertexts c1

β and c2
β which look as they should. In such a case, the simulator proceeds and

succeeds in extracting both x0 and x1. However, if the corrupted sender asks the simulator to open
the other ciphertexts (that are clearly invalid), the simulator just rewinds the corrupted sender
and tries again. Thus, extraction can be achieved. Regarding the simulation of the sender’s view,
this follows from the fact that the only differences between the above and a real execution are the
values encrypted in the ciphertexts c1

0, c
1
1, c

2
0, c

2
1. These distributions are therefore indistinguishable

by the semantic security of the encryption scheme.
We now formally prove that Protocol 5.1 meets Definition 3.5 with ε = 1

2 (of course, this
immediately implies security under Definitions 3.2 and 3.4 as well).

Theorem 5.2 Assuming that (G,E,D) constitutes a semantically secure homomorphic encryption
scheme (with errorless decryption), Protocol 5.1 securely computes the oblivious transfer function-
ality ((x0, x1), σ) 7→ (λ, xσ) in the presence of covert adversaries with ε-deterrent for ε = 1

2 , under
Definition 3.5.

Proof: We will separately consider the case that no parties are corrupted, the case that the receiver
is corrupted and the case that the sender is corrupted (the case that both parties are corrupted
is trivial). We note that although we construct three different simulators (one for each corruption
case), a single simulator as required by the definition can be constructed by simply combining the
three simulators into one machine, and working appropriately given the corruption set I.

No corruptions. We first consider the case that no parties are corrupted (i.e., I = φ). In this
case, the real adversary A’s view can be generated by a simulator Sim that simply runs S and R
honestly, with inputs x0 = x1 = 0k and σ = 0 (recall that in this case we assume that the adversary’s
auxiliary input contains the input length k). The fact that this simulation is indistinguishable from
a real execution (with the honest parties’ real inputs) follows from the indistinguishability property
of encryption scheme. The proof is straightforward and is therefore omitted. We remark that in
order to show that the real and ideal outputs are indistinguishable, we also have to show that the
honest parties’ outputs in a real execution are correct (because this is the case in the ideal world).
The sender’s output is defined as λ and so this clearly holds. Regarding the receiver, recall that
c̃0 = Epk1(x0 + σ · s0) and c̃1 = Epk2(x1 + (1− σ) · s1). Thus, if σ = 0 it holds that c̃0 = Epk1(x0)
and if σ = 1 it holds that c̃1 = Epk2(x1). This implies that the receiver correctly obtains xσ as
required.
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Corrupted receiver: Let A be a real adversary that controls the receiver R. We construct a
simulator Sim that works as follows:

1. Sim receives (σ, 12k−1) and z as input and invokes A on this input.

2. Sim plays the honest sender with A as receiver.

3. When Sim reaches the key-generation challenge step, it first sends b = 0 and receives back
A’s response. Then, Sim rewinds A, sends b = 1 and receives back A’s response.

(a) If neither of the responses from A are valid (where by validity we mean a response that
would not cause S to output corruptedR in a real execution), Sim sends corruptedR to the
trusted party, simulates the honest S aborting due to detected cheating, and outputs
whatever A outputs.

(b) If A sends back exactly one valid response, then Sim sends cheatR to the trusted party.

i. If the trusted party replies with corruptedR, then Sim rewinds A and hands it the
query for whichA’s response was not valid. Sim then simulates the honest S aborting
due to detected cheating, and outputs whatever A outputs.

ii. If the trusted party replies with undetected and the honest S’s input pair (x0, x1),
then Sim plays the honest sender with input (x0, x1) in a full execution with A as
the receiver. At the conclusion, Sim outputs whatever A outputs.

(c) If A sends back two valid responses, then Sim rewinds A, gives it a random b′ and
proceeds as below.

4. Sim receives ciphertexts c1
0, c

1
1, c

2
0, c

2
1 from A.

5. Next, in the encryption-generation challenge step, Sim first sends b′ = 0 and receives back
A’s response. Then, Sim rewinds A, sends b′ = 1 and receives back A’s response.

(a) If neither of the responses from A are valid (where by validity we mean a response that
would not cause S to output corruptedR in a real execution), Sim sends corruptedR to the
trusted party, simulates the honest S aborting due to detected cheating, and outputs
whatever A outputs.

(b) If A sends back exactly one valid response, then Sim sends cheatR to the trusted party.

i. If the trusted party replies with corruptedR, then Sim rewinds A and hands it the
query for whichA’s response was not valid. Sim then simulates the honest S aborting
due to detected cheating, and outputs whatever A outputs.

ii. If the trusted party replies with undetected and the honest S’s input pair (x0, x1),
then Sim plays the honest sender with input (x0, x1) and completes the execution
with A as the receiver. (Note that the sender has not yet used its input at this stage
of the protocol. Thus, Sim has no problem completing the execution like an honest
sender.) At the conclusion, Sim outputs whatever A outputs.

(c) If A sends back two valid responses, then Sim computes σ = σ0 + σ1. If σ ∈ {0, 1},
then Sim sends σ to the trusted party and receives back x = xσ. Simulator Sim then
completes the execution playing the honest sender and using x0 = x1 = x. If σ /∈ {0, 1},
then Sim completes the execution playing the honest sender and using x0 = x1 = 0k,
where |x| = k.

22



6. If at any point A sends a message that would cause the honest sender to halt and output
abortR, simulator Sim immediately sends abortR to the trusted party, halts the simulation
and proceeds to the final “output” step.

7. Output: At the conclusion, Sim outputs whatever A outputs.

This completes the description of Sim. Denoting π as Protocol 5.1 and noting that I here equals
{R} (i.e., the receiver is corrupted), we need to prove that for ε = 1

2 ,
{
idealscε

ot,S(z),I(((x0, x1), σ), n)
}

c≡
{
realπ,A(z),I(((x0, x1), σ), n)

}

It is clear that the simulation is perfect if Sim sends corruptedR or cheatR at any stage. This is due
to the fact that the probability that an honest S outputs corruptedR in the simulation is identical
to the probability in a real execution (probability 1 in the case that A responds incorrectly to
both challenges and probability 1/2 otherwise). Furthermore, in the case that Sim sends cheatR
and receives back undetected it concludes the execution using the true input of the sender. The
simulation until the last step is perfect (it involves merely sending random challenges); therefore
the completion using the true sender’s input yields a perfect simulation. The above is clearly true
of abortR as well (because this can only occur before the last step where the sender’s input is used).

It remains to analyze the case that Sim does not send corruptedR, cheatR or abortR to the trusted
party. Notice that in this case, A responded correctly to both the key-generation challenges and the
encryption-generation challenges. In particular, this implies that the keys pk1 and pk2 are correctly
generated, and that Sim computes σ based on the encrypted values sent by A.

Now, if σ = 0, then Sim hands A the ciphertexts c̃0 = Epk1(x0) and c̃1 = Epk2(s) for some
random value s, and if σ = 1, it hands A the ciphertexts c̃0 = Epk1(s

′) for some random value s′

and c̃1 = Epk2(x1). This follows from the instructions of Sim and the honest party (Sim plays the
honest party with x0 = x1 = xσ and so c̃1−σ is an encryption of s = xσ + s1−σ). The important
point to notice is that these messages are distributed identically to the honest sender’s messages in
a real protocol; the fact that Sim does not know x1−σ makes no difference because for a random
s it holds that xσ + s is distributed identically to x1−σ + s. The same analysis holds in the case
that σ /∈ {0, 1}. Specifically, in this case, c̃0 = Epk1(s) and c̃1 = Epk2(s

′) for some random values
s and s′. (In order to see this, set s = σ · s0 and s′ = (1 − σ) · s1. It follows that these strings
are uniformly distributed because σ is fixed and s0, s1 are chosen uniformly.) We note that this
assumes that the homomorphic property of the encryption scheme holds, but this is given by the
fact that pk1 and pk2 are correctly formed. Regarding the rest of the messages sent by Sim, these
are generated independently of the sender-input and so exactly like an honest sender.

We conclude that the view of A as generated by the simulator Sim is identical to the distribution
generated in a real execution. Thus, its output is identically distributed in both cases. (Since the
sender receives no output, we do not need to consider the output distribution of the honest sender
in the real and ideal executions.) We conclude that

{
idealscε

ot,S(z),I(((x0, x1), σ), n)
}
≡

{
realπ,A(z),I(((x0, x1), σ), n)

}

completing this corruption case.

Corrupted sender: Let A be a real adversary that controls the sender S. We construct a
simulator Sim that works as follows:

1. Sim receives (x0, x1) and z and invokes A on this input.
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2. Sim interacts with A and plays the honest receiver until Step 3 of the protocol.

3. In Step 3 of the protocol, Sim works as follows:

(a) Sim chooses a random bit β ∈R {0, 1}
(b) Sim chooses a random value σβ ∈R G

(c) Sim computes two values: σ1−β and σ′1−β such that σβ + σ1−β = 0 and σβ + σ′1−β = 1

(d) Sim computes c1
β = Epk1(σβ) and c2

β = Epk2(σβ), as the honest receiver would. However,
Sim computes the other ciphertexts differently. Specifically, it computes

c1
1−β = Epk1(σ1−β) and c2

1−β = Epk2(σ
′
1−β)

Notice that
c1
0 +E c1

1 = Epk1(σβ + σ1−β) = Epk1(0)

and
c2
0 +E c2

1 = Epk2(σβ + σ′1−β) = Epk2(1)

(e) Sim sends c1
0, c

2
0, c

1
1, c

2
1 to A.

4. In the next step (Step 4 of the protocol), A sends a bit b′. If b′ = β, then Sim opens the
ciphertexts c1

β and c2
β as the honest receiver would (note that the ciphertexts are both to the

same value σβ). Otherwise, Sim returns to Step 3 of the simulation above (i.e., it returns to
the beginning of Step 3 of the protocol) and tries again with fresh randomness.5

5. The simulator Sim receives from A the ciphertexts c̃0 and c̃1. Sim computes x0 = Dsk1(c̃0)
and x1 = Dsk2(c̃1), and sends the pair (x0, x1) to the trusted party as S’s input.

6. If at any stage in the simulation A does not respond, or responds with an invalid message
that cannot be processed, then Sim sends abortS to the trusted party for the sender’s inputs.
(Such behavior from A can only occur before the last step and so before any input (x0, x1)
has already been sent to the trusted party.)

7. Sim outputs whatever A outputs.

Notice that Sim never sends cheatS to the trusted party. Thus we actually prove standard security
in this corruption case. That is, we prove that:

{
idealot,Sim(z),I((x0, x1, σ), n)

}
c≡

{
realπ,A(z),I((x0, x1, σ), n)

}
(5)

By Proposition 3.8, this implies security for covert adversaries as well. In order to prove Eq. (5),
observe that the only difference between the view of the adversary A in a real execution and in
the simulation by Sim is due to the fact that Sim does not generate c1

0, c
2
0, c

1
1, c

2
1 correctly. Thus,

intuitively, Eq. (5) follows from the security of the encryption scheme. That is, we begin by showing
that if the view of A in the real and ideal executions can be distinguished, then it is possible to break
the security of the encryption scheme. We begin by showing that the view of A when interacting
with an honest sender with input σ = 0 is indistinguishable from the view of A when interacting
in a simulation with Sim.

5This yields an expected polynomial-time simulation because these steps are repeated until b′ = β. A strict
polynomial-time simulation can be achieved by just halting after n attempts. The probability that b′ 6= β in all of
these attempts can be shown to be negligible, based on the hiding property of the encryption scheme.
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Let A′ be an adversary that attempts to distinguish encryptions under a key pk.6 Adversary
A′ receives a key pk, chooses a random bit γ ∈R {0, 1} and sets pk1−γ

2 = pk. It then chooses
the keys pk1−γ

1 , pkγ
1 and pkγ

2 by itself and sends A the keys (pk0
1, pk0

2) and (pk1
1, pk1

2). When A
replies with a bit b, adversary A′ acts as follows. If b = γ, then A′ opens the randomness used
in generating (pkb

1, pkb
2) as the honest receiver would (A′ can do this because it chose (pkγ

1 , pkγ
2 )

by itself and γ = b). If b 6= γ, then A′ cannot open the randomness as an honest receiver would.
Therefore, A′ just halts. If A continues, then it has set pk1 = pk1−γ

1 and pk2 = pk1−γ
2 (and so pk2

is the public-key pk that A′ is “attacking”). Now, A′ computes the ciphertexts c1
0, c

2
0, c

1
1, c

2
1 in the

following way. A′ chooses σβ at random, as the honest receiver would, and computes σ1−β and
σ′1−β as the simulator would. (Recall that this means that σβ + σ1−β = 0 and σβ + σ′1−β = 1.)
It computes c1

β = Epk1(σβ), c2
β = Epk2(σβ) and c1

1−β = Epk1(σ1−β). It then outputs the pair of
plaintexts (m0 = σ1−β, m1 = σ′1−β) and receives back c = Epk(mb) = Epk2(mb) (for b ∈ {0, 1}).
Adversary A′ sets c2

1−β = c (i.e., to equal the challenge ciphertext) and continues playing the honest
receiver until the end. The key point here is that if A′ does not halt and b = 0, then the simulation
by A′ is identical to a real execution between A and an honest receiver R who has input σ = 0
(because both c1

1−β and c2
1−β are encryptions of σ1−β, and σβ + σ1−β = 0). In contrast, if A′ does

not halt and b = 1, then the simulation by A′ is identical to the simulation carried out by Sim.
Finally, note that A′ halts with probability exactly 1/2 in both cases (this is due to the fact that the
distribution of the keys is identical for both choices of γ). Combining the above together, we have
that if it is possible to distinguish the view of A in the simulation by Sim from a real execution with
a receiver who has input 0, then it is possible to distinguish encryptions. Specifically, A′ can just
run the distinguisher that exists for these views and output whatever the distinguisher outputs.

The above shows that the view of A in the simulation is indistinguishable from its view in a
real execution with an honest receiver with input σ = 0. However, we actually have to show that
when the honest receiver has input σ = 0, the joint distribution of A and the honest receiver’s
outputs in a real execution is indistinguishable from the joint distribution of Sim and the honest
receiver’s outputs in the ideal model. The point to notice here is that the output of the honest
receiver in both the real and ideal models is the value obtained by decrypting c̃0 using key pk1.
(In the real model this is what the protocol instructs the honest party to output and in the ideal
model this is the value that Sim sends to the trusted party as the sender’s input x0.) However, in
this reduction A′ knows the associated secret-key to pk1, because it chose pk1 itself. Thus, A′ can
append the decryption of c̃0 to the view of A, thereby generating a joint distribution. It follows
that if A′ received an encryption of m0 then it generates the joint distribution of the outputs in
the real execution, and if it received an encryption of m1 then it generates the joint distribution of
the outputs in the ideal execution. This completes the proof of Eq. (5) for the case that σ = 0.

The case for σ = 1 follows from an almost identical argument as above. In this case, the only
difference between the real and ideal executions is that in the ideal execution c1

1−β is an encryption
of σ1−β instead of an encryption of σ′1−β (as it should be so that σβ + σ′1−β = 1). Thus, the same
reduction by A′ is carried out based on the key pk1. Regarding the joint distribution, A′ chooses
the other key (here pk2) by itself and so can decrypt c̃1 in order to obtain the value that the honest
receiver would output. This concludes the proof of this corruption case.

Discussion. The proof of Protocol 5.1 in the case that the receiver is corrupted relies heavily on
6The game that A′ plays is that it receives a key pk, outputs a pair of plaintexts m0, m1, receives back a challenge

ciphertext Epk(mb) for some b ∈ {0, 1}, and outputs a “guess” bit b′. An encryption scheme is indistinguishable if
the probability that A′ outputs b′ = 1 when b = 1 is negligibly close to the probability that A′ outputs b′ = 1 when
b = 0.
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the fact that the simulator can send cheat and therefore does not need to complete a “standard”
simulation. Take for example the case that A (controlling the receiver) only replies with one
valid response to the encryption-generation challenge. In this case, the simulator never succeeds
in extracting the value of σ (and indeed, the value may not be uniquely defined). However, with
probability 1/2, a real execution will terminate without any cheating being detected. Thus, the
standard simulation requirements (that require the simulator to also “succeed” with probability
1/2) cannot be met here. This demonstrates why it is possible to achieve higher efficiency for this
definition of security.

The proof of security for a corrupted sender. We stress that we have actually proven
something stronger. Specifically, we have shown that Protocol 5.1 is secure in the presence of a
covert receiver with 1/2-deterrent as stated. However, we have also shown that Protocol 5.1 is
(fully) secure with abort in the presence of a malicious sender.

Efficiently recognizable public keys. We remark that in the case that it is possible to efficiently
recognize that a public-key is in the range of the key-generator of the public-key encryption scheme,
it is possible to skip the key-generation challenge step in the protocol (the sender can verify for
itself if the key is valid).

5.2 Extensions

String oblivious transfer. In Protocol 5.1, x0 and x1 are elements in the group over which the
homomorphic encryption scheme is defined. If this group is large, then we can carry out string
oblivious transfer. This is important because later we will use Protocol 5.1 to exchange symmetric
encryption keys. However, if the group contains only 0 and 1, then this does not suffice. In order
to extend Protocol 5.1 to deal with string oblivious transfer, even when the group has only two
elements, we only need to change the last two steps of the protocol. Specifically, instead of S
computing a single encryption for x0 and a single encryption for x1, it computes an encryption for
each bit. That is, denote the bits of x0 by x1

0, . . . , x
n
0 , and likewise for x1. Then, S computes:

c̃1
0 = Epk1(x

1
0 + σ · s1

0), . . . , Epk1(x
n
0 + σ · sn

0 )

and
c̃2
1 = Epk2(x

1
1 + (1− σ) · s1

1), . . . , Epk2(x
n
1 + (1− σ) · sn

1 )

where s1
0, . . . , s

n
0 and s1

1, . . . , s
n
1 are independent random values. Note that the receiver can still

only obtain one of the strings because if σ = 0 then c̃2
1 contains encryptions to random independent

values, and vice versa if σ = 1.

Parallel oblivious transfer. We will use Protocol 5.1 in Yao’s protocol for secure two-party
computation. This means that we will run one oblivious transfer for every bit of the input. In
principle, these oblivious transfers can be run in parallel, as long as the protocol being used remains
secure under parallel composition. Fortunately, Protocol 5.1 can be modified so that it can be run
in parallel. We stress that we do not refer to parallel composition in the classic sense where each
execution is considered separately by the honest parties (i.e., stateless composition). Rather, we
show how to extend Protocol 5.1 so that it computes the functionality:

((x0
1, x

1
1), . . . , (x

0
n, xn

1 ), (σ1, . . . , σn)) 7→ (λ, (xσ1
1 , . . . , xσn

n ))

Thus, we essentially have n oblivious transfers where in the ith such transfer, the sender has input
(x0

i , x
1
i ) and the receiver has input σi.
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The extension to Protocol 5.1 works as follows. First, the same public-key pair (pk1, pk2) can
be used in all executions. Therefore, Steps 1 and 2 remain unchanged. Then, Step 3 is carried
out independently for all n bits σ1, . . . , σn. That is, for every i, two values σ0

i and σ1
i are chosen

randomly under the constraint that σ0
i + σ1

i = σi. Furthermore, for every i 6= j, the values are
chosen independently of each other. The four encryptions generated are generated separately for
every i, in exactly the same way as in Protocol 5.1. The important change comes in Step 4. Here,
the same challenge bit b′ is used for every i. The sender then replies as it should, opening the c1

b′
and c2

b′ ciphertexts for every i. The protocol then concludes by the sender computing the c̃0 and c̃1

ciphertexts for every i, and the receiver decrypting. (We stress that the c̃0 and c̃1 ciphertexts are
all generating using independent randomness for encrypting and for choosing s0 and s1.)

The proof of the above extension is almost identical to the proof of Theorem 5.2. The main point
is that since only a single challenge is used for both the key-generation challenge and encryption-
generation challenge, the probability of achieving b′ = β (as needed for the simulation) and b = γ (as
needed for the reduction to the security of the encryption scheme) remains one half. Furthermore,
the probability that a corrupted R will succeed in cheating remains the same because if there is any
i for which the σ0

i and σ1
i are not correctly formed, then the receiver will be caught with probability

one half.

Higher values of ε. Finally, we show how it is possible to obtain higher values of ε with only
minor changes to Protocol 5.1. The basic idea is to increase the probability of catching a corrupted
receiver in the case that it attempts to generate an invalid key-pair or send ciphertexts in Step 3 that
do not encrypt the same value. Let k = poly(n) be an integer. Then, first the receiver generates
k pairs of public-keys (pk1

1, pk1
2), . . . , (pkk

1 , pkk
2) instead of just two pairs. The sender then asks the

receiver to reveal the randomness used in generating all the pairs except for one (the unrevealed
key-pair is the one used in the continuation of the protocol). Note that if a corrupted receiver
generated even one key-pair incorrectly, then it is caught with probability 1 − 1/k. Likewise, in
Step 3, the receiver chooses k random values σ1, . . . , σk under the constraint that

∑k
i=1 σi = σ and

encrypts each value σi under both pk1 and pk2. Then, the sender asks the receiver to open all pairs
of encryptions of σi except for one pair. Clearly, the sender still learns nothing about σ because one
of the σj values remains hidden. Furthermore, if the receiver generates even one pair of ciphertexts
so that pk1 encrypts some value σi and pk2 encrypts some different value σ′i, then it will be caught
with probability 1 − 1/k. The rest of the protocol remains the same (of course, we modify the
sender so that it computes Epk1(σ) by “adding” all k ciphertexts). We conclude that the resulting
protocol is secure in the presence of covert adversaries with ε-deterrent where ε = 1− 1/k. Notice
that this works as long as k is polynomial in the security parameter and thus ε can be made to be
very close to 1, if desired. (Of course, this methodology cannot be used to make ε negligibly close
to 1, because then k has to be super-polynomial.)

Summary. We conclude with the following theorem, derived by combining the extensions above:

Theorem 5.3 Assume that there exist semantically secure homomorphic encryption schemes with
errorless decryption. Then, for any k = poly(n) there exists a protocol that securely computes the
parallel string oblivious transfer functionality

((x0
1, x

1
1), . . . , (x

0
n, xn

1 ), (σ1, . . . , σn)) 7→ (λ, (xσ1
1 , . . . , xσn

n ))

in the presence of covert adversaries with ε-deterrent for ε = 1− 1
k .
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6 Secure Two-Party Computation

In this section, we show how to securely compute any two-party functionality in the presence of
covert adversaries. We have three different protocols, one for each of the three different security
definitions. We first present the protocol for the strong explicit cheat formulation, which provides
ε = 1/2-deterrent. The variations for the other models are minor and will be presented later. In all
cases, the deterrent can be boosted to 1− 1/p(n) for any polynomial p(·), with an additional price
in complexity, as will be explained later. Our protocol is based on Yao’s protocol for semi-honest
adversaries [23]. We will base our description on the write-up of [18] of this protocol, and will
assume familiarity with it. Nevertheless, in Appendix A, we briefly describe Yao’s garbled circuit
construction and present an important lemma regarding it.

6.1 The Protocol for Definition 3.5

The original protocol of Yao is not secure when the parties may be malicious. Intuitively, there
are two main reasons for this. First, the circuit constructor P1 may send P2 a garbled circuit that
computes a completely different function. Second, the oblivious transfer protocol that is used when
the parties can be malicious must be secure for this case. The latter problem is solved here by
using the protocol guaranteed by Theorem 5.3. The first problem is solved by having P1 send P2

two garbled circuits. Then, P2 asks P1 to open one of the circuits at random, in order to check
that it is correctly constructed. (This takes place before P1 sends the keys corresponding to its
input, so nothing is revealed by opening one of the circuits.) The protocol then proceeds similarly
to the semi-honest case. The main point here is that if the unopened circuit is correct, then this
will constitute a secure execution that can be simulated. However, if it is not correct, then with
probability 1/2 party P1 will have been caught cheating and so P2 will output corrupted1. While
the above intuition forms the basis for our protocol, the actual construction of the appropriate
simulator is somewhat delicate, and requires a careful construction of the protocol. We note some
of these subtleties hereunder.

First, it is crucial that the oblivious transfers are run before the garbled circuit is sent by P1

to P2. This is due to the fact that the simulator sends a corrupted P2 a fake garbled circuit that
evaluates to the exact output received from the trusted party (and only this output), as described
in Lemma A.1. However, in order for the simulator to receive the output from the trusted party, it
must first send it the input used by the corrupted P2. This is achieved by first running the oblivious
transfers, from which the simulator is able to extract the corrupted P2’s input.

The second subtlety relates to an issue we believe may be a problem for many other implemen-
tations of Yao that use cut-and-choose. The problem is that the adversary can construct (at least
in theory) a garbled circuit with two sets of keys, where one set of keys decrypts the circuit to the
specified one and another set of keys decrypts the circuit to an incorrect one. This is a problem
because the adversary can supply “correct keys” to the circuits that are opened and “incorrect
keys” to the circuit (or circuits) that are computed. Such a strategy cannot be carried out without
risk of detection for the keys that are associated with P2’s input because these keys are obtained
by P2 in the oblivious transfers before the garbled circuits are even sent (thus if incorrect keys are
sent for one of the circuits, P2 will detect this if that circuit is opened). However, it is possible for a
corrupt P1 to carry out this strategy for the input wires associated with its own input. We prevent
this by having P1 commit to these keys and send the commitments together with the garbled cir-
cuits. Then, instead of P1 just sending the keys associated with its input, it sends the appropriate
decommitments.

A third subtlety that arises is connected to the difference between Definitions 3.2 and 3.4 (where
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the latter is the stronger definition where the decision by the adversary to cheat is not allowed to
depend on the honest parties’ inputs or on the output). Consider a corrupted P1 that behaves
exactly like an honest P1 except that in the oblivious transfers, it inputs an invalid key in the place
of the key associated with 0 as the first bit of P2. The result is that if the first bit of P2’s input is 1,
then the protocol succeeds and no problem arises. However, if the first bit of P2’s input is 0, then
the protocol will always fail and P2 will always detect cheating. Thus, P1’s decision to cheat may
depend on P2’s private input, something that is impossible in the ideal models of Definitions 3.4
and 3.5. In summary, this means that the protocol achieves Definition 3.2 (with ε = 1/2) but
not Definition 3.4. In order to solve this problem, we use a circuit that computes the function
g(x1, x

1
2, . . . , x

n
2 ) = f(x1,⊕n

i=1x
i
2), instead of a circuit that directly computes f . Then, upon input

x2, party P2 chooses random x1
2, . . . , x

n−1
2 and sets xn

2 = (⊕n−1
i=1 xi

2)⊕ x2. This makes no difference
to the result because ⊕n

i=1x
i
2 = x2 and so g(x1, x

1
2, . . . , x

n
2 ) = f(x1, x2). However, this modification

makes every bit of P2’s input uniform when considering any proper subset of x1
2, . . . , x

n
2 . This helps

because as long as P1 does not provide invalid keys for all n shares of x2, the probability of failure
is independent of P2’s actual input (because any set of n − 1 shares is independent of x2). If, on
the other hand, P2 attempts to provide invalid keys for all the n shares, then it is caught with
probability almost 1. This method was previously used in [19]. We are now ready to describe the
actual protocol.

Protocol 6.1 (two-party computation of a function f):

• Inputs: Party P1 has input x1 and party P2 has input x2, where |x1| = |x2|. In addition,
both parties have a security parameter n. For simplicity, we will assume that the lengths of
the inputs are n.

• Auxiliary input: Both parties have the description of a circuit C for inputs of length n that
computes the function f . The input wires associated with x1 are w1, . . . , wn and the input
wires associated with x2 are wn+1, . . . , w2n.

• The protocol:

1. Parties P1 and P2 define a new circuit C ′ that receives n+1 inputs x1, x
1
2, , . . . , x

n
2 each of

length n, and computes the function f(x1,⊕n
i=1x

i
2). Note that C ′ has n2 +n input wires.

Denote the input wires associated with x1 by w1, . . . , wn, and the input wires associated
with xi

2 by win+1, . . . , w(i+1)n, for i = 1, . . . , n.

2. Party P2 chooses n − 1 random strings x1
2, . . . , x

n−1
2 ∈R {0, 1}n and defines xn

2 =
(⊕n−1

i=1 xi
2) ⊕ x2, where x2 is P2’s original input (note that ⊕n

i=1x
i
2 = x2). The value

z2
def= x1

2, . . . , x
n
2 serves as P2’s new input of length n2 to C ′.

3. Party P1 chooses two sets of 2n2 random keys by running G(1n), the key generator for
the encryption scheme:

k̂0
n+1, . . . , k̂

0
n2+n k̃0

n+1, . . . , k̃
0
n2+n

k̂1
n+1, . . . , k̂

1
n2+n k̃1

n+1, . . . , k̃
1
n2+n

4. P1 and P2 run n2 executions of an oblivious transfer protocol, as follows. In the ith exe-
cution, party P1 inputs the pair

(
[k̂0

n+i, k̃
0
n+i], [k̂

1
n+i, k̃

1
n+i]

)
and party P2 inputs the bit zi

2.

(P2 receives as output the keys k̂
zi
2

n+i and k̃
zi
2

n+i.) The executions are run using a parallel
oblivious transfer functionality, as in Theorem 5.3. If a party receives a corruptedi or
aborti message as output from the oblivious transfer, it outputs it and halts.
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5. Party P1 constructs two garbled circuits G(C ′)0 and G(C ′)1 using independent random-
ness. The keys to the input wires wn+1, . . . , wn2+n in the garbled circuits are taken
from above (i.e., in G(C ′)0 they are k̂0

n+1, k̂
1
n+1, . . . , k̂

0
n2+n, k̂1

n2+n, and in G(C ′)1 they
are k̃0

n+1, k̃
1
n+1, . . . , k̃0

n2+n, k̃1
n2+n). Let k̂0

1, k̂
1
1, . . . , k̂

0
n, k̂1

n be the keys associated with P1’s
input in G(C ′)0 and k̃0

1, k̃
1
1, . . . , k̃

0
n, k̃1

n the analogous keys in G(C ′)1. Then, for every
i ∈ {1, . . . , n} and b ∈ {0, 1}, party P1 computes ĉb

i = Com(k̂b
i ; r̂

b
i ) and c̃b

i = Com(k̃b
i ; r̃

b
i ),

where Com is a perfectly-binding commitment scheme and Com(x; r) denotes a commit-
ment to x using randomness r.
P1 sends the garbled circuits to P2 together with all of the above commitments. The
commitments are sent as two vectors of pairs; in the first vector the ith pair is {ĉ0

i , ĉ
1
i }

in a random order, and in the second vector the ith pair is {c̃0
i , c̃

1
i } in a random order.

6. Party P2 chooses a random bit b ∈R {0, 1} and sends b to P1.

7. P1 sends P2 all of the keys for the inputs wires w1, . . . , wn2+n of the garbled circuit
G(C ′)b, together with the associated mappings and the decommitment values. (I.e. if
b = 0, then party P1 sends (k̂0

1, 0), (k̂1
1, 1), . . . , (k̂0

n2+n, 0), (k̂1
n2+n, 1) and r̂0

1, r̂
1
1, . . . , r̂

0
n, r̂1

n

for the circuit G(C ′)0.)

8. P2 checks the decommitments to the keys associated with w1, . . . , wn, decrypts the entire
circuit (using the keys and mappings that it received) and checks that it is exactly the
circuit C ′ derived from the auxiliary input circuit C. In addition, it checks that the keys
that it received in the oblivious transfers match the correct keys that it received in the
opening (i.e., if it received (k̂, k̃) in the ith oblivious transfer, then it checks that k̂ = k̂

zi
2

n+i

if G(C ′)0 was opened, and k̃ = k̃
zi
2

n+i if G(C ′)1 was opened). If all the checks pass, it
proceeds to the next step. If not, it outputs corrupted1 and halts. In addition, if P2 does
not receive this message at all, it outputs corrupted1.

9. P1 sends decommitments to the input keys associated with its input for the unopened cir-
cuit. That is, if b = 0, then P1 sends P2 the keys and decommitment values (k̃x1

1
1 , r̃

x1
1

1 ), . . . ,

(k̃xn
1

n , r̃
xn
1

n ) to P2. Otherwise, if b = 1, then P2 sends the keys (k̂x1
1

1 , r̂
x1
1

1 ), . . . , (k̂xn
1

n , r̂
xn
1

n ).

10. P2 checks that the values received are valid decommitments to the commitments re-
ceived above. If not, it outputs abort1. If yes, it uses the keys to compute C ′(x1, z2) =
C ′(x1, x

1
2, . . . , x

n
2 ) = C(x1, x2), and outputs the result. If the keys are not correct (and

so it is not possible to compute the circuit), or if P2 doesn’t receive this message at all,
it outputs abort1.

Note that steps 7–10 are actually a single step of P1 sending a message to P2, followed by P2

carrying out a computation.

If any party fails to receive a message as expected during the execution, it outputs aborti
(where Pi is the party who failed to send the message). This holds unless the party is explicitly
instructed above to output corruptedi instead (as in Step 8).

We now prove the security of the protocol.

Theorem 6.2 Let f be any probabilistic polynomial-time function. Assume that the encryption
scheme used to generate the garbled circuits has indistinguishable encryptions under chosen-plaintext
attacks (and has an elusive and efficiently verifiable range), and that the oblivious transfer protocol
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used is secure in the presence of covert adversaries with 1/2-deterrent by Definition 3.5. Then,
Protocol 6.1 securely computes f in the presence of covert adversaries with 1/2-deterrent by Defi-
nition 3.5.

Proof: Our analysis of the security of the protocol is in the hybrid model, where the parties
are assumed to have access to a trusted party computing the oblivious transfer functionality; see
Section 4. Thus the simulator that we describe will play the trusted party in the oblivious transfer,
when simulating for the adversary. We separately consider the different corruption cases (when no
parties are corrupted, and when either one of the parties is corrupted). In the case that no parties
are corrupted, the security reduces to the semi-honest case which has already been proven in [18]
(the additional steps in Protocol 6.1 don’t make a difference here).

Party P2 is corrupted. Let A be an adversary controlling P2. The simulator S works as follows:

1. S chooses two sets of 2n2 random keys as P1 would.

2. S plays the trusted party for the oblivious transfers with A as the receiver. S receives the
input that A sends to the trusted party (as its input as receiver to the oblivious transfers):

(a) If the input is abort2 or corrupted2, then S sends abort2 or corrupted2 (respectively) to
the trusted party computing f , simulates P1 aborting and halts (outputting whatever
A outputs).

(b) If the input is cheat2, then S sends cheat2 to the trusted party. If it receives back
corrupted2, then it hands A the message corrupted2 as if it received it from the trusted
party, simulates P1 aborting and halts (outputting whatever A outputs). If it receives
back undetected then it uses the input x1 of P1 that it obtains in order to perfectly
emulate P1 in the rest of the execution. That is, it runs P1’s honest strategy with input
x1 while interacting with A playing P2 for the rest of the execution. Let y1 be the output
for P1 that it receives. S sends y1 to the trusted party (for P1’s output) and outputs
whatever A outputs. The simulation ends here in this case.

(c) If the input is a series of bits z1
2 , . . . , z

n2

2 , then S hands A the keys from above that are
“chosen” by the zi

2 bits, and proceeds with the simulation below.

3. S defines x2 = ⊕n−1
i=0 (zi·n+1

2 , . . . , zi·n+n
2 ) and sends x2 to the trusted party computing f . S

receives back some output y.

4. S chooses a random bit β and computes a garbled circuit G(C ′)β correctly (using the appro-
priate input keys from above as P1 would). However, for the garbled circuit G(C ′)1−β, the
simulator S does not use the true circuit for computing f but rather a circuit that always
evaluates to y (the value it received from the trusted party), using Lemma A.1. S uses the ap-
propriate input keys from above also in generating G(C ′)1−β. S also computes commitments
to the keys associated with P1’s input in an honest way.

5. S sends G(C ′)0, G(C ′)1 and the commitments to A and receives back a bit b.

6. If b 6= β then S rewinds A and returns to Step 4 above (using fresh randomness).

Otherwise, if b = β, then S opens the garbled circuit G(C ′)b and the commitments as the
honest P1 would and proceeds to the next step.

7. For i = 1, . . . , n, S sends A an arbitrary one of the two keys associated with the input wire
wi in G(C ′)1−b (one key per wire), together with its correct decommitments.
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8. If at any stage, S does not receive a response from A, it sends abort2 to the trusted party
(resulting in P1 outputting abort2). If the protocol proceeds successfully to the end, S sends
continue to the trusted party and outputs whatever A outputs.

Denoting π as Protocol 6.1 and I = {2} (i.e., party P2 is corrupted), we prove that:
{
idealscε

f,S(z),I((x1, x2), n)
}

c≡
{
hybridot

π,A(z),I((x1, x2), n)
}

(6)

In order to prove Eq. (6) we separately consider the cases of abort (including a “corrupted” input),
cheat or neither. If A sends abort2 or corrupted2 as the oblivious transfer input, then S sends abort2
or corrupted2 (respectively) to the trusted party computing f . In both cases the honest P1 outputs
the same (abort2 or corrupted2) and the view of A is identical. Thus, the ideal and hybrid output
distributions are identical. The exact same argument is true if A sends cheat2 and the reply to S
from the trusted party is corrupted2. In contrast, if A sends cheat2 and S receives back the reply
undetected, then the execution does not halt immediately. Rather, S plays the honest P1 with its
input x1. Since S follows the exact same strategy as P1, and the output received by P1 from the
execution is the same y1 that S receives from the protocol execution, it is clear that once again the
output distributions are identical (recall that in the ideal model, P1 outputs the same y1 obtained
by S). We remark that the probability of the trusted party answering corrupted2 or undetected is
the same in the hybrid and ideal executions (i.e., 1/2), and therefore the output distributions in
the cases of abort, corrupted or cheat are identical. We denote the event that A sends an abort,
corrupted or cheat message in the oblivious transfers by badot. Thus, we have shown that

{
idealscε

f,S(z),I((x1, x2), n) | badot

}
≡

{
hybridot

π,A(z),I((x1, x2), n) | badot

}

We now show that the ideal and hybrid distributions are computationally indistinguishable in
the case that A sends valid input in the oblivious transfer phase (i.e., in the event ¬badot). In
order to show this, we consider a modified simulator S ′ who is also given the honest party P1’s real
input x1. Simulator S ′ works exactly as S does, except that it constructs G(C ′)1−β honestly, and
not as G̃(C) from Lemma A.1. Furthermore, in Step 7 it sends the keys associated with P1’s input
x1 and not arbitrary keys. It is straightforward to verify that the distribution generated by S ′ is
identical to the distribution generated by A in an execution of the real protocol. This is due to the
fact that both circuits received by A are honestly constructed and the keys that it receives from
S ′ are associated with P1’s real input. The only difference is the rewinding. However, since β is
chosen uniformly, this has no effect on the output distribution. Thus:

{
idealscε

f,S′(z,x1),I((x1, x2), n) | ¬badot

}
≡

{
hybridot

π,A(z),I((x1, x2), n) | ¬badot

}

Next we prove that the distributions generated by S and S ′ are computationally indistinguishable.
That is,

{
idealf,S(z),I((x1, x2), n) | ¬badot

}
c≡

{
idealε

f,S′(z,x1),I((x1, x2), n) | ¬badot

}

In order to see this, notice that the only difference between S and S ′ is in the construction of
the garbled circuit G(C ′)1−β. By Lemma A.1 it follows immediately that these distributions are
computationally indistinguishable. (Note that we do not need to consider the joint distribution
of A’s view and P1’s output because P1 has no output from Protocol 6.1.) This yields the above
equation. In order to complete the proof of Eq. (6), note that the probability that the event badot

happens is identical in the ideal and hybrid executions. This holds because the oblivious transfer
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is the first step of the protocol and A’s view in this step with S is identical to its view in a protocol
execution with a trusted party computing the oblivious transfer functionality. Combining this fact
with the above equations we derive Eq. (6).

We remark that the simulator S described above runs in expected polynomial-time. In order
to see this, note that by Lemma A.1, a fake garbled circuit is indistinguishable from a real one.
Therefore, the probability that b = β is at most negligibly far from 1/2 (otherwise, this fact alone
can be used to distinguish a fake garbled circuit from a real one). It follows that the expected
number of attempts by S is close to two, and so its expected running-time is polynomial. By our
definition, S needs to run in strict polynomial-time. However, this is easily achieved by having S
halt if it fails after n rewinding attempts. Following the same argument as above, such a failure
can occur with at most negligible probability.

We conclude that S meets the requirements of Definition 3.5. (Note that S only sends cheat2
due to the oblivious transfer. Thus, if a “fully secure” oblivious transfer protocol were to be used,
the protocol would meet the standard definition of security for malicious adversaries for the case
that P2 is corrupted.)

Party P1 is corrupted. Let A be an adversary controlling P1. The simulator S works as follows:

1. S invokes A and plays the trusted party for the oblivious transfers with A as the sender. S
receives the input that A sends to the trusted party (as its input to the oblivious transfers):

(a) If the input is abort1 or corrupted1, then S sends abort1 or corrupted1 (respectively) to
the trusted party computing f , simulates P2 aborting and halts (outputting whatever
A outputs).

(b) If the input is cheat1, then S sends cheat1 to the trusted party. If it receives back
corrupted1, then it hands A the message corrupted1 as if it received it from the trusted
party, simulates P2 aborting and halts (outputting whatever A outputs). If it receives
back undetected then it uses the input x2 of P2 that it obtains in order to perfectly
emulate P2 in the rest of the execution. That is, it runs P2’s honest strategy with input
x2 while interacting with A playing P1 for the rest of the execution. Let y2 be the output
for P2 that it receives. S sends y2 to the trusted party (for P2’s output) and outputs
whatever A outputs. The simulation ends here in this case.

(c) If the input is a series of pairs of keys
(
[k̂0

n+i, k̃
0
n+i], [k̂

1
n+i, k̃

1
n+i]

)
for i = 1, . . . , n2, then

S proceeds below.

2. S receives from A two garbled circuits G(C ′)0 and G(C ′)1 and a series of commitments.

3. S sends A the bit b = 0 and receives its reply. S then rewinds A, sends it the bit b = 1 and
receives its reply.

4. S continues the simulation differently, depending on the validity of the circuit openings.
In order to describe the cases, we introduce some terminology. We call a circuit opening
detectably bad if it is not opened at all (i.e., P1 doesn’t send a message at all), if the keys
sent by P1 in the opening for the input wires associated with its own input or P2’s input fail
to decrypt the circuit (i.e., at least one of them is an invalid decryption key), if the circuit
decrypts but does not equal the auxiliary input circuit C ′, or if both keys of a given wire
that P1 provides in the oblivious transfer (as received by S) are different to the keys that
P1 provides to open the circuit. (We stress that if only one of the keys in the last condition
does not match, then the opening is not detectably bad. We also stress that only one of
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the conditions needs to be fulfilled in order to make the opening detectably bad.) S works
according to the follows cases:

(a) Case 1 – both circuit openings are detectably bad: If both of the openings of the circuit
(i.e., for b = 0 and b = 1) provided by P1 are detectably bad, then S sends w1 =
corrupted1 to the trusted party (causing the honest P2 to output corrupted1). S then
sends A a random bit b, simulates P2 aborting due to detected cheating, and outputs
whatever A outputs.

(b) Case 2 – exactly one of the circuit openings is detectably bad: If one of the openings
of the circuit is detectably bad, then S sends w1 = cheat1 to the trusted party. For
the sake of concreteness, we describe first the case that the opening of circuit G(C ′)1
(corresponding to the query b = 1) is detectably bad while the other is not:

i. If S receives the message corrupted1 from the trusted party, then it rewinds A to
after the point that it sends the garbled circuits and sends it b = 1. Then, S receives
back A’s detectably bad opening as above and simulates P2 aborting due to detected
cheating. S then outputs whatever A outputs and halts.

ii. If S receives the message undetected from the trusted party, then it rewinds A as
above, sends it b = 0 and continues to the end of the execution playing the honest
P2 with the input x2 that it received as well. (When computing the circuit, S
takes the keys from the oblivious transfer that P2 would have received when using
input x2 and when acting as the honest P2 to define the values x1

2, . . . , x
n
2 .) Let y2

be the output that S received when playing P2 in this execution. S sends y2 to
the trusted party (to be the output of P2) and outputs whatever A outputs. Note
that if the output of P2 in this execution would have been corrupted1 then S sends
y2 = corrupted1 to the trusted party.7

If the opening of the circuit G(C ′)0 is detectably bad and the other is not, S works as
above except that it reverses the values of b depending on the case.

(c) Case 3 – neither of the circuit openings are detectably bad: We begin by defining the
notion of inconsistent keys, that relates to the question of whether the keys provided by
P1 in the oblivious transfers are the same as those provided in the circuit opening. We
say that the keys are consistent in a circuit if all of the keys provided by P1 as input in
the oblivious transfer are the same as the keys that it provides in the circuit opening.
Note that since in this case neither of the circuits are detectably bad, only one of the
two keys on any wire can be inconsistent. In this case S first checks that there is no
input bit of P2 for which all n wires that are associated with it are inconsistent. (Recall
that each bit of P2’s input is “split” over n wires. Here S checks that it does not hold
that all of the wires of P2 for some bit have inconsistent keys.) If there is such a bit,
and this holds in both circuits, then S acts exactly as in the case that both circuits are
detectably bad. If this holds in one circuit, then S acts exactly as in the case that one
circuit is detectably bad.8 Otherwise, it proceeds as follows.
For each wire for which there are inconsistent keys, S chooses a random key and checks
whether it chose any inconsistent key. (We stress that if for some wire wi, S chooses

7We remark that P2 may output corrupted1 with probability that is higher than 1/2. This possibility is dealt with
by having S play P2 and force a corrupted1 output if this would have occurred in the execution.

8Notice that such a circuit is actually detectably bad because except with probability 2−n, party P2 will output
corrupted1 if this circuit is opened. This holds because in the protocol, P2 checks the consistency of the keys obtained
from the oblivious transfer protocol and in the circuit opening, and outputs corrupted if they are not the same.
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the key associated with zero, for example, then it chooses the key associated with zero
in the wire wi in both circuits.) There are three cases:

i. Case 3a – S only chose consistent keys: In this case, S proceeds to Step 4d below.
ii. Case 3b – S chose inconsistent keys in both circuits: In this case, S sends w1 =

corrupted1 to the trusted party. Next, it rewinds A to after the point that it sends
the garbled circuits and sends it a random bit b. Then, S receives back the circuit
opening to G(C ′)b as above and simulates P2 aborting due to detected cheating. S
then outputs whatever A outputs and halts.

iii. Case 3c – S chose inconsistent keys in exactly one circuit: In this case, S sends
w1 = cheat1 to the trusted party. Then:
A. If S receives the message undetected from the trusted party, it rewinds A as

above and sends it the bit b that opens the circuit for which no inconsistent keys
were chosen. Then, P2 continues to the end of the execution playing the honest
P2 with the input x2 that it received as well, with one exception: A uses the
same choice of keys that it made above with the wires with inconsistent keys.
(Notice that since not all n wires are inconsistent for any bit, S can complete
the keys for any real input bit of P2 so that it is correct and consistent with
the random choices that it made.) Let y2 be the output that S received when
playing P2 in this execution (including a possible corrupted1 that can happen
if the inconsistent key does not decrypt the circuit at all). S sends y2 to the
trusted party (to be the output of P2) and outputs whatever A outputs.

B. If S receives back the message corrupted1 from the trusted party, then it rewinds
A to after the point that it sends the garbled circuits and sends it the bit b
that opens the circuit for which inconsistent keys were chosen. Then, S receives
back the circuit opening to G(C ′)b as above and simulates P2 aborting due to
detected cheating. S then outputs whatever A outputs and halts.

(d) S reaches this point of the simulation if no circuits are detectably bad and if either all keys
are consistent or it is simulating the case that no inconsistent keys are discovered. Thus,
intuitively, the circuit and keys received by S from A are the same as from an honest
P1. The simulator S begins by rewinding A, handing it a random bit b, and receiving its
opening as before. In addition, S receives from A the set of keys and decommitments (for
wires w1, . . . , wn) for the unopened circuit G(C ′)1−b. If the decommitments are invalid,
S sends abort1 to the trusted party (causing P2 to output abort1). Otherwise, S uses
the opening of the circuit G(C ′)1−b obtained above, together with the keys obtained in
order to derive the input x′1 used by A. This input is derived by comparing the keys for
the wires w1, . . . , wn received by S from A with the keys provided by A in the opening
of the circuit. This opening provides the association of each keys to a bit – the input x′1
is derived using this association.
S sends the trusted party x′1 (and continue) and outputs whatever A outputs.

This concludes the description of S. Denote by badot the event that A sends abort1, corrupted1 or
cheat1 in the oblivious transfers. The analysis of the event badot is identical to the case that P2

is corrupted and so denoting π as Protocol 6.1 and I = {1} (i.e., party P1 is corrupted), we have
that: {

idealscε
f,S(z),I((x1, x2), n) | badot

}
≡

{
hybridot

π,A(z),I((x1, x2), n) | badot

}
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It remains to analyze the case that ¬badot (i.e., the oblivious transfer is not aborted). We will
prove the case following the same case analysis as in the description of the simulator. Before doing
so, notice that A’s view when interacting with S is identical to its view when interacting with P2

(when excluding P2’s output from A’s view). This holds because P2 uses its input only in the
oblivious transfer and otherwise just sends a random bit (we will justify that the distribution over
the bit b sent by S is also uniform). Now, when analyzing Protocol 6.1 in a hybrid model with a
trusted party computing the oblivious transfer functionality, we have that A’s view is the same in
such an execution and in the simulation with S. We remark that P2’s output is influenced by its
input and so the above argument does not hold when the distribution includes the output. The
focus of the proof below is thus to show that the distribution over the bit b sent by S during the
simulation is uniform, and the distribution over the output of P2 in the simulation is statistically
close to its output in a real execution (even when viewed jointly with A’s view).

1. Case 1 – both circuit openings are detectably bad: When A follows such a strategy, P2 outputs
corrupted1 with probability 1 in a real execution. Likewise, S sends corrupted1 in the ideal
execution, with the result that P2’s output is corrupted1, also with probability 1. (Note that
by the specification of S it hands A a uniformly distributed b, as required.)

2. Case 2 – exactly one of the circuit openings is detectably bad: In this case, P2 outputs
corrupted1 in a real execution with probability at least 1/2. In particular, if it asks A to
open the detectably bad circuit, it certainly outputs corrupted1. However, it may output
corrupted1 even if the detectably bad circuit is computed (depending on the keys and so on).
The point to notice here is that the same distribution on the output is achieved by S. This
can be seen as follows.

S sends cheat1 to the trusted party and with probability 1/2 receives back corrupted1. This
event simulates the case that P2 asked P1 to open the detectably-bad circuit (and in both the
real and ideal executions, P2 outputs corrupted1). On the other hand, with probability 1/2,
simulator S receives back undetected. This event simulates the case that P2 asked P1 to open
the circuit that is not detectably bad. In this case, S has P2’s true input x2 and so follows
the honest strategy of P2 (under the constraint that the circuit that is not detectably bad
is opened). Clearly, the output distributions in the undetected case are the same (because S
and P2 follow exactly the same instructions). Furthermore, since the bit b is chosen according
to the corrupted1/undetected response of the trusted party, it equals 0 with probability 1/2
and 1 with probability 1/2, as required.

3. Case 3 – neither of the circuit openings are detectably bad: First note that if all n wires of a
certain bit of P2 have inconsistent keys, then P2 outputs corrupted1 except with probability
2−n (this may actually depend on P2’s input; however the difference is either corrupted1 with
probability 1 or with probability 1− 2−n and this therefore does not matter). Otherwise, we
have the following cases:

(a) Case 3a – S only chose consistent keys: This case occurs with exactly the same proba-
bility as P2 in a real execution. The analysis of this is covered below.

(b) Case 3b – S chose inconsistent keys in both circuits: In this case, S sends corrupted1.
Notice that this case occurs in the simulation also with exactly the same probability
as with P2 in a real execution. However, clearly P2 outputs corrupted1 whenever this
happens (because when this happens it certainly detects cheating).
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(c) Case 3c – S chose inconsistent keys in exactly one circuit: As above, this occurs with
the same probability as with P2 in a real execution. Notice, however, that there are
two possibilities: either the circuit for which the inconsistent keys were chosen is opened
(and P2 outputs corrupted1) or the circuit for which the inconsistent keys is computed
(and A succeeds in cheating). This is analogous to the case of one detectably bad circuit
and the analysis is the same.

It remains to analyze the case that S proceeds to Step 4d in the simulation. We have already seen
that S reaches this step with the correct probability in each case. This step perfectly simulates
the case that P2 opens a circuit that is not detectably bad and did not retrieve any inconsistent
keys (in the opened and unopened circuits). Furthermore, by the description of S in Step 4d we
have that the bit b is uniformly distributed. It remains to show that in this case P2’s output in a
real execution equals f(x′1, x2) where x′1 is the value that S extracts from the circuit. First recall
that in this case the circuit is correctly constructed and the keys that are provided all decrypt
it correctly. That is, the keys that are associated with P2’s input decrypt it correctly (they were
obtained in the oblivious transfer stage, but in the opening for the simulator it was verified that they
are correct). Furthermore, the keys that are associated with P1’s input also decrypt it correctly.
Note that since the keys that are associated with P1’s inputs are committed, A must use the same
keys when opening the circuit and when computing it. Thus, if A correctly decommits to the keys
that are associated with P1’s input in G(C ′)1−b, it follows that P2 computes the circuit correctly.
Furthermore, the input of P1 is fully defined by the keys that it decommits to (and this is known
by S because it has already seen the circuit opening). Thus, the input x′1 sent by S to the trusted
party is such that P2 will either output abort1 (in the case that A sends invalid decommitments)
or f(x′1, x2) (in the case that A sends valid decommitments). However, this is exactly the same
behavior as in the simulation by S. This completes the proof.

6.2 Protocols for the Other Security Definitions

We present more efficient protocols for the two other security formulations (versions 1 and 2). The
protocols are essentially identical to the one described above, with the only difference being the
number of shares used to split the inputs of P2 in step 2. Recall that in Protocol 6.1, the input of
P2 is split into n shares. This requires the parties to run n2 oblivious transfers instead of n (note
that there is always one oblivious transfer per input bit of P2). Since the oblivious transfers are
asymmetric operations they are expensive, and thus this is a significant overhead.

Achieving Definition 3.2: For the failed-simulation formulation, we do not split the input of
P2 at all and use the original inputs (i.e., the original circuit C is used). This reduces the number
of oblivious transfers from n2 to n and is thus far more efficient. The revised protocol provides
security in the presence of covert adversaries with deterrence factor 1/2. In order to see why
this holds, notice that the issue of P2’s inputs comes into the proof where we discuss inconsistent
keys. Now, assume that an adversarial P1 provides one inconsistent key for one of the wires of
P2’s input; for the sake of clarity, assume that it is the key associated with 0. Then, if P2’s
input bit associated with that wire is 0, then P2 will output corrupted1 if the circuit is opened
and will possibly output something incorrect if the circuit is computed (each event happens with
probability 1/2). In contrast, if P2’s input bit associated with that wire is 1, then the computation
will always conclude correctly. Thus, in both cases, the probability that P2 outputs corrupted1 is
at least 1/2 times the distinguishing gap. A similar analysis follows if it provides inconsistent keys
in both circuits. We stress that P1 learns the exact value of P2’s input bit for that wire (by just
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observing if it outputs corrupted1 or not) and thus this is not secure under the standard definition
of security for malicious adversaries. However, according to Definition 3.2, if P2 outputs corrupted1

with probability at least 1/2 (as in the case that its input bit is 0), then nothing is required and
the ideal and real distributions are allowed to be easily distinguished. We also remark that this
protocol does not meet Definition 3.4 or 3.5 because the decision of whether to have P2 output
corrupted1 can depend on P2’s actual input. However, observe that in the idealc and idealsc
ideal models, the adversary must decide to send cheat or corrupted before it learns anything about
the honest parties’ inputs. We remark that this protocol has a complexity that is between two and
four times that of Yao’s protocol for the semi-honest case.9

Achieving Definition 3.4: For the explicit cheat formulation (not strong), we split the input of
P2 into 2 shares, instead of n. This modification reduces the number of oblivious transfers from
n2 to 2n and so once again is far more efficient than Protocol 6.1. This version of the protocol
provides security for covert adversaries with deterrence 1/4 under Definition 3.4. In order to see
why this holds, notice once again that this has an influence only on the analysis of inconsistent keys
for P2’s wires, and hence on the construction of the simulator for the case when P1 is corrupted.
The simulator for this Definition is similar to the one described above, but simpler. Recall that
in Definition 3.4 the adversary always gets the honest player’s whenever it chooses to cheat. Also
note that the simulator described above always detects an attempt cheat by P1. Thus, in any case
of an attempted cheat, the simulator can simulate the interaction simply by obtaining P2’s input
and simulating the interaction with P1. It thus remains to show that any attempted cheat results
in corrupted1 with probability at least 1/4. Indeed, for all cases except for inconsistent keys, we
have shown that the probability is at least 1/2. For the case of inconsistent keys, there must be
at least one inconsistent key, in at least one of the wires in at least one of the garbled circuits.
The probability to choose this circuit is 1/2, and the probability of choosing the inconsistent key
is again 1/2 - for a total of at least 1/4.

6.3 Higher Deterrence Values

For all three versions of our protocol, it is possible to boost the deterrence value to 1− 1/poly(n),
with an increased price in performance. We demonstrate this for Protocol 6.1 only (and with
respect to Definition 3.5). Let p(·) be a polynomial. Then, Protocol 6.1 can be modified so that a
deterrent of 1− 1/p(n) is obtained, as follows. First, we use an oblivious transfer protocol that is
secure in the presence of covert adversaries with deterrent ε = 1 − 1/p(n). Then, Protocol 6.1 is
modified by having P1 send p(n) garbled circuits to P2 and then P2 randomly asking P1 to open all
circuits except one. Note that when doing so it is not necessary to increase the number of oblivious
transfers, because the same oblivious transfer can be used for all circuits. This is important since
the number of oblivious transfers is a dominant factor in the complexity. The modification yields a
deterrent ε = 1−1/p(n) and thus can be used to obtain a high deterrent factor. For example, using
10 circuits the deterrence is 9/10. The proof of this protocol is very similar to that of Protocol 6.1.
The only difference is with the cases considered; instead of considering the case of one circuit versus
both circuits (regarding detectably bad and inconsistent keys), we consider the case of one circuit
versus more than one circuit.

9On the one hand, n oblivious transfers are used in both cases, so this does not “cost any more” here than in the
semi-honest case. However, the oblivious transfer protocol of Section 5 is about 4 times the cost of a semi-honest
equivalent. The rest of the protocol amounts to about twice that of a plain semi-honest version of Yao’s protocol.
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6.4 Non-Halting Detection Accuracy

It is possible to modify Protocol 6.1 so that it achieves non-halting detection accuracy; see Defi-
nition 3.3. Before describing how we do this, notice that the reason that we need to recognize a
halting-abort as cheating in Protocol 6.1 is that if P1 generates one faulty circuit, then it can always
just refuse to continue (i.e., abort) in the case that P2 asks it to open the faulty circuit. This means
that if aborting is not considered cheating, then a corrupted P1 can form a strategy whereby it is
never detected cheating, but succeeds in actually cheating with probability 1/2. In order to solve
this problem, we construct a method whereby P1 does not know if it will be caught or not. We
do so by having P2 receive the circuit opening via a fully secure oblivious transfer protocol, rather
than having P1 send it explicitly. This forces P1 to either abort before learning anything, or to risk
being caught with probability 1/2. In order to describe this in more detail, we restate the circuit
opening stage of Protocol 6.1 as follows:

1. Party P1 sends two garbled circuits G(C ′)0 and G(C ′)1 to party P2.

2. P2 sends a random challenge bit b.

3. P1 opens G(C ′)b by sending decommitments, keys and so on. In addition, it sends the keys
associated with its own input in G(C ′)1−b.

4. P2 checks the circuit G(C ′)b and computes G(C ′)1−b (using the keys from P1 in the previous
step and the keys it obtained earlier in the oblivious transfers). P2’s output is defined to be
the output of G(C ′)1−b.

Notice that P2 only outputs corrupted1 if the checks from the circuit that is opened do not pass.
As we have mentioned, there is no logical reason why an adversarial P1 would ever actually reply
with an invalid opening; rather it would just abort. Consider now the following modification:

1. Party P1 sends two garbled circuits G(C ′)0 and G(C ′)1 to party P2.

2. P1 and P2 participate in a (fully secure) oblivious transfer with the following inputs:

(a) P1 defines its input (x0, x1) as follows. Input x0 consists of the opening of circuit G(C ′)0
together with the keys associated with its own input in G(C ′)1. Input x1 consists of
the opening of circuit G(C ′)1 together with the keys associated with its own input in
G(C ′)0.

(b) P2’s input is a random bit b.

3. P2 receives an opening of one circuit together with the keys needed to compute the other and
proceeds as above.

Notice that this modified protocol is essentially equivalent to Protocol 6.1 and thus its proof of
security is very similar. However, in this case, an adversarial P1 who constructs one faulty circuit
must decide before the oblivious transfer if it wishes to abort (in which case there is no successful
cheating) or if it wishes to proceed (in which case, P2 will receive an explicitly invalid opening).
Note that due to the security of the oblivious transfer, P1 cannot know what value b party P2

inputs, and so cannot avoid being detected.
The price of this modification is that of one additional fully secure oblivious transfer and the

replacement of all of the original oblivious transfer protocols with fully secure ones. (Of course,
we could use an oblivious transfer protocol that is secure in the presence of covert adversaries
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with non-halting detection accuracy, but we do not know how to construct one.) Since fully-secure
oblivious transfer is expensive, this is a considerable overhead. (We remark that one should not
be concerned with the length of x0 and x1 in P1’s input to the oblivious transfer. This is because
P1 can send them encrypted ahead of time with independent symmetric keys k0 and k1. Then the
oblivious transfer takes place only on the keys.)
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A Yao’s Protocol for Semi-Honest Adversaries

We now describe Yao’s protocol for secure two-party computation (in the presence of semi-honest
adversaries) which is proven secure in [18]. Yao’s protocol is based on the following “garbled-circuit”
construction.

The garbled circuit construction. Let C be a Boolean circuit that receives two inputs x1, x2 ∈
{0, 1}n and outputs C(x1, x2) ∈ {0, 1}n (for simplicity in this description, we assume that the input
length, output length and the security parameter are all of the same length n). We also assume
that C has the property that if a circuit-output wire comes from a gate g, then gate g has no wires
that are input to other gates.10 (Likewise, if a circuit-input wire is itself also a circuit-output,
then it is not input into any gate.) The reduction uses a private key encryption scheme (G,E,D)
that has indistinguishable encryptions for multiple messages, and also a special property called an
elusive efficiently verifiable range; see [18].11

We begin by describing the construction of a single garbled gate g in C. The circuit C is
Boolean, and therefore any gate is represented by a function g : {0, 1} × {0, 1} → {0, 1}. Now,
let the two input wires to g be labelled w1 and w2, and let the output wire from g be labelled
w3. Furthermore, let k0

1, k
1
1, k

0
2, k

1
2, k

0
3, k

1
3 be six keys obtained by independently invoking the key-

generation algorithm G(1n); for simplicity, assume that these keys are also of length n. Intuitively,
10This requirement is due to our labelling of gates described below, that does not provide a unique label to each

wire (see [18] for more discussion). We note that this assumption on C increases the number of gates by at most n.
11Loosely speaking, an encryption scheme has an elusive range if without knowing the key, it is hard to generate a

ciphertext that falls in the range. An encryption scheme has a verifiable range if given the key and a ciphertext, it is
easy to verify that the ciphertext is in the range. Such encryption schemes can be constructed using pseudorandom
functions by encrypting the message together with n zeroes. It is easy to see that this provides both an elusive range
and an efficiently verifiable one. We denote by ⊥ the result of decrypting a value not in the range.
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we wish to be able to compute k
g(α,β)
3 from kα

1 and kβ
2 , without revealing any of the other three

values k
g(1−α,β)
3 , k

g(α,1−β)
3 , k

g(1−α,1−β)
3 . The gate g is defined by the following four values

c0,0 = Ek0
1
(Ek0

2
(kg(0,0)

3 ))

c0,1 = Ek0
1
(Ek1

2
(kg(0,1)

3 ))

c1,0 = Ek1
1
(Ek0

2
(kg(1,0)

3 ))

c1,1 = Ek1
1
(Ek1

2
(kg(1,1)

3 ))

The actual gate is defined by a random permutation of the above values, denoted as c0, c1, c2, c3;
from here on we call them the garbled table of gate g. Notice that given kα

1 and kβ
2 , and the values

c0, c1, c2, c3, it is possible to compute the output of the gate k
g(α,β)
3 as follows. For every i, compute

D
kβ
2
(Dkα

1
(ci)). If more than one decryption returns a non-⊥ value, then output abort. Otherwise,

define kγ
3 to be the only non-⊥ value that is obtained. (Notice that if only a single non-⊥ value is

obtained, then this will be k
g(α,β)
3 because it is encrypted under the given keys kα

1 and kβ
2 . By the

properties of the encryption scheme, it can be shown that except with negligible probability, only
one non-⊥ value is indeed obtained.)

We are now ready to show how to construct the entire garbled circuit. Let m be the number
of wires in the circuit C, and let w1, . . . , wm be labels of these wires. These labels are all chosen
uniquely with the following exception: if wi and wj are both output wires from the same gate g,
then wi = wj (this occurs if the fan-out of g is greater than one). Likewise, if an input bit enters
more than one gate, then all circuit-input wires associated with this bit will have the same label.
Next, for every label wi, choose two independent keys k0

i , k
1
i ← G(1n); we stress that all of these

keys are chosen independently of the others. Now, given these keys, the four garbled values of
each gate are computed as described above and the results are permuted randomly. Finally, the
output or decryption tables of the garbled circuit are computed. These tables simply consist of the
values (0, k0

i ) and (1, k1
i ) where wi is a circuit-output wire. (Alternatively, output gates can just

compute 0 or 1 directly. That is, in an output gate, one can define cα,β = Ekα
1
(E

kβ
2
(g(α, β))) for

every α, β ∈ {0, 1}.)
The entire garbled circuit of C, denoted G(C), consists of the garbled table for each gate and

the output tables. We note that the structure of C is given, and the garbled version of C is simply
defined by specifying the output tables and the garbled table that belongs to each gate. This
completes the description of the garbled circuit.

Let x1 = x1
1 · · ·xn

1 and x2 = x1
2 · · ·xn

2 be two n-bit inputs for C. Furthermore, let w1, . . . , wn be
the input labels corresponding to x1, and let wn+1, . . . , w2n be the input labels corresponding to x2.
It is shown in [18] that given the garbled circuit G(C) and the strings k

x1
1

1 , . . . , k
xn
1

n , k
x1
2

n+1, . . . , k
xn
2

2n ,
it is possible to compute C(x1, x2), except with negligible probability.

Yao’s protocol. Yao’s protocol works by designating one party, say P1, to be the circuit con-
structor. P1 builds a garbled circuit to compute f and hands it to P2. In addition, P1 sends P2 the
keys k

x1
1

1 , . . . , k
xn
1

n that are associated with its input x1. Finally, P2 obtains the keys k
x1
2

n+1, . . . , k
xn
2

2n

associated with its input via (semi-honest) oblivious transfer. That is, for every i = 1, . . . , n,
parties P1 and P2 run an oblivious transfer protocol. In the ith execution, P1 plays the sender
with inputs (k0

n+i, k
1
n+i) and P2 plays the receiver with input xi

2. Following this, P2 has the keys

k
x1
1

1 , . . . , k
xn
1

n , k
x1
2

n+1, . . . , k
xn
2

2n and so, as stated above, it can compute the circuit to obtain C(x1, x2).
Furthermore, since it has only these keys, it cannot compute the circuit for any other input.
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A Lemma. In our proof of security, we will use the following lemma:

Lemma A.1 Given a circuit C with inputs wires w1, . . . , w2n and an output value y (of the same
length as the output of C) it is possible to efficiently construct a garbled circuit G̃(C) such that:

1. The output of G̃(C) is always y, regardless of the garbled values that are provided for P1 and
P2’s input wires, and

2. If y = f(x1, x2), then no non-uniform probabilistic polynomial-time adversary A can distin-
guish between the distribution ensemble consisting of G̃(C) and a single arbitrary key for every
input wire, and the distribution ensemble consisting of a real garbled version of C, together
with the keys k

x1
1

1 , . . . , k
xn
1

n , k
x1
2

n+1, . . . , k
xn
2

2n .

Proof Sketch: The proof of this lemma is taken from [18] (it is not stated in this way there, but
is proven). We sketch the construction of G̃(C) here for the sake of completeness, and refer the
reader to [18] for a full description and proof. The first step in the construction of the fake circuit
G̃(C) is to choose two random keys ki and k′i for every wire wi in the circuit C. Next, the gate
tables of C are computed: let g be a gate with input wires wi, wj and output wire w`. The table
of gate g contains encryptions of the single key k` that is associated with wire w`, under all four
combinations of the keys ki, k

′
i, kj , k

′
j that are associated with the input wires wi and wj to g. (This

is in contrast to a real construction of the garbled circuit that involves encrypting both k` and k′`,
depending on the function that the gate in question computes.) That is, the following values are
computed:

c0,0 = Eki(Ekj (k`))
c0,1 = Eki(Ek′j

(k`))

c1,0 = Ek′i
(Ekj (k`))

c1,1 = Ek′i
(Ek′j

(k`))

The gate table for g is then just a random ordering of the above four values. This process is carried
out for all of the gates of the circuit. It remains to describe how the output decryption tables
are constructed. Denote the n-bit output y by y1 · · · yn, and denote the circuit-output wires by
wm−n+1, . . . , wm. In addition, for every i = 1, . . . , n, let km−n+i be the (single) key encrypted in
the gate whose output wire is wm−n+i, and let k′m−n+i be the other key (as described above). Then,
the output decryption table for wire wm−n+i is given by: [(0, km−n+i), (1, k′m−n+i)] if yi = 0, and
[(0, k′m−n+i), (1, km−n+i)] if yi = 1. This completes the description of the construction of the fake
garbled circuit G̃(C).

Notice that by the above construction of the circuit, the output keys (or garbled values) obtained
by P2 for any set of input keys (or garbled values), equals km−n+1, . . . , km. Furthermore, by the
above construction of the output tables, these keys km−n+1, . . . , km decrypt to y = y1 · · · yn exactly.
Thus, property (1) of the lemma trivially holds. The proof of property (2) follows from a hybrid
argument in which the gate construction is changed one at a time from the real construction to
the above fake one (indistinguishability follows from the indistinguishability of encryptions). The
construction and proof of this hybrid are described in full in [18].
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