
Security Against Covert Adversaries: Efficient

Protocols for Realistic Adversaries∗

Yonatan Aumann† Yehuda Lindell†

November 26, 2007

Abstract

In the setting of secure multiparty computation, a set of mutually distrustful parties wish
to securely compute some joint function of their private inputs. The computation should be
carried out in a secure way, meaning that no coalition of corrupted parties should be able to learn
more than specified or somehow cause the result to be “incorrect”. Typically, corrupted parties
are either assumed to be semi-honest (meaning that they follow the protocol specification) or
malicious (meaning that they may deviate arbitrarily from the protocol). However, in many
settings, the assumption regarding semi-honest behavior does not suffice and security in the
presence of malicious adversaries is excessive and expensive to achieve.

In this paper, we introduce the notion of covert adversaries, which we believe faithfully
models the adversarial behavior in many commercial, political, and social settings. Covert
adversaries have the property that they may deviate arbitrarily from the protocol specification
in an attempt to cheat, but do not wish to be “caught” doing so. We provide a definition of
security for covert adversaries and show that it is possible to obtain highly efficient protocols
that are secure against such adversaries. We stress that in our definition, we quantify over all
(possibly malicious) adversaries and do not assume that the adversary behaves in any particular
way. Rather, we guarantee that if an adversary deviates from the protocol in a way that would
enable it to “cheat” (meaning that it can achieve something that is impossible in an ideal model
where a trusted party is used to compute the function), then the honest parties are guaranteed
to detect this cheating with good probability. We argue that this level of security is sufficient
in many settings.

1 Introduction

1.1 Background

In the setting of secure multiparty computation, a set of parties with private inputs wish to jointly
compute some functionality of their inputs. Loosely speaking, the security requirements of such a
computation are that (i) nothing is learned from the protocol other than the output (privacy), (ii)
the output is distributed according to the prescribed functionality (correctness), and (iii) parties
cannot make their inputs depend on other parties’ inputs. Secure multiparty computation forms
the basis for a multitude of tasks, including those as simple as coin-tossing and agreement, and as
complex as electronic voting, electronic auctions, electronic cash schemes, anonymous transactions,
remote game playing (a.k.a. “mental poker”), and privacy-preserving data mining.

∗An extended abstract of this work appeared in the 4th Theory of Cryptography Conference (TCC), 2007.
†Department of Computer Science, Bar-Ilan University, Israel. email: {aumann,lindell}@cs.biu.ac.il. Work

supported in part by an Infrastructures grant from the Ministry of Science, Israel.

1

The security requirements in the setting of multiparty computation must hold even when some
of the participating parties are adversarial. It has been shown that, with the aid of suitable
cryptographic tools, any two-party or multiparty function can be securely computed [27, 14, 12,
4, 7], even in the presence of very strong adversarial behavior. However, the efficiency of the
computation depends dramatically on the adversarial model considered. Classically, two main
categories of adversaries have been considered:

1. Malicious adversaries: these adversaries may behave arbitrarily and are not bound in any
way to following the instructions of the specified protocol. Protocols that are secure in the
malicious model provide a very strong security guarantee as honest parties are “protected”
irrespective of the adversarial behavior of the corrupted parties.

2. Semi-honest adversaries: these adversaries correctly follow the protocol specification, yet
may attempt to learn additional information by analyzing the transcript of messages received
during the execution. Security in the presence of semi-honest adversaries provides only a weak
security guarantee, and is not sufficient in many settings. Semi-honest adversarial behavior
primarily models inadvertent leakage of information, and is suitable only where participating
parties essentially trust each other, but may have other concerns.

Secure computation in the semi-honest adversary model can be carried out very efficiently, but,
as mentioned, provides weak security guarantees. Regarding malicious adversaries, it has been
shown that, under suitable cryptographic assumptions, any multiparty probabilistic polynomial-
time functionality can be securely computed for any number of malicious corrupted parties [14, 12].
However, this comes at a price. These feasibility results of secure computation typically do not yield
protocols that are efficient enough to actually be implemented and used in practice (particularly
if standard simulation-based security is required). Their importance is more in telling us that
it is perhaps worthwhile searching for other efficient protocols, because we at least know that a
solution exists in principle. However, the unfortunate state of affairs today – many years after these
feasibility results were obtained – is that very few truly efficient protocols exist for the setting of
malicious adversaries. Thus, we believe that some middle ground is called for: an adversary model
that accurately models adversarial behavior in the real world, on the one hand, but for which
efficient, secure protocols can be obtained, on the other.

1.2 Our Work – Covert Adversaries

In this work, we introduce a new adversary model that lies between the semi-honest and malicious
models. The motivation behind the definition is that in many real-world settings, adversaries are
willing to actively cheat (and as such are not semi-honest), but only if they are not caught (and as
such they are not arbitrarily malicious). This, we believe, is the case in many business, financial,
political and diplomatic settings, where honest behavior cannot be assumed, but where the compa-
nies, institutions and individuals involved cannot afford the embarrassment, loss of reputation, and
negative press associated with being caught cheating. It is also the case, unfortunately, in many
social settings, e.g. elections for a president of the country-club. Finally, in remote game playing,
players may also be willing to actively cheat, but would try to avoid being caught, or else they
may be thrown out of the game. In all, we believe that this type of covert adversarial behavior
accurately models many real-world situations. Clearly, with such adversaries, it may be the case
that the risk of being caught is weighed against the benefits of cheating, and it cannot be assumed
that players would avoid being caught at any price and under all circumstances. Accordingly, our
definition explicitly models the probability of catching adversarial behavior; a probability that can

2

be tuned to the specific circumstances of the problem. In particular, we do not assume that adver-
saries are only willing to risk being caught with negligible probability, but rather allow for much
higher probabilities.

The definition. Our definition of security is based on the classical ideal/real simulation paradigm,1

and provides the guarantee that if the adversary cheats, then it will be caught by the honest parties
(with some probability). In order to understand what we mean by this, we have to explain what we
mean by “cheating”. Loosely speaking, we say that an adversary successfully cheats if it manages
to do something that is impossible in the ideal model. Stated differently, successful cheating is
behavior that cannot be simulated in the ideal model. Thus, for example, an adversary who learns
more about the honest parties’ inputs than what is revealed by the output has cheated. In contrast,
an adversary who uses pseudorandom coins instead of random coins (where random coins are what
are specified in the protocol) has not cheated.

We are now ready to informally describe the guarantee provided by our definition. Let 0 < ε ≤ 1
be a value (called the deterrence factor). Then, any attempt to cheat by a real adversary A is
detected by the honest parties with probability at least ε. This is formalized by allowing the
ideal-model simulator S to sometimes “fail” (meaning that the output distribution of the execution
cannot be generated in the standard ideal model for secure computation), with the requirement
that in a real execution with A the honest parties would detect cheating with probability that
is at least ε times the probability that the simulator fails. Note that when an adversary follows
a strategy that can result in a successful cheat with some probability p, the honest parties are
guaranteed to catch the adversary cheating with probability at least ε · p. Thus, provided that ε is
sufficiently large, an adversary that wishes not to be caught cheating, will refrain from attempting
to cheat, lest it be caught doing so. Clearly, the higher the value of ε, the greater the probability
adversarial behavior is caught and thus the greater the deterrent to cheat. We therefore call our
notion security in the presence of covert adversaries with ε-deterrent. Note that the security guarantee
does not preclude successful cheating. Indeed, if the adversary decides to cheat then it may gain
access to the other parties’ private information or bias the result of the computation. The only
guarantee is that if it attempts to cheat, then there is a fair chance that it will be caught doing so.
This is in contrast to standard definitions, where absolute privacy and security are guaranteed, for
the given type of adversary. We remark that by setting ε = 1, our definition can be used to capture
a requirement that cheating parties are always caught.

Protocol constructions. As mentioned, the aim of this work is to provide a definition of security
for which it is possible to construct highly efficient protocols. We demonstrate this by presenting
a generic protocol for secure two-party computation in our model that is only mildly less efficient
than the protocol of Yao [27], which is secure only for semi-honest adversaries. The first step of our
construction is a protocol for oblivious transfer that is based on homomorphic encryption schemes.2

Highly efficient protocols under this assumption are known [2, 20]. However, these protocols do not
achieve simulation-based security. Rather, only privacy is guaranteed (with the plus that privacy

1According to this paradigm, security is formalized by comparing the execution of a real protocol to an ideal
execution where a trusted party receives the parties’ inputs, computes the function and returns the outputs. More
formally, a protocol is secure if for every real-model adversary A attacking the protocol there exists an ideal-model
adversary/simulator S (interacting in a world where a trusted party computes the function) such that the output
distribution of the honest parties and S in an ideal execution is computationally indistinguishable from the output
distribution of the honest parties and A in a real execution of the protocol. See Section 2 for more details.

2We remark that there is no need to show “feasibility” here because any protocol that is secure in the presence of
malicious adversaries is secure in the presence of covert adversaries (with any ε). Thus, our focus is on constructing
protocols that are highly efficient and not on using general assumptions.

3

is preserved even in the presence of fully malicious adversaries). We prove the following informally
stated theorem:

Theorem 1.1 Let ε = 1 − 1
k where k = poly(n) and n is the security parameter. Assuming the

existence of homomorphic encryption schemes, there exists an oblivious transfer protocol that is
secure in the presence of covert adversaries with ε-deterrent, has four rounds of communication
and requires O(k) homomorphic encryption operations.

We remark that the constant hidden inside the O notation for O(k) is very small (to be exact,
the protocol requires the generation of 2k pairs of encryption keys, and carrying out 2k encryptions,
2 homomorphic operations and one decryption). When setting ε = 1/2 we have k = 2 and thus the
protocol is highly efficient. (To compare, the analogous protocols that achieve only privacy without
simulation require generating one encryption key, carrying out one encryption and one decryption,
and computing two homomorphic operations. Thus our protocol is about four times slower.)

Having constructed an oblivious transfer protocol that meets our definition, we use it in the
protocol of Yao [27] in order to obtain efficient general two-party computation. We modify Yao’s
protocol so that a number ` of garbled circuits are sent, and then all but one are opened in order to
check that they were constructed correctly (this follows the folklore cut-and-choose methodology for
boosting the security of Yao’s protocol for adversaries that may not be semi-honest). In addition,
as it was pointed out in [22], when dealing with malicious adversaries it is necessary to modify the
circuit so that each input bit is “split” into a number of random shares (see Section 6 for a full
explanation as to why this is necessary). This modification has a significant effect on efficiency
because an oblivious transfer is needed for every input bit. Thus, when each bit is split into m
shares, we have that m oblivious transfers are needed for each input bit. We present a protocol
for general secure two-party computation for which different values of ` and m can be plugged
in (recall that ` denotes the number of garbled circuits that are constructed and sent, and m
denotes the number of oblivious transfers per input bit). Our protocol achieves ε-deterrent for
ε = (1 − `−1)(1 − 2−m+1). Thus, in order to achieve a deterrent of ε = 1/2 it suffices to take
` = m = 3. For a higher deterrent of ε ≈ 9/10 it is possible to take ` = m = 10. We prove the
following informally stated theorem:

Theorem 1.2 Assume the existence of one-way functions and secure oblivious transfer. Then, for
every probabilistic polynomial-time function f there exists a protocol π that securely computes f in
the presence of covert adversaries with ε-deterrent for ε = (1− `−1)(1− 2−m+1). Furthermore, the
protocol π has a constant number of rounds, requires m oblivious transfers per input bit, and has
communication complexity O(` · n · |C|), where |C| is the size of the circuit computing f and n is
the security parameter.

It is sufficient for the oblivious transfer protocol referred to in Theorem 1.2 to be secure in the
presence of covert adversaries (with the same ε achieved by protocol π). Thus, a protocol for general
two-party computation with ε = 1/2 can be constructed by combining Theorems 1.1 and 1.2, and
the result is a protocol that is only a constant factor slower than the original protocol of Yao that
is only secure for semi-honest adversaries. (Note that the protocol of Yao [27] has communication
complexity O(n|C|) and requires one oblivious transfer per input bit.)

We view our constructions as a “proof of concept” that highly efficient protocols are achievable
in this model, and leave the construction of such protocols for specific tasks of interest for future
work.

4

1.3 Related Work

The idea of allowing the adversary to cheat as long as it will be detected was first considered by [11]
who defined a property called t-detectability; loosely speaking, a protocol fulfilling this property
provides the guarantee that no coalition of t parties can cheat without being caught. The work
of [11] differs to ours in that (a) they consider the setting of an honest majority, and (b) their
definition is not simulation based. Another closely related work to ours is that of [6] that considers
honest-looking adversaries. Such adversaries may deviate arbitrarily from the protocol specification,
but only if this deviation cannot be detected. Our definition differs from that of [6] in a number
of important ways. First, our definition provides security guarantees even for adversaries that are
willing to be caught with high probability. Thus, we do not assume anything about the adversary’s
willingness or lack of willingness to be caught. Second, we place the onus of detecting any cheating
by an adversary on the protocol. This is of importance because the fact that an adversary generates
messages that are distributed differently to an honest party does not mean that the honest parties
can or will detect this. (In order to see this, first note that the honest parties may not have the
appropriate distinguisher. Second, the result of any single execution may not be enough to detect
cheating. For example, if the protocol tells an honest party to send a random bit and the adversary
always sends the bit 1, then the honest parties cannot deduce that the adversary is cheating in any
given execution because an honest party also sends the bit 1 with probability 1/2.) Thus, in our
formulation, the protocol specification itself has instructions that include outputting the fact that
“party Pi has cheated”. We remark also that our motivation and that of [6] is completely different:
they considered a more stringent setting where all parties are either malicious or honest-looking.
In contrast, we consider a relaxation of the adversary model (where parties are either fully honest
or covert) with the aim of obtaining more efficient protocols.

The idea of allowing an adversary to cheat with non-negligible probability as long as it will be
caught with good probability has been mentioned many times in the literature; see [18, 24] for just
two examples. We stress, however, that none of these works formalized this idea. Furthermore,
our experience in proving our protocol secure is that simple applications of cut-and-choose do not
meet our definition (and there are actual attacks that can be carried out on the cut-and-choose
technique used in [24], for example). Another approach to obtaining efficient protocols is to consider
definitions of security that are weaker in the sense that they do not follow the simulation paradigm;
see [9] for one example. In contrast, our approach is to remain within the ideal/real simulation
paradigm, thereby preserving the well-known advantages of this definitional paradigm.

We conclude by remarking that the works on covert secure two-party and multiparty compu-
tation of [1, 8] have no connection with this work; those works consider steganographic secure
computation and so it is the computation that is covert, whereas in our work it is the adversarial
behavior that is covert.

1.4 Organization

In Section 2 we review the standard definitions of secure two-party computation and in Section 3
we present formal definitions for the notion of security in the presence of covert adversaries. We
present three formulations of this notion and prove relations between the different formulations.
In addition, we show that our definitions fall in between malicious and semi-honest security (i.e.,
security in the presence of malicious adversaries implies security in the presence of covert adversaries
for any ε, and security in the presence of covert adversaries with ε > 1/poly(n) implies security
in the presence of semi-honest adversaries). An important property of protocols that are proven
according to the simulation paradigm is that they can be “composed” and used as subprotocols,

5

with security being guaranteed via a general composition theorem (like that of [5]). In Section 4 we
prove composition theorems for all three of our formulations of security in the presence of covert
adversaries. We then proceed to construct efficient protocols under the strongest of our three
definitions. In Section 5 we construct protocols for oblivious transfer (the basic protocol is given in
Section 5.1 and extensions in Section 5.2). Then in Section 6 we present our protocol for general
two-party computation and prove its security.

2 Preliminaries and Standard Definitions

2.1 Preliminaries

A function µ(·) is negligible in n, or just negligible, if for every positive polynomial p(·) and all
sufficiently large n’s it holds that µ(n) < 1/p(n). A probability ensemble X = {X(a, n)}a∈{0,1}∗;n∈IN

is an infinite sequence of random variables indexed by a and n ∈ IN. (The value a will represent
the parties’ inputs and n the security parameter.) Two distribution ensembles X = {X(a, n)}n∈IN

and Y = {Y (a, n)}n∈IN are said to be computationally indistinguishable, denoted X
c≡ Y , if for every

non-uniform polynomial-time algorithm D there exists a negligible function µ(·) such that for every
a ∈ {0, 1}∗,

|Pr[D(X(a, n)) = 1]− Pr[D(Y (a, n)) = 1]| ≤ µ(n)

All parties are assumed to run in time that is polynomial in the security parameter. (Formally,
each party has a security parameter tape upon which that value 1n is written. Then the party is
polynomial in the input on this tape.)

2.2 Secure Multiparty Computation – Standard Definition

In this section we briefly present the standard definition for secure multiparty computation and
refer to [12, Chapter 7] for more details and motivating discussion. The following description and
definition is based on [12], which in turn follows [15, 25, 3, 5].

Multiparty computation. A multiparty protocol problem is cast by specifying a random process
that maps sets of inputs to sets of outputs (one for each party). We refer to such a process as a
functionality and denote it f : ({0, 1}∗)m → ({0, 1}∗)m, where f = (f1, . . . , fm). That is, for every
vector of inputs x = (x1, . . . , xm), the output-vector is a random variable y = (f1(x), . . . , fm(x))
ranging over vectors of strings. The ith party Pi, with input xi, wishes to obtain fi(x). We
sometimes denote such a functionality by (x) 7→ (f1(x), . . . , fm(x)). Thus, for example, the oblivious
transfer functionality is denoted by ((x0, x1), σ) 7→ (λ, xσ), where (x0, x1) is the first party’s input,
σ is the second party’s input, and λ denotes the empty string (meaning that the first party has no
output).

Adversarial behavior. Loosely speaking, the aim of a secure multiparty protocol is to protect
honest parties against dishonest behavior by other parties. In this section, we present the defini-
tion for malicious adversaries who control some subset of the parties and may instruct them to
arbitrarily deviate from the specified protocol. We also consider static corruptions, meaning that
the set of corrupted parties is fixed at the onset.

Security of protocols (informal). The security of a protocol is analyzed by comparing what an
adversary can do in a real protocol execution to what it can do in an ideal scenario that is secure by
definition. This is formalized by considering an ideal computation involving an incorruptible trusted
third party to whom the parties send their inputs. The trusted party computes the functionality on

6

the inputs and returns to each party its respective output. Loosely speaking, a protocol is secure if
any adversary interacting in the real protocol (where no trusted third party exists) can do no more
harm than if it was involved in the above-described ideal computation. One technical detail that
arises when considering the setting of no honest majority is that it is impossible to achieve fairness
or guaranteed output delivery. That is, it is possible for the adversary to prevent the honest parties
from receiving outputs. Furthermore, it may even be possible for the adversary to receive output
while the honest parties do not. We consider malicious adversaries and static corruptions in all of
our definitions in this paper.

Execution in the ideal model. As we have mentioned, some malicious behavior cannot be
prevented (for example, early aborting). This behavior is therefore incorporated into the ideal
model. Let the set of parties be P1, . . . , Pm and let I ⊆ [m] denote the indices of the corrupted
parties, controlled by an adversary A. An ideal execution proceeds as follows:

Inputs: Each party obtains an input; the ith party’s input is denoted xi. The adversary A receives
an auxiliary input denoted z.

Send inputs to trusted party: Any honest party Pj sends its received input xj to the trusted
party. The corrupted parties controlled by A may either abort (by replacing the input xi

with a special aborti message), send their received input, or send some other input of the
same length to the trusted party. This decision is made by A and may depend on the values
xi for i ∈ I and its auxiliary input z. Denote the vector of inputs sent to the trusted party
by w (note that w does not necessarily equal x).

If the trusted party receives an input of the form aborti for some i ∈ I, it sends aborti to all
parties and the ideal execution terminates. Otherwise, the execution proceeds to the next
step.

Trusted party sends outputs to adversary: The trusted party computes (f1(w), . . . , fm(w))
and sends fi(w) to party Pi, for all i ∈ I (i.e., to all corrupted parties).

Adversary instructs trusted party to continue or halt: A sends either continue or aborti to
the trusted party (for some i ∈ I). If it sends continue, the trusted party sends fj(w) to party
Pj , for all j /∈ I (i.e., to all honest parties). Otherwise, if it sends aborti, the trusted party
sends aborti to all parties Pj for j /∈ I.

Outputs: An honest party always outputs the message it obtained from the trusted party. The
corrupted parties output nothing. The adversary A outputs any arbitrary (probabilistic
polynomial-time computable) function of the initial inputs {xi}i∈I , the auxiliary input z, and
the messages {fi(w)}i∈I obtained from the trusted party.

This ideal model is different from that of [12] in that in the case of an “abort”, the honest parties
output aborti and not a ⊥ symbol. This means that the honest parties know the identity of the
corrupted party who causes the abort. This is achieved by most multiparty protocols, including
that of [14], but not all (e.g., the protocol of [16] does not meet this requirement).

Let f : ({0, 1}∗)m → ({0, 1}∗)m be an m-party functionality, where f = (f1, . . . , fm), let A
be a non-uniform probabilistic polynomial-time machine, and let I ⊆ [m] be the set of corrupted
parties. Then, the ideal execution of f on inputs x, auxiliary input z to A and security parameter n,
denoted idealf,A(z),I(x, n), is defined as the output vector of the honest parties and the adversary
A from the above ideal execution.

7

Execution in the real model. We next consider the real model in which a real m-party
protocol π is executed (and there exists no trusted third party). In this case, the adversary A
sends all messages in place of the corrupted parties, and may follow an arbitrary polynomial-time
strategy. In contrast, the honest parties follow the instructions of π.

Let f be as above and let π be an m-party protocol for computing f . Furthermore, let A be
a non-uniform probabilistic polynomial-time machine and let I be the set of corrupted parties.
Then, the real execution of π on inputs x, auxiliary input z to A and security parameter n, denoted
realπ,A(z),I(x, n), is defined as the output vector of the honest parties and the adversary A from
the real execution of π.

Security as emulation of a real execution in the ideal model. Having defined the ideal and
real models, we can now define security of protocols. Loosely speaking, the definition asserts that a
secure party protocol (in the real model) emulates the ideal model (in which a trusted party exists).
This is formulated by saying that adversaries in the ideal model are able to simulate executions of
the real-model protocol. We will consider executions where all inputs are of the same length (see
discussion in [12]), and will therefore say that a vector x = (x1, . . . , xm) is balanced if for every i
and j it holds that |xi| = |xj |.
Definition 2.1 (secure multiparty computation): Let f and π be as above. Protocol π is said
to securely compute f with abort in the presence of malicious adversaries if for every non-uniform
probabilistic polynomial-time adversary A for the real model, there exists a non-uniform probabilistic
polynomial-time adversary S for the ideal model, such that for every I ⊆ [m], every balanced vector
x ∈ ({0, 1}∗)m, and every auxiliary input z ∈ {0, 1}∗:

{
idealf,S(z),I(x, n)

}
n∈IN

c≡
{
realπ,A(z),I(x, n)

}
n∈IN

We note that the above definition assumes that the parties (and adversary) know the input
lengths (this can be seen from the requirement that x is balanced and so all the inputs in the
vector of inputs are of the same length).3 We remark that some restriction on the input lengths is
unavoidable, see [12, Section 7.1] for discussion.

2.3 Functionalities that Provide Output to a Single Party

In the standard definition of secure computation, both parties receive output and these outputs
may be different. However, the presentation of our two-party protocol is far simpler if we assume
that only party P2 receives output. We will show now that this suffices for the general case. That
is, we claim that any protocol that can be used to securely compute any efficient functionality
f(x, y) where only P2 receives output, can be used to securely compute any efficient functionality
f = (f1, f2) where party P1 receives f1(x1, x2) and party P2 receives f2(x1, x2). For simplicity,
we will assume that the length of the output of f1(x1, x2) is at most n, where n is the security
parameter. This can be achieved by simply taking n to be larger in case it is necessary.

Let f = (f1, f2) be a functionality. We wish to construct a secure protocol in which P1 receives
f1(x1, x2) and P2 receives f2(x1, x2). As a building block we use a protocol for computing any
efficient functionality with the limitation that only P2 receives output. Let r, a, b ∈R {0, 1}n be
randomly chosen strings. Then, in addition to x1, party P1’s input includes the elements r, a and
b. Furthermore, define a functionality g (that has only a single output) as follows:

g((r, a, b, x1), x2) = (α, β, f2(x1, x2))
3In the case that no parties are corrupted, we assume that the adversary receives the length of the inputs as part

of its auxiliary input z.

8

where α = r + f1(x1, x2), β = a · α + b, and the arithmetic operations are defined over GF [2n].
Note that α is a one-time pad encryption of P1’s output f1(x, y), and β is an information-theoretic
message authentication tag of α (specifically, aα + b is a pairwise-independent hash of α). Now,
the parties compute the functionality g, using a secure protocol in which only P2 receives output.
Following this, P2 sends the pair (α, β) to P1. Party P1 checks that β = a · α + b; if yes, it outputs
α− r, and otherwise it outputs abort2.

It is easy to see that P2 learns nothing about P1’s output f1(x1, x2), and that it cannot alter
the output that P1 will receive (beyond causing it to abort), except with probability 2−n. We
remark that it is also straightforward to construct a simulator for the above protocol. Applying the
composition theorem of [5] (for standard security) or Theorems 4.1 and 4.2 (for covert adversaries
– to be defined below), we have the following proposition:

Proposition 2.2 Assume that there exists a protocol for securely computing any functionality in
which only a single party receives output. Then, there exists a protocol for securely computing any
functionality in which both parties receive output. This holds also for security in the presence of
covert adversaries for any of Definitions 3.2, 3.4 and 3.5.

We remark that the circuit for computing g is only mildly larger than that for computing f .
Thus, the construction above is also efficient and has only a mild effect on the complexity of the
secure protocol (assuming that the complexity of the original protocol, where only P2 receives
output, is proportional to the size of the circuit computing f as is the case for our protocol below).

3 Definitions – Secure Computation with Covert Adversaries

3.1 Motivation

The standard definition of security (see Definition 2.1) is such that all possible (polynomial-time)
adversarial behavior is simulatable. Here, in contrast, we wish to model the situation that parties
may successfully cheat. However, if they do so, they are likely to be caught. There are a num-
ber of ways of defining this notion. In order to motivate ours, we begin with a somewhat naive
implementation of the notion, and show its shortcoming.

First attempt: Define an adversary to be covert if the distribution over the messages that it sends
during an execution is computationally indistinguishable from the distribution over the messages
that an honest party would send. Then, quantify over all covert adversaries A for the real world
(rather than all adversaries).4 A number of problems arise with this definition.

• The fact that the distribution generated by the adversary can be distinguished from the dis-
tribution generated by honest parties does not mean that the honest parties can detect this
in any specific execution. Consider for example a coin-tossing protocol where the honest dis-
tribution gives even probabilities to 0 and 1, while the adversary gives double the probability
to the 1 outcome. Clearly, the distributions differ. However, in any given execution, even an
outcome of 1 does not provide the honest players with sufficient evidence of any wrong-doing.
Thus, it is not sufficient that the distributions differ. Rather, one needs to be able to detect
cheating in each adversarial execution.

4We remark that this is the conceptual approach taken by [6], and that there are important choices that arise when
attempting to formalize the approach. In any case, as we have mentioned, the work of [6] differs greatly because their aim was
to model all parties as somewhat adversarial.

9

• The fact that the distributions differ does not necessarily imply that the honest parties have an
efficient distinguisher. Furthermore, in order to guarantee that the honest parties detect the
cheating, they would have to analyze all traffic during an execution. However, this analysis
cannot be part of the protocol because then the distinguishers used by the honest parties
would be known (and potentially bypassed).

• Another problem is that, as mentioned in the introduction, adversaries may be willing to risk
being caught with more than negligible probability, say 10−6. With such an adversary, the
definition would provide no security guarantee. In particular, the adversary may be able to
always learn all parties’ inputs, and risk being caught in one run in a million.

Second attempt. To solve the aforementioned problems, we first require that the protocol itself
be responsible for detecting cheating. Specifically, in the case that a party Pi attempts to cheat, the
protocol may instruct the honest parties to output a message saying that “party Pi has cheated”
(we require that this only happens if Pi indeed cheated). This solves the first problem. To solve
the second problem, we explicitly quantify the probability that an adversary is caught cheating.
Roughly, given a parameter ε, a protocol is said to be secure against covert adversaries with ε-deterrent
if any cheating adversary will necessarily be caught with probability at least ε.

This definition captures the spirit of what we want, but is still problematic. To illustrate the
problem, consider an adversary that plays honestly with probability 0.99, and cheats otherwise.
Such an adversary can only ever be caught with probability 0.01 (because otherwise it is honest).
But ε = 1/2 for example, then such an adversary must be caught with probability 0.5, which is
impossible. We therefore conclude that an absolute parameter cannot be used, and the probability
of catching the adversary must be related to the probability that it cheats.

Final definition. We thus arrive at the following approach. First, as mentioned, we require that
the protocol itself be responsible for detecting cheating. That is, if a party Pi successfully cheats,
then with good probability (ε), the honest parties in the protocol will all receive a message that
“Pi cheated”. Second, we do not quantify only over adversaries that are covert (i.e., those that are
not detected cheating by the protocol). Rather, we allow all possible adversaries, even completely
malicious ones. Then, we require either that this malicious behavior can be successfully simulated
(as in Definition 2.1), or that the honest parties will receive a message that cheating has been
detected, and this happens with probability at least ε times the probability that successful cheating
takes place. We stress that in the when the adversary chooses to cheat, it may actually learn secret
information or cause some other damage. However, since it is guaranteed that such a strategy will
likely be caught, there is strong motivation to refrain from doing so.

As it turns out, the above intuition can be formalized in three different ways, which form a
hierarchy of security guarantees. In practice, the implementor should choose the formulation that
best suites her needs, and for which sufficiently efficient protocols exists. All three definitions
are based on the ideal/real simulation paradigm, as presented in Section 2. We now present the
definitions in order of security, starting with the weakest (least secure) one.

3.2 Version 1: Failed Simulation Formulation

The first formulation we present is based on allowing the simulator to fail sometimes, where by “fail”
we mean that its output distribution is not indistinguishable from the real one. This corresponds
to an event of successful cheating. However, we guarantee that the probability that the adversary
is caught cheating is at least ε times the probability that the simulator fails. The details follow.

10

Recall that we call a vector balanced if all of its items are of the same length. In addition,
we denote the output vector of the honest parties and adversary A in an ideal execution of f by
idealf,A(z),I(x, n), where x is the vector of inputs, z is the auxiliary input to A, I is the set of
corrupted parties, and n is the security parameter, and denote the analogous outputs in a real
execution of π by realπ,A(z),I(x, n). We begin by defining what it means to “detect cheating”:

Definition 3.1 Let π be an m-party protocol, let A be an adversary, and let I be the index set of
the corrupted parties. A party Pj is said to detect cheating in π if its output in π is corruptedi; this
event is denoted outputj(realπ,A(z),I(x)) = corruptedi. The protocol π is called detection accurate
if for every j, k /∈ I, the probability that Pj outputs corruptedk is negligible.

We require that all protocols be detection accurate (meaning that only corrupted parties can
be “caught cheating”). This is crucial because otherwise a party that is detected cheating can just
claim that it is due to a protocol anomaly and not because it really cheated. The definition follows:

Definition 3.2 (security – failed simulation formulation): Let f and π be as in Definition 2.1,
and let ε : IN → [0, 1] be a function. Protocol π is said to securely compute f in the presence of
covert adversaries with ε-deterrent if it is detection accurate and if for every non-uniform probabilistic
polynomial-time adversary A for the real model, there exists a non-uniform probabilistic polynomial-
time adversary S for the ideal model such that for every I ⊆ [m], every balanced vector x ∈
({0, 1}∗)m, every auxiliary input z ∈ {0, 1}∗, and every non-uniform polynomial-time distinguisher
D, there exists a negligible function µ(·) such that,

Pr
[
∃i ∈ I ∀j /∈ I : outputj(realπ,A(z),I(x, n)) = corruptedi

]

≥ ε(n) ·
∣∣∣Pr

[
D(idealf,S(z),I(x, n)) = 1

]
− Pr

[
D(realπ,A(z),I(x, n)) = 1

]∣∣∣− µ(n)

The parameter ε indicates the probability that successful adversarial behavior is detected (ob-
serve that when such a detection occurs, all honest parties must detect the same corrupted party).
Clearly, the closer ε is to one, the higher the deterrence to cheat, and hence the level of security,
assuming covert adversaries. Note that the adversary can decide to never be detected cheating,
in which case the ideal and real distributions are guaranteed to be computationally indistin-
guishable, as in the standard definition of security. In contrast, it can choose to cheat with some
noticeable probability, in which case the ideal and real output distribution may be distinguish-
able (while guaranteeing that the adversary is caught with good probability). This idea of allowing
the ideal and real models to not be fully indistinguishable in order to model “allowed cheating”
was used in [13].

We stress that the definition does not require the simulator to “fail” with some probability.
Rather, it is allowed to fail with a probability that is at most 1/ε times the probability that the
adversary is caught cheating. As we shall see, this is what enables us to construct highly efficient
protocols. We also remark that due to the required detection accuracy, the simulator cannot fail
when the adversary behaves in a fully honest-looking manner (because in such a case, no honest
party will output corruptedi). Thus, security is always preserved in the presence of adversaries that
are willing to cheat arbitrarily, as long as their cheating is not detected.

Cheating and aborting. It is important to note that according to the above definition, a party
that halts mid-way through the computation may be considered a “cheat”. Arguably, this may be
undesirable due to the fact that an honest party’s computer may crash (such unfortunate events
may not even be that rare). Nevertheless, we argue that as a basic definition it suffices. This is

11

due to the fact that it is possible for all parties to work by storing their input and random-tape on
disk before they begin the execution. Then, before sending any message, the incoming messages
that preceded it are also written to disk. The result of this is that if a party’s machine crashes, it
can easily reboot and return to its previous state. (In the worst case the party will need to request
a retransmit of the last message if the crash occurred before it was written.) We therefore believe
that honest parties cannot truly hide behind the excuse that their machine crashed (it would be
highly suspicious that someone’s machine crashed in an irreversible way that also destroyed their
disk at the critical point of a secure protocol execution).

Despite the above, it is possible to modify the definition so that honest halting is never consid-
ered cheating. This modification only needs to be made to the notion of “detection accuracy” and
uses the notion of a fail-stop party who acts semi-honestly, except that it may halt early.

Definition 3.3 A protocol π is non-halting detection accurate if it is detection accurate as in Def-
inition 3.1 and if for every honest party Pj and fail-stop party Pk, the probability that Pj outputs
corruptedk is negligible.

The definition of security in the presence of covert adversaries can then be modified by requiring
non-halting detection accuracy. We remark that although this strengthening may be desirable, it
may also be prohibitive. For example, we are able to modify our main protocol so that it meets this
stronger definition. However, in order to do so, we need to assume fully secure oblivious transfer,
for which highly efficient (fully simulatable) protocols are not really known.

3.3 Version 2: Explicit Cheat Formulation

The drawback of Definition 3.2 is that it allows the adversary to decide whether to cheat as a
function of the honest parties’ inputs or of the output. This is undesirable since there may be
honest parties’ inputs for which it is more “worthwhile” for the adversary to risk being caught. We
therefore wish to force the adversary to make its decision about whether to cheat obliviously of
the honest parties’ inputs. This brings us to an alternate definition, which is based on redefining
the ideal functionality so as to explicitly include the option of cheating. Aside from overcoming
the input dependency problem this alternate formulation has two additional advantages. First, it
makes the security guarantees that are achieved more explicit. Second, it makes it easy to prove a
sequential composition theorem (see below).

We modify the ideal model in the following way. Let ε : IN → [0, 1] be a function. Then, the
ideal execution with ε proceeds as follows:

Inputs: Each party obtains an input; the ith party’s input is denoted by xi; we assume that all
inputs are of the same length, denoted n. The adversary receives an auxiliary-input z.

Send inputs to trusted party: Any honest party Pj sends its received input xj to the trusted
party. The corrupted parties, controlled by A, may either send their received input, or send
some other input of the same length to the trusted party. This decision is made by A and
may depend on the values xi for i ∈ I and the auxiliary input z. Denote the vector of inputs
sent to the trusted party by w.

Abort options: If a corrupted party sends wi = aborti to the trusted party as its input, then the
trusted party sends aborti to all of the honest parties and halts. If a corrupted party sends
wi = corruptedi to the trusted party as its input, then the trusted party sends corruptedi to
all of the honest parties and halts.

12

Attempted cheat option: If a corrupted party sends wi = cheati to the trusted party as its
input, then the trusted party sends to the adversary all of the honest parties’ inputs {xj}j /∈I .
In addition,

1. With probability ε, the trusted party sends corruptedi to the adversary and all of the
honest parties.

2. With probability 1 − ε, the trusted party sends undetected to the adversary. Following
this, the adversary sends the trusted party output values {yj}j /∈I of its choice for the
honest parties. Then, for every j /∈ I, the trusted party sends yj to Pj .

The ideal execution then ends at this point.

If no wi equals aborti, corruptedi or cheati, the ideal execution continues below.

Trusted party answers adversary: The trusted party computes (f1(w), . . . , fm(w)) and sends
fi(w) to A, for all i ∈ I.

Trusted party answers honest parties: After receiving its outputs, the adversary sends either
aborti for some i ∈ I, or continue to the trusted party. If the trusted party receives continue
then it sends fj(w) to all honest parties Pj (j /∈ I). Otherwise, if it receives aborti for some
i ∈ I, it sends aborti to all honest parties.

Outputs: An honest party always outputs the message it obtained from the trusted party. The
corrupted parties output nothing. The adversary A outputs any arbitrary (probabilistic
polynomial-time computable) function of the initial inputs {xi}i∈I , the auxiliary input z, and
the messages obtained from the trusted party.

The output of the honest parties and the adversary in an execution of the above ideal model is
denoted by idealcε

f,S(z),I(x, n).
Notice that there are two types of “cheating” here. The first is the classic abort, except that

unlike in Definition 2.1, the honest parties here are informed as to who caused the abort. Thus,
although it is not possible to guarantee fairness here, we do achieve that an adversary who aborts
after receiving its output is “punished” in the sense that its behavior is always detected.5 The other
type of cheating in this ideal model is more serious for two reasons: first, the ramifications of the
cheat are greater (the adversary may learn all of the parties’ inputs and may be able to determine
their outputs), and second, the cheating is only guaranteed to be detected with probability ε.
Nevertheless, if ε is high enough, this may serve as a deterrent. We stress that in the ideal model
the adversary must decide whether to cheat obliviously of the honest-parties inputs and before
it receives any output (and so it cannot use the output to help it decide whether or not it is
“worthwhile” cheating). We define:

Definition 3.4 (security – explicit cheat formulation): Let f , π and ε be as in Definition 3.2.
Protocol π is said to securely compute f in the presence of covert adversaries with ε-deterrent if for
every non-uniform probabilistic polynomial-time adversary A for the real model, there exists a non-
uniform probabilistic polynomial-time adversary S for the ideal model such that for every I ⊆ [m],
every balanced vector x ∈ ({0, 1}∗)m, and every auxiliary input z ∈ {0, 1}∗:

{
idealcε

f,S(z),I(x, n)
}

n∈IN

c≡
{
realπ,A(z),I(x, n)

}
n∈IN

5Note also that there are two types of abort: in one the honest parties receive aborti and in the second they receive corruptedi.
This is included to model behavior by the real adversary that results in it being caught cheating with probability greater than
ε (and not with probability exactly ε as when the ideal adversary sends a cheati message).

13

Definition 3.4 and detection accuracy. We note that in Definition 3.4 it is not necessary to
explicitly require that π be detection accurate because this is taken care of in the ideal model (in an
ideal execution, only a corrupted party can send a cheati input). However, if non-halting detection
accuracy is desired (as in Definition 3.3), then this should be explicitly added to the definition.

3.4 Version 3: Strong Explicit Cheat Formulation

The third, and strongest version follows the same structure and formulation of the previous version
(Version 2). However, we make the following slight, but important change to the ideal model. In
the case of an attempted cheat, if the trusted party sends corruptedi to the honest parties and the
adversary (an event which happens with probability ε), then the adversary does not obtain the
honest parties’ inputs. Thus, if cheating is detected, the adversary does not learn anything and the
result is essentially the same as a regular abort. This is in contrast to Version 2, where a detected
cheat may still be successful. Formally, we modify the “attempted cheat option” in the ideal model
as follows:

Attempted cheat option: If a corrupted party sends wi = cheati to the trusted party as its
input, then the trusted party works as follows:

1. With probability ε, the trusted party sends corruptedi to the adversary and all of the
honest parties.

2. With probability 1− ε, the trusted party sends undetected to the adversary along with
the honest parties’ inputs {xj}j /∈I . Following this, the adversary sends the trusted party
output values {yj}j /∈I of its choice for the honest parties. Then, for every j /∈ I, the
trusted party sends yj to Pj .

Everything else in the ideal model remains the same. We denote the resultant ideal model by
idealscε

f,S(z),I(x, n) and have the following definition:

Definition 3.5 (security – strong explicit cheat formulation): Let f , π and ε be as in Defini-
tion 3.2. Protocol π is said to securely compute f in the presence of covert adversaries with ε-deterrent
if for every non-uniform probabilistic polynomial-time adversary A for the real model, there exists
a non-uniform probabilistic polynomial-time adversary S for the ideal model such that for every
I ⊆ [m], every balanced vector x ∈ ({0, 1}∗)m, and every auxiliary input z ∈ {0, 1}∗:

{
idealscε

f,S(z),I(x, n)
}

n∈IN

c≡
{
realπ,A(z),I(x, n)

}
n∈IN

The difference between the regular and strong explicit cheat formulations is perhaps best ex-
emplified in the case that ε = 1. In both versions, any potentially successful cheating attempt is
detected. However, in the regular formulation, the adversary may learn the honest parties’ private
inputs (albeit, while being detected). In the strong formulation, in contrast, the adversary learns
nothing when it is detected. Since it is always detected, this means that full security is achieved.

3.5 Relations Between Security Models

Relations between covert security definitions. The three security definitions for covert
adversaries constitute a strict hierarchy, with version 1 being strictly weaker than version 2, which
is strictly weaker than version 3.

14

Proposition 3.6 Let π be a protocol that securely computes some functionality f in the presence of
covert adversaries with ε-deterrent by Definition 3.4. Then, π securely computes f in the presence
of covert adversaries with ε-deterrent by Definition 3.2.

Proof: Let f , π and ε be as in the proposition. Then, we first claim that π is detection accurate.
This is due to the fact that in the ideal model of Definition 3.4, honest parties only output corruptedi

for i ∈ I. Therefore, this must hold also in the real model, except with negligible probability (as
required by Definition 3.1). Now, letA be an adversary and let S be the simulator that is guaranteed
to exist for idealc by Definition 3.4. We claim that the simulator S also works for Definition 3.2.
In order to see this, let ∆ be the probability that S sends corruptedi or cheati for input for some
i ∈ I (this probability depends only on A, the corrupted parties’ inputs and the auxiliary input
z). Now, when S sends input corruptedi, the honest parties all output corruptedi with probability
1. In addition, when S sends input cheati, the honest parties all output corruptedi with probability
ε in the ideal model. It follows that the honest parties output corruptedi with probability at least
ε · ∆. It remains, therefore, to show that the ideal and real distributions can be distinguished
with probability at most ∆ (because then the probability that the adversary is caught cheating is
at least ε times the maximum distinguishing “gap” between the ideal and real distributions).
However, this follows immediately from the fact that if S does not send any input of the form
corruptedi or cheati, then the ideal execution is the same as in the standard definitions (and so
the same as in Definition 3.2). Thus, in the event that S does not send corruptedi or cheati, the
ideal and real of Definition 3.2 are computationally indistinguishable. Since S sends corruptedi

or cheati with probability ∆, we obtain that the ideal distribution can be distinguished from the
real one with probability at most ∆ + µ(n) as desired.

The following proposition is straightforward and is therefore stated without a proof:

Proposition 3.7 Let π be a protocol that securely computes some functionality f in the presence of
covert adversaries with ε-deterrent by Definition 3.5. Then, π securely computes f in the presence
of covert adversaries with ε-deterrent by Definition 3.4.

Relation to the malicious and semi-honest models. As a sanity check regarding our defini-
tions, we present two propositions that show the relation between security in the presence of covert
adversaries and security in the presence of malicious and semi-honest adversaries.

Proposition 3.8 Let π be a protocol that securely computes some functionality f with abort in the
presence of malicious adversaries, as in Definition 2.1. Then, π securely computes f in the presence
of covert adversaries with ε-deterrent, for any of the three formulations (Definitions 3.2, 3.4,
and 3.5) and for every 0 ≤ ε ≤ 1.

This proposition follows from the simple observation that according to Definition 2.1, there
exists a simulator that always succeeds in its simulation. Thus, Definition 3.2 holds even if the
probability of detecting cheating is 0. Likewise, for Definitions 3.4 and 3.5 the same simulator
works (there is simply no need to ever send a cheat input).

Next, we consider the relation between covert and semi-honest adversaries. We remark that
security for malicious adversaries only implies security for semi-honest adversaries if the semi-honest
adversary is allowed to modify its input before the execution begins [17]. Calling such an adversary
augmented semi-honest, we have the following:

15

Proposition 3.9 Let π be a protocol that securely computes some functionality f in the presence
of covert adversaries with ε-deterrent, for any of the three formulations and for ε(n) ≥ 1/poly(n).
Then, π securely computes f in the presence of augmented semi-honest adversaries.

This proposition follows from the fact that due to the requirement of detection accuracy, no
party outputs corruptedi when the adversary is semi-honest. Since ε ≥ 1/poly(n) this implies
that the real and ideal distributions can be distinguished with at most negligible probability, as
required. We stress that if ε = 0 (or is negligible) then the definition of covert adversaries requires
nothing, and so the proposition does not hold for this case.

We conclude that, as one may expect, security in the presence of covert adversaries with ε-
deterrent lies in between security in the presence of malicious adversaries and security in the
presence of semi-honest adversaries. If 1/poly(n) ≤ ε(n) ≤ 1 − 1/poly(n) then it can be shown
that the definition of security for covert adversaries is strictly different to the semi-honest and
malicious models. We remark that for Definitions 3.2 and 3.4 this holds for any ε ≥ 1/poly(n). For
Definition 3.5 and the case of ε(n) = 1− µ(n), see below.

Strong explicit cheat formulation and the malicious model. The following proposition
shows that the strong explicit cheat formulation “converges” to the malicious model as ε ap-
proaches 1.

Proposition 3.10 Let π be a protocol and µ a negligible function. Then π securely computes some
functionality f in the presence of covert adversaries with ε(n) = 1 − µ(n) under Definition 3.5 if
and only if it securely computes f with abort in the presence of malicious adversaries.

This is true since, by definition, either the adversary does not attempt cheating, in which case
the ideal execution is the same as in the regular ideal model, or it attempts cheating, in which case
it is caught with probability that is negligibly close to 1 and the protocol is aborted. In both cases,
the adversary gains no advantage, and the outcome can be simulated in the standard ideal model.
We stress that Proposition 3.10 does not hold for Definitions 3.2 and 3.4 because in these definitions
the adversary may learn the honest parties’ private inputs even when it is caught (something that
is not allowed in the malicious model).

4 Modular Sequential Composition

Sequential composition theorems for secure computation are important for two reasons. First, they
constitute a security goal within themselves. Second, they are useful tools that help in writing proofs
of security. As such, we believe that when presenting a new definition, it is of great importance
to also prove an appropriate composition theorem for that definition. In our case, we obtain
composition theorems that are analogous to that of [5] for all three of our definitions.

The basic idea behind these composition theorems is that it is possible to design a protocol that
uses an ideal functionality as a subroutine, and then analyze the security of the protocol when a
trusted party computes this functionality. For example, assume that a protocol is constructed that
uses oblivious transfer as a subroutine. Then, first we construct a protocol for oblivious transfer
and prove its security. Next, we prove the security of the protocol that uses oblivious transfer as
a subroutine, in a model where the parties have access to a trusted party computing the oblivious
transfer functionality. The composition theorem then states that when the “ideal calls” to the
trusted party for the oblivious transfer functionality are replaced by real executions of a secure
protocol computing this functionality, the protocol remains secure.

16

The f-hybrid model. We consider a hybrid model where parties both interact with each other
(as in the real model) and use trusted help (as in the ideal model). Specifically, the parties run
a protocol π that contains “ideal calls” to a trusted party computing a functionality f . These
ideal calls are just instructions to send an input to the trusted party. Upon receiving the output
back from the trusted party, the protocol π continues. We stress that honest parties do not send
messages from π between the time that they send input to the trusted party and the time that
they receive back output (this is because we consider sequential composition here). Of course, the
trusted party may be used a number of times throughout the π-execution. However, each time is
independent (i.e., the trusted party does not maintain any state between these calls). We call the
regular messages of π that are sent amongst the parties standard messages and the messages that
are sent between parties and the trusted party ideal messages.

Let f be a functionality and let π be an m-party protocol that uses ideal calls to a trusted
party computing f . Furthermore, let A be a non-uniform probabilistic polynomial-time machine
and let I be the set of corrupted parties. Then, the f -hybrid execution of π on inputs x, auxiliary
input z to A and security parameter n, denoted hybridf

π,A(z),I(x), is defined as the output vector
of the honest parties and the adversary A from the hybrid execution of π with a trusted party
computing f .

Sequential modular composition. Let f and π be as above, and let ρ be a protocol. Consider
the real protocol πρ that is defined as follows. All standard messages of π are unchanged. When a
party Pi is instructed to send an ideal message x to the trusted party, it begins a real execution of
ρ with input x instead. When this execution of ρ concludes with output y, party Pi continues with
π as if y was the output received by the trusted party (i.e. as if it were running in the f -hybrid
model). A special case of the composition theorem of [5] for malicious adversaries states that if ρ
securely computes f , and π securely computes some functionality g in the f -hybrid model, then πρ

securely computes g (in the real model). Here, we prove an analogous theorem for covert adversaries
with ε-deterrent. Since our protocols here are for the two-party case, we prove the theorem only
for this special case. We also consider the simplified scenario where π contains only a single call to
f ; the more general case can be proven in a similar way (with the addition of a standard hybrid
argument). Finally, we assume that the lengths of the inputs to ρ can be derived given the input to
π and the security parameter. All of these assumptions/simplifications are true for our protocols
in this paper, and so suffice. A more general theorem can be derived in a straightforward manner.

We prove sequential modular composition theorems for all of our definitions of security in the
presence of covert adversaries. The proof for Definition 3.2 is based on the ideas in the composition
theorem of [5] while making necessary changes due to the difference in the models. The proofs for
Definitions 3.4 and 3.5 are an almost direct corollary of the theorem of [5] (after casting the models
of Definitions 3.4 and 3.5 in a different, yet equivalent, model). We present all theorems because,
to the best of our knowledge, none can be used to derive another.

4.1 Composition for Definition 3.2

In this section we prove a modular sequential composition theorem for the (weaker) Definition 3.2.

Theorem 4.1 Let f be a two-party probabilistic polynomial-time functionality and let ρ be a pro-
tocol that securely computes f in the presence of covert adversaries with ε1-deterrent. Let g be
a two-party functionality and let π be a protocol that securely computes g in the f-hybrid model
(using a single call to f) in the presence of covert adversaries with ε2-deterrent. Then, πρ securely
computes g in the presence of covert adversaries with ε-deterrent, where ε = min{ε1, ε2}. The above
all refer to Definition 3.2.

17

Proof Sketch: By the assumption in the theorem, we have that for every non-uniform probabilistic
polynomial-time adversaryAρ attacking ρ in the real model, there exists a non-uniform probabilistic
polynomial-time adversary Sρ for the ideal model with f such that for every I ⊆ [2], every balanced
vector x ∈ ({0, 1}∗)2, every z ∈ {0, 1}∗ and every non-uniform polynomial-time D, there exists a
negligible function µ such that:

Pr
[
∃i ∈ I ∀j /∈ I : outputj(realρ,Aρ(z),I(x, n)) = corruptedi

]

≥ ε1(n) ·
∣∣∣Pr[D(idealf,Sρ(z),I(x, n)) = 1]− Pr[D(realρ,Aρ(z),I(x, n)) = 1]

∣∣∣− µ(n) (1)

Furthermore, for every non-uniform probabilistic polynomial-time adversary Aπ attacking π in the
f -hybrid model, there exists a non-uniform probabilistic polynomial-time adversary Sπ for the ideal
model with g such that for every I ⊆ [2], every balanced vector x ∈ ({0, 1}∗)2, every z ∈ {0, 1}∗
and every non-uniform polynomial-time D, there exists a negligible function µ′ such that:

Pr
[
∃i ∈ I ∀j /∈ I : outputj(hybridf

π,Aπ(z),I(x, n)) = corruptedi

]

≥ ε2(n) ·
∣∣∣Pr[D(idealg,Sπ(z),I(x, n)) = 1]− Pr[D(hybridf

π,Aπ(z),I(x, n)) = 1]
∣∣∣− µ′(n) (2)

We need to show that under the above assumptions, the real protocol πρ securely computes g in
the presence of covert adversaries with ε-deterrent, where ε = min{ε1, ε2}. In the case that I = φ
or I = {1, 2}, the proof is straightforward (if I = φ then no parties are corrupted and the proof is
like in the semi-honest case; if I = {1, 2} then both parties are corrupted and nothing needs to be
simulated). We will therefore focus on the case that I = {1} or I = {2}. The proof is the same
in both cases and so we will assume that I = {1}; we take this concrete case because it simplifies
notation.

Let A be an adversary that controls party P1 and attacks the real protocol πρ, and let x1 be
P1’s input and z the auxiliary input for A. We begin by modifying A to A′ in the following way:

1. Adversary A′ invokes A on its own input and forwards all π-messages between A (controlling
P1) and the honest party P2.

2. When A′ reaches the point in the execution where ρ begins, it defines an adversary Aρ who
receives auxiliary-input zρ that consists of an internal state of a machine, and input 0k where
n is the length of the input to ρ in π. (Recall that we assume that the length of the inputs
to ρ, or equivalently to f , are determined from the input to π and the security parameter.)
The machine Aρ runs the machine A from the initial state zρ and ignores its input entirely
(the input is needed for a technicality that machines have input of the appropriate length).
In addition, at the end of the execution of ρ, adversary Aρ outputs the current state of A.

3. After ρ concludes, adversary A′ takes the state output by Aρ and continues running A from
this state by forwarding the messages of π unmodified between A and the honest P2.

4. At the end of the execution of πρ, adversary A′ outputs whatever A does.

It is immediate that the output distribution from a real execution of πρ with A′ and an honest P2,
is identical to the output distribution of an execution of πρ with A and an honest P2. It is also
clear that Aρ is a real adversary for the protocol ρ. Therefore, by the assumption in the theorem,
there exists a simulator Sρ as described above in Eq. (1).

We now use A′ and Sρ to construct an adversary Aπ for the f -hybrid execution of π. Adversary
Aπ receives auxiliary-input z and input x1 and invokes A′ on these same inputs. However, when A′

18

reaches the point that it invokes Aρ upon auxiliary-input zρ, adversary Aπ invokes the simulator
Sρ upon auxiliary-input zρ instead. Ideal messages that Sρ wishes to send to the trusted party
computing f are sent by Aπ to its trusted party computing f . Likewise, outputs from the trusted
party are handed by Aπ back to Sρ. When Sρ concludes its execution, its output is interpreted by
Aπ as an internal state of A. The adversary Aπ then continues by running A′ from this internal
state.

We claim that for every polynomial-time distinguisher D and every x and z, there exists a
negligible function µ such that

Pr
[
outputρ

2(realπρ,A(z),I(x, n)) = corrupted1

]

≥ ε1(n) ·
∣∣∣Pr[D(hybridf

π,Aπ(z),I(x, n)) = 1]− Pr[D(realπρ,A(z),I(x, n)) = 1]
∣∣∣− µ(n) (3)

where outputρ
2 refers to the output of P2 within the subprotocol ρ only (i.e., here we consider the

probability that P2 outputs corrupted1 within ρ). Eq. (3) holds because otherwise this contradicts
the security of ρ. Specifically, the only difference between the real execution with A and the hybrid
execution with Aπ is that A runs Aρ in the real execution of ρ whereas Aπ runs Sρ instead. Thus,
if Eq. (3) does not hold, then Sρ does not “simulate” for Aρ as it should. More formally, if Eq. (3)
does not hold when the probabilities are taken over the random tapes of the parties (and thus the
entire execution), then there exists a prefix of the execution up until the point that ρ begins such
that Eq. (3) does not hold, even conditioned on this prefix. Such an “execution prefix” is obtained
by fixing the portion of the random-tape of P2 that is used until this point in the protocol and
by fixing the random-tape of A. (Of course, these tapes can only be found non-uniformly.) Now,
this prefix defines an auxiliary-input zρ for Aρ in ρ that consists of A’s internal state after this
execution prefix. Furthermore, it defines the input x2 of the honest party P2 to ρ (the input x1

of P1 is implicitly defined by A and so can be set to an arbitrary value in order to obtain x). Fix
this input vector x and auxiliary input zρ. Next, we define a distinguisher D′ that receives the
outputs of the adversary and P2 and tries to determine if the execution was ideal or real. D′

works by internally simulating the execution until the end: it can do this because it has A′’s state
after the execution of ρ and its random-tape, and also has the input and output of P2 (the initial
input of P2 needed for this internal simulation can be provided to D′ as auxiliary input). Then, at
the end of the internal simulation, D′ applies D to the output of A′ and P2 and outputs whatever
D outputs. It follows that if there exists a polynomial-time distinguisher D for which Eq. (3) does
not hold, then there exists a polynomial-time distinguisher D′ and inputs x and zρ such that for
every negligible function µ(n)

Pr
[
output2(realρ,Aρ(zρ),I(x, n)) = corrupted1

]

≤ ε1(n) ·
∣∣∣Pr[D(idealf,Sρ(zρ),I(x, n)) = 1]− Pr[D(realρ,Aρ(zρ),I(x, n)) = 1]

∣∣∣− µ(n)

in contradiction to the security of ρ.
Next, we claim that by Eq. (2) it holds that for every polynomial-time distinguisher D and

every x and z, there exists a negligible function µ′ such that

Pr
[
output2(hybridf

π,Aπ(z),I(x, n)) = corrupted1

]

≥ ε2(n) ·
∣∣∣Pr[D(idealf,S(z),I(x, n)) = 1]− Pr[D(hybridf

π,Aπ(z),I(x, n)) = 1]
∣∣∣− µ′(n) (4)

This follows directly from the fact that Aπ is an f -hybrid adversary.

19

By combining Equations (3) and (4) we obtain that for every polynomial-time distinguisher D
and every x and z,

Pr
[
output2(realπρ,A(z),I(x, n)) = corrupted1

]

≥ Pr
[
output2(hybridf

π,Aπ(z),I(x, n)) = corrupted1

]

+ Pr
[
outputρ

2(realπρ,A(z),I(x, n)) = corrupted1

]

≥ ε2(n) ·
∣∣∣Pr[D(idealf,S(z),I(x, n)) = 1]− Pr[D(hybridf

π,Aπ(z),I(x, n)) = 1]
∣∣∣− µ′(n)

+ ε1(n) ·
∣∣∣Pr[D(hybridf

π,Aπ(z),I(x, n)) = 1]− Pr[D(realπρ,A(z),I(x, n)) = 1]
∣∣∣− µ(n)

≥ min{ε1, ε2}(n) ·
∣∣∣Pr[D(idealf,S(z),I(x, n)) = 1]− Pr[D(realπρ,A(z),I(x, n)) = 1]

∣∣∣− µ′(n)− µ(n)

where the last inequality is due to the fact that |a− b|+ |b− c| ≥ |a− c|, and replacing ε1 and ε2
with min{ε1, ε2} only makes the result smaller. We therefore conclude that πρ securely computes g
in the presence of covert adversaries with ε-deterrent, where ε = min{ε1, ε2}.

4.2 Composition for Definitions 3.4 and 3.5

In this section, we prove an analogous modular sequential composition theorem for the stronger
Definitions 3.4 and 3.5. Before doing so, we define an (f, ε)-hybrid model that is the same as the
regular hybrid model except that the trusted party is as in idealcε (when considering Definition 3.4)
or as in idealscε (when considering Definition 3.5).

Theorem 4.2 Let ε : IN → [0, 1] be a function, let f be a multiparty probabilistic polynomial-time
functionality and let ρ be a secure protocol for computing f in the presence of covert adversaries
with ε-deterrent. Furthermore, let g be a multiparty functionality and let π be a secure protocol for
computing g in the (f, ε)-hybrid model in the presence of covert adversaries with ε-deterrent. Then,
πρ is a secure protocol for computing g in the presence of covert adversaries with ε-deterrent. The
above holds for Definitions 3.4 and 3.5 by taking the appropriate ideal model in each case.

Proof Sketch: Theorem 4.2 can be derived as an almost immediate corollary from the composition
theorem of [5] in the following way. First, define a special functionality interface that follows the
instructions of the trusted party in Definition 3.4 (respectively, in Definition 3.5). That is, define
a reactive functionality that receives inputs and write outputs (this functionality is modelled by
an interactive Turing machine). The appropriate reactive functionality here acts exactly like the
trusted party (e.g., if it receives a cheati message, then it tosses coins and with probability ε
outputs corruptedi to all parties and with probability 1 − ε gives the adversary all of the honest
parties’ inputs and lets it chooses their outputs). Next, consider the standard ideal model of
Definition 2.1 with functionalities of the above form. It is easy to see that a protocol securely
computes some functionality f under Definition 3.4 (resp., under Definition 3.5) if and only if
it is securely computes the appropriately defined reactive functionality under Definition 2.1. This
suffices because the composition theorem of [5] can be applied to Definition 2.1, yielding the result.6

6Two remarks are in place here. First, the composition theorem of [5] is formally proven for standard (non-
reactive) functionalities and the case of an honest majority. Nevertheless, the proof can be extended to these cases in
a straightforward way with almost no changes. Second, the composition theorem of [5] assumes a strict polynomial-
time simulator. This is fine because we also required this in our definitions.

20

We note that it is possible to generalize Theorem 4.2 so that ρ and π have different values of
ε. However, π must be proven secure with the ε-value of ρ in mind. That is, we can state the
following theorem: If ρ is a secure protocol for computing f in the presence of covert adversaries
with ε′-deterrent, and π is a secure protocol for computing g in the (f, ε′)-hybrid model in the
presence of covert adversaries with ε-deterrent, then πρ is a secure protocol for computing g in the
presence of covert adversaries with ε-deterrent.

5 Oblivious Transfer

In the oblivious transfer functionality [26, 10], a sender has two inputs (x0, x1) and a receiver has an
input bit σ. The sender receives no output (and, in particular, learns nothing about the receiver’s
bit), while the receiver learns xσ (but learns nothing about x1−σ). This variant of oblivious transfer
is often called 1-out-of-2 oblivious transfer.

In this section we will construct an efficient oblivious transfer protocol that is secure in the
presence of covert adversaries with ε-deterrent. We will first present the basic scheme that considers
a single oblivious transfer and ε = 1/2. We will then extend this to enable the simultaneous
execution of many oblivious transfers and also higher values of ε. Our constructions all rely on the
existence of secure homomorphic encryption schemes.

Homomorphic encryption. Let (G,E, D) be a public-key encryption scheme that has indistin-
guishable encryptions under chosen-plaintext attacks. We say that (G, E, D) is homomorphic if it
has the following homomorphic property:

1. The plaintext is taken from a finite Abelian group determined by the public key. For nota-
tional convenience, we assume here that the group is an “additive” group Zq; however, the
same construction works for “multiplicative” groups as well.

2. Given any public-key pk generated by the key generation algorithm G and any two ciphertexts
c1 = Epk(m1) and c2 = Epk(m2) under that key, it is possible to efficiently compute a random
encryption Epk(m1)+EEpk(m2) = Epk(m1+m2). Consequently, it is also possible to efficiently
compute Epk(m1 · α) for any known integer α. We denote this operation by α ·E Epk(m).
(This follows because repeated squaring – or addition – can be used.)

We also assume that (G,E, D) has no decryption errors. Such encryption schemes can be con-
structed under the quadratic-residuosity, N -residuosity, decisional Diffie-Hellman (DDH) and other
assumptions; see [2, 20] for some references.

5.1 The Basic Protocol

Protocol 5.1 (oblivious transfer from errorless homomorphic encryption):

• Inputs: The sender S has a pair of strings (x0, x1) for input; the receiver R has a bit σ. Both
parties have the security parameter 1n as auxiliary input. (In order to satisfy the constraints
that all inputs are of the same length, it is possible to define |x0| = |x1| = k and give the
receiver (σ, 12k−1).)

• Assumption: We assume that the group determined by the homomorphic encryption scheme
with security parameter n is large enough to contain all strings of length k. Thus, if the
homomorphic encryption scheme only works for single bits, we will only consider k = 1 (i.e.,
bit oblivious transfer).

21

• The protocol:

1. The receiver R chooses two sets of two pairs of keys:

(a) (pk0
1, sk

0
1), (pk0

2, sk
0
2) ← G(1n) using random coins r0

G, and
(b) (pk1

1, sk
1
1), (pk1

2, sk
1
2) ← G(1n) using random coins r1

G

R sends (pk0
1, pk0

2) and (pk1
1, pk1

2) to the sender S.

2. Key-generation challenge:

(a) S chooses a random coin b ∈R {0, 1} and sends b to R.
(b) R sends S the random-coins rb

G that it used to generate (pkb
1, pkb

2).
(c) S checks that the public keys output by the key-generation algorithm G when given

input 1n and the appropriate portions of the random-tape rb
G equal pkb

1 and pkb
2. If

this does not hold, or if R did not send any message here, S outputs corruptedR and
halts. Otherwise, it proceeds.
Denote pk1 = pk1−b

1 and pk2 = pk1−b
2 .

3. R chooses two random bits α, β ∈R {0, 1}. Then:

(a) R computes
c1
0 = Epk1(α) c2

0 = Epk2(1− α)
c1
1 = Epk1(β) c2

1 = Epk2(1− β)

using random coins r1
0, r2

0, r1
1 and r2

1, respectively.
(b) R sends (c1

0, c
2
0) and (c1

1, c
2
1) to S.

4. Encryption-generation challenge:

(a) S chooses a random bit b′ ∈R {0, 1} and sends b′ to R.
(b) R sends r1

b′ and r2
b′ to S (i.e., R sends an opening to the ciphertexts c1

b′ and c2
b′).

(c) S checks that one of the ciphertexts {c1
b′ , c

2
b′} is an encryption of 0 and the other

is an encryption of 1. If not (including the case that no message is sent by R), S
outputs corruptedR and halts. Otherwise, it continues to the next step.

5. R sends a “re-ordering” of the ciphertexts {c1
1−b′ , c

2
1−b′}. Specifically, if σ = 0 then it

sets c0 to be the ciphertext that is an encryption of 1, and sets c1 to be the ciphertext
that is an encryption of 0. Otherwise, if σ = 1 then it sets c0 to be the encryption of 0,
and c1 to be the encryption of 1. (Only the ordering needs to be sent and not the actual
ciphertexts. Furthermore, this can be sent together with the openings in Step 4b.)

6. S uses the homomorphic property and c0, c1 as follows.

(a) S computes c̃0 = x0 ·E c0 (this operation is relative to the key pk1 or pk2 depending
if c0 is an encryption under pk1 or pk2)

(b) S computes c̃1 = x1 ·E c1 (this operation is relative to the key pk1 or pk2 depending
if c1 is an encryption under pk1 or pk2)

S sends c̃0 and c̃1 to R. (Notice that one of the ciphertexts is encrypted with key pk1

and the other is encrypted with key pk2.)

7. If σ = 0, the receiver R decrypts c̃0 and outputs the result (if c̃0 is encrypted under pk1

then R outputs x0 = Dsk1(c̃0); otherwise it outputs x0 = Dsk2(c̃0)). Otherwise, if σ = 1,
R decrypts c̃1 and outputs the result.

22

8. If at any stage during the protocol, S does not receive the next message that it expects to
receive from R or the message it receives is invalid and cannot be processed, it outputs
abortR (unless it was already instructed to output corruptedR). Likewise, if R does not
receive the next message that it expects to receive from S or it receives an invalid message,
it outputs abortS.

We remark that the reordering message of Step 5 can actually be sent by R together with the
message in Step 4b. Furthermore, the messages of the key-generation challenge can be piggybacked
with later messages, as long as they conclude before the final step. We therefore have that the
number of rounds of communication can be exactly four (each party sends two messages).

Before proceeding to the proof of security, we present the intuitive argument showing why
Protocol 5.1 is secure. We begin with the case that the receiver is corrupt. First note that if
the receiver follows the instructions of the protocol, it learns only a single value x0 or x1. This is
because one of c0 and c1 is an encryption of 0. If it is c0, then c̃0 = x0 ·E c0 = Epk(0 · x0) = Epk(0)
(where pk ∈ {pk1, pk2}, and so nothing is learned about x0; similarly if it is c1 then c̃1 = Epk(0) and
so nothing is learned about x1. However, in general, the receiver may not generate the encryptions
c1
0, c

1
1, c

2
0, c

2
1 properly (and so it may that at least one of the pairs (c1

0, c
2
0) and (c1

1, c
2
1) are both

encryptions of 1, in which case the receiver could learn both x0 and x1). This is prevented by
the encryption-generation challenge. That is, if the receiver tries to cheat in this way then it is
guaranteed to be caught with probability at least 1/2. The above explains why a malicious receiver
can learn only one of the outputs, unless it is willing to be caught cheating with probability 1/2.
This therefore demonstrates that “privacy” holds. However, we actually need to prove security
via simulation, which involves showing how to extract the receiver’s implicit input and how to
simulate its view. Extraction works by first providing the corrupted receiver with the encryption-
challenge bit b′ = 0 and then rewinding it and providing it with the challenge b′ = 1. If the
corrupted receiver replies to both challenges, then the simulator can construct σ from the opened
ciphertexts and the reordering provided. Given this input, the simulation can be completed in a
straightforward manner; see the proof below. A crucial point here is that if the receiver does not
reply to both challenges then an honest sender would output corruptedR with probability 1/2, and
so this corresponds to a cheatR input in the ideal world.

We now proceed to discuss why the protocol is secure in the presence of a corrupt sender. In this
case, it is easy to see that such a sender cannot learn anything about the receiver’s input because
the encryption scheme is semantically secure (and so a corrupt sender cannot determine σ from
the unopened ciphertexts). However, as above, we need to show how extraction and simulation
works. Extraction here works by providing encryptions so that in one of the pairs (c1

0, c
2
0) or (c1

1, c
2
1)

both of the encrypted values are 1. If this pair is the one used (and not the one opened) , then we
have that c̃0 is an encryption of x0 and c̃1 is an encryption of c̃1. An important point here is that
unlike a real receiver, the simulator can do this without being “caught”. Specifically, the simulator
generates the ciphertexts so that for a random b′ ∈R {0, 1} it holds that c1

1−b′ and c2
1−b′ are both

encryptions of 1, whereas c1
b′ and c2

b′ are general correctly, one being an encryption of 0 and the
other an encryption of 1. Then, the simulator “hopes” that the corrupted sender asks it to open
the ciphertexts c1

b′ and c2
b′ which look as they should. In such a case, the simulator proceeds and

succeeds in extracting both x0 and x1. However, if the corrupted sender asks the simulator to open
the other ciphertexts (that are clearly invalid), the simulator just rewinds the corrupted sender
and tries again. Thus, extraction can be achieved. Regarding the simulation of the sender’s view,
this follows from the fact that the only differences between the above and a real execution are the
values encrypted in the ciphertexts c1

0, c
2
0, c

1
1, c

2
1. These distributions are therefore indistinguishable

by the semantic security of the encryption scheme.

23

We now formally prove that Protocol 5.1 meets Definition 3.5 with ε = 1
2 (of course, this

immediately implies security under Definitions 3.2 and 3.4 as well).

Theorem 5.2 Assuming that (G,E,D) constitutes a semantically secure homomorphic encryption
scheme (with errorless decryption), Protocol 5.1 securely computes the oblivious transfer function-
ality ((x0, x1), σ) 7→ (λ, xσ) in the presence of covert adversaries with ε-deterrent for ε = 1

2 , under
Definition 3.5.

Proof: We will separately consider the case that no parties are corrupted, the case that the receiver
is corrupted and the case that the sender is corrupted (the case that both parties are corrupted
is trivial). We note that although we construct three different simulators (one for each corruption
case), a single simulator as required by the definition can be constructed by simply combining the
three simulators into one machine, and working appropriately given the corruption set I.

No corruptions. We first consider the case that no parties are corrupted (i.e., I = φ). In this
case, the real adversary A’s view can be generated by a simulator Sim that simply runs S and R
honestly, with inputs x0 = x1 = 0k and σ = 0 (recall that in this case we assume that the adversary’s
auxiliary input contains the input length k). The fact that this simulation is indistinguishable from
a real execution (with the honest parties’ real inputs) follows from the indistinguishability property
of encryption scheme. The proof is straightforward and is therefore omitted. We remark that in
order to show that the real and ideal outputs are indistinguishable, we also have to show that
the honest parties’ outputs in a real execution are correct (because this is the case in the ideal
world). The sender’s output is defined as λ and so this clearly holds. Regarding the receiver, recall
that c̃0 = x0 ·E c0 and c̃1 = x1 ·E c1. Thus, if σ = 0 it holds c0 is an encryption of 1 and so
c̃0 = Epk1(x0 · 1) = Epk1(x0); likewise, if σ = 1 then c1 is an encryption of 1 and so c̃1 = Epk1(x1).
This implies that the receiver correctly obtains xσ as required.

Corrupted receiver: Let A be a real adversary that controls the receiver R. We construct a
simulator Sim that works as follows:

1. Sim receives (σ, 12k−1) and z as input and invokes A on this input.

2. Sim plays the honest sender with A as receiver.

3. When Sim reaches the key-generation challenge step, it first sends b = 0 and receives back
A’s response. Then, Sim rewinds A, sends b = 1 and receives back A’s response.

(a) If neither of the responses from A are valid (where by validity we mean a response that
would not cause S to output corruptedR in a real execution), Sim sends corruptedR to the
trusted party, simulates the honest S aborting due to detected cheating, and outputs
whatever A outputs.

(b) If A sends back exactly one valid response, then Sim sends cheatR to the trusted party.

i. If the trusted party replies with corruptedR, then Sim rewinds A and hands it the
query for whichA’s response was not valid. Sim then simulates the honest S aborting
due to detected cheating, and outputs whatever A outputs.

ii. If the trusted party replies with undetected and the honest S’s input pair (x0, x1),
then Sim plays the honest sender with input (x0, x1) in the remainder of the execu-
tion with A as the receiver. At the conclusion, Sim outputs whatever A outputs.

(c) If A sends back two valid responses, then Sim rewinds A, gives it a random b′ and
proceeds as below.

24

4. Sim receives ciphertexts c1
0, c

2
0, c

1
1, c

2
1 from A.

5. Next, in the encryption-generation challenge step, Sim first sends b′ = 0 and receives back A’s
response, which includes the reordering of the ciphertexts (recall that the reordering message
are actually sent together with the ciphertext openings). Then, Sim rewinds A, sends b′ = 1
and receives back A’s response.

(a) If neither of the responses from A are valid (where by validity we mean a response that
would not cause S to output corruptedR in a real execution), Sim sends corruptedR to the
trusted party, simulates the honest S aborting due to detected cheating, and outputs
whatever A outputs.

(b) If A sends back exactly one valid response, then Sim sends cheatR to the trusted party.

i. If the trusted party replies with corruptedR, then Sim rewinds A and hands it the
query for whichA’s response was not valid. Sim then simulates the honest S aborting
due to detected cheating, and outputs whatever A outputs.

ii. If the trusted party replies with undetected and the honest S’s input pair (x0, x1),
then Sim plays the honest sender with input (x0, x1) and completes the execution
with A as the receiver. (Note that the sender has not yet used its input at this stage
of the protocol. Thus, Sim has no problem completing the execution like an honest
sender.) At the conclusion, Sim outputs whatever A outputs.

(c) If A sends back two valid responses, then Sim uses the reorderings to determine the
value of σ. Specifically, Sim chooses a random b′ and takes the reordering that relates to
c1
1−b′ and c2

1−b′ (if c1
1−b′ is an encryption of 1, then Sim determines σ = 0 and otherwise

it determines σ = 1).
Sim sends σ to the trusted party and receives back x = xσ. Simulator Sim then completes
the execution playing the honest sender and using x0 = x1 = x.

6. If at any point A sends a message that would cause the honest sender to halt and output
abortR, simulator Sim immediately sends abortR to the trusted party, halts the simulation
and proceeds to the final “output” step.

7. Output: At the conclusion, Sim outputs whatever A outputs.

This completes the description of Sim. Denoting π as Protocol 5.1 and noting that I here equals
{R} (i.e., the receiver is corrupted), we need to prove that for ε = 1

2 ,
{
idealscε

ot,S(z),I(((x0, x1), σ), n)
}

c≡
{
realπ,A(z),I(((x0, x1), σ), n)

}

It is clear that the simulation is perfect if Sim sends corruptedR or cheatR at any stage. This is due
to the fact that the probability that an honest S outputs corruptedR in the simulation is identical
to the probability in a real execution (probability 1 in the case that A responds incorrectly to
both challenges and probability 1/2 otherwise). Furthermore, in the case that Sim sends cheatR
and receives back undetected it concludes the execution using the true input of the sender. The
simulation until the last step is perfect (it involves merely sending random challenges); therefore
the completion using the true sender’s input yields a perfect simulation. The above is clearly true
of abortR as well (because this can only occur before the last step where the sender’s input is used).

It remains to analyze the case that Sim does not send corruptedR, cheatR or abortR to the trusted
party. Notice that in this case, A responded correctly to both the key-generation challenges and the

25

encryption-generation challenges. In particular, this implies that the keys pk1 and pk2 are correctly
generated, and that Sim computes σ based on the encrypted values sent by A and the reordering.

Now, if σ = 0, then Sim hands A the ciphertexts c̃0 = Epk(x0) and c̃1 = Epk′(0), where
pk, pk′ ∈ {pk1, pk2} and pk 6= pk′, and if σ = 1, it hands A the ciphertexts c̃0 = Epk(0) and
c̃1 = Epk′(x1). This follows from the instructions of Sim and the honest party (Sim plays the honest
party with x0 = x1 = xσ and so c̃σ is an encryption of xσ and c̃1−σ is an encryption of 0). The
important point to notice is that these messages are distributed identically to the honest sender’s
messages in a real protocol; the fact that Sim does not know x1−σ makes no difference because
for every x′ it holds that x′ · Epk(0) = Epk(0). We note that this assumes that the homomorphic
property of the encryption scheme holds, but this is given by the fact that pk1 and pk2 are correctly
formed. Regarding the rest of the messages sent by Sim, these are generated independently of the
sender-input and so exactly like an honest sender.

We conclude that the view of A as generated by the simulator Sim is identical to the distribution
generated in a real execution. Thus, its output is identically distributed in both cases. (Since the
sender receives no output, we do not need to consider the output distribution of the honest sender
in the real and ideal executions.) We conclude that

{
idealscε

ot,S(z),I(((x0, x1), σ), n)
}
≡

{
realπ,A(z),I(((x0, x1), σ), n)

}

completing this corruption case.

Corrupted sender: Let A be a real adversary that controls the sender S. We construct a
simulator Sim that works as follows:

1. Sim receives (x0, x1) and z and invokes A on this input.

2. Sim interacts with A and plays the honest receiver until Step 3 of the protocol.

3. In Step 3 of the protocol, Sim works as follows:

(a) Sim chooses random bits b, α ∈R {0, 1}
(b) Sim computes:

c1
b = Epk1(α) c2

b = Epk2(1− α)
c1
1−b = Epk1(1) c2

1−b = Epk2(1)

(c) Sim sends c1
0, c

2
0, c

1
1, c

2
1 to A.

4. In the next step (Step 4 of the protocol), A sends a bit b′. If b′ = b, then Sim opens the
ciphertexts c1

b and c2
b as the honest receiver would (note that the ciphertexts are “correctly”

constructed). Otherwise, Sim returns to Step 3 of the simulation above (i.e., it returns to the
beginning of Step 3 of the protocol) and tries again with fresh randomness.7

5. Sim sends a random reordering of the ciphertexts c1
1−b and c2

1−b (the actual order doesn’t
matter because they are both encryptions of 1).

7This yields an expected polynomial-time simulation because these steps are repeated until b′ = b. A strict
polynomial-time simulation can be achieved by just halting after n attempts. The probability that b′ 6= b in all of
these attempts can be shown to be negligible, based on the hiding property of the encryption scheme.

26

6. The simulator Sim receives from A the ciphertexts c̃0 and c̃1. Sim computes x0 = Dsk1(c̃0)
and x1 = Dsk2(c̃1) (or x0 = Dsk2(c̃0) and x1 = Dsk1(c̃1), depending on which of c0, c1 is
encrypted with pk1 and which with pk2), and sends the pair (x0, x1) to the trusted party as
S’s input.

7. If at any stage in the simulation A does not respond, or responds with an invalid message
that cannot be processed, then Sim sends abortS to the trusted party for the sender’s inputs.
(Such behavior from A can only occur before the last step and so before any input (x0, x1)
has already been sent to the trusted party.)

8. Sim outputs whatever A outputs.

Notice that Sim never sends cheatS to the trusted party. Thus we actually prove standard security
in this corruption case. That is, we prove that:

{
idealot,Sim(z),I((x0, x1, σ), n)

}
c≡

{
realπ,A(z),I((x0, x1, σ), n)

}
(5)

By Proposition 3.8, this implies security for covert adversaries as well. In order to prove Eq. (5),
observe that the only difference between the view of the adversary A in a real execution and in the
simulation by Sim is due to the fact that Sim does not generate c1

b , c
2
b correctly. Thus, intuitively,

Eq. (5) follows from the security of the encryption scheme. That is, we begin by showing that if
the view of A in the real and ideal executions can be distinguished, then it is possible to break the
security of the encryption scheme. We begin by showing that the view of A when interacting with
an honest sender with input σ = 0 is indistinguishable from the view of A when interacting in a
simulation with Sim.

Let A′ be an adversary that attempts to distinguish encryptions under a key pk.8 Adversary
A′ receives a key pk, chooses a random bit γ ∈R {0, 1} and a random index ` ∈R {1, 2} and sets
pk1−γ

` = pk. It then chooses the keys pk1−γ
3−` , pkγ

1 and pkγ
2 by itself and sends A the keys (pk0

1, pk0
2)

and (pk1
1, pk1

2). When A replies with a bit b, adversary A′ acts as follows. If b = γ, then A′
opens the randomness used in generating (pkb

1, pkb
2) as the honest receiver would (A′ can do this

because it chose (pkγ
1 , pkγ

2) by itself and γ = b). If b 6= γ, then A′ cannot open the randomness
as an honest receiver would. Therefore, A′ just halts. If A continues, then it sets pk1 = pk1−γ

1

and pk2 = pk1−γ
2 (and so pk` is the public-key pk that A′ is “attacking”). Now, A′ computes

the ciphertexts c1
0, c

2
0, c

1
1, c

2
1 in the following way. A′ chooses α and β at random, as the honest

receiver would. Then, for a random ζ adversary A′ computes c1
ζ = Epk1(α), c2

ζ = Epk2(1− α), and
c3−`
1−ζ = Epk3−`

(1). However, A′ does not compute c`
1−ζ = Epk`

(1). Rather, it outputs a pair of
plaintexts m0 = 0,m1 = 1 and receives back c = Epk(mb) = Epk`

(mb) (for b ∈R {0, 1}). Adversary
A′ sets c`

1−ζ = c (i.e., to equal the challenge ciphertext) and continues playing the honest receiver
until the end. In this simulation, A′ sets the reordering so that c0 equals c3−`

1−ζ (that is, it is an
encryption of 1). The key point here is that if A′ does not halt and b = 0, then the simulation by A′
is identical to a real execution between A and an honest receiver R who has input σ = 0 (because
c0 = c3−`

1−ζ is an encryption of 1 and c1 = c`
1−ζ is an encryption of 0, as required). In contrast, if A′

does not halt and b = 1, then the simulation by A′ is identical to the simulation carried out by Sim
(because in this case they are both encryptions of 1). Finally, note that A′ halts with probability
exactly 1/2 in both cases (this is due to the fact that the distribution of the keys is identical for

8The game that A′ plays is that it receives a key pk, outputs a pair of plaintexts m0, m1, receives back a challenge
ciphertext Epk(mb) for some b ∈ {0, 1}, and outputs a “guess” bit b′. An encryption scheme is indistinguishable if
the probabilities that A′ outputs b′ = 1 when b = 1 and when b = 0 are negligibly close.

27

both choices of γ). Combining the above together, we have that if it is possible to distinguish the
view of A in the simulation by Sim from a real execution with a receiver who has input 0, then it
is possible to distinguish encryptions. Specifically, A′ can just run the distinguisher that exists for
these views and output whatever the distinguisher outputs.

The above shows that the view of A in the simulation is indistinguishable from its view in a real
execution with an honest receiver with input σ = 0. However, we actually have to show that when
the honest receiver has input σ = 0, the joint distribution of A and the honest receiver’s outputs
in a real execution is indistinguishable from the joint distribution of Sim and the honest receiver’s
outputs in the ideal model. The point to notice here is that the output of the honest receiver in
both the real and ideal models is the value obtained by decrypting c̃0 using key pk3−`. (In the real
model this is what the protocol instructs the honest party to output and in the ideal model this is
the value that Sim sends to the trusted party as the sender’s input x0.) However, in this reduction
A′ knows the associated secret-key to pk3−`, because it chose pk3−` itself. Thus, A′ can append
the decryption of c̃0 to the view of A, thereby generating a joint distribution. It follows that if
A′ received an encryption of m0 = 0 then it generates the joint distribution of the outputs in the
real execution, and if it received an encryption of m1 = 1 then it generates the joint distribution
of the outputs in the ideal execution. By the indistinguishability of the encryption scheme we have
the real and ideal distributions are indistinguishable, completing the proof of Eq. (5) for the case
that σ = 0. The case for σ = 1 follows from an almost identical argument as above. Combining
these two cases, we have the output distribution generated by the simulator in the ideal model
is computationally indistinguishable from the output distribution of a real execution. It remains
to show that Sim runs in expected polynomial-time. Note that Sim rewinds if in the simulation
it holds that b′ 6= b. Now, in the case that the ciphertexts c1

0, c
2
0, c

1
1, c

2
1 are generated as by the

honest party (each pair containing an encryption of 0 and an encryption of 1), the probability that
b′ 6= b is exactly 1/2 because the value of b′ is information-theoretically hidden. In contrast, in
the simulation this is not the case because c1

b , c
2
b are “correctly” constructed, whereas c1

1−b, c
2
1−b

are both encryptions of 1. Nevertheless, if the probability that b′ 6= b is non-negligibly far from
1/2, then this can be used to distinguish an encryption of 0 from an encryption of 1 (the actual
reduction can be derived from the reduction already carried out above and is thus omitted). It
follows that the expected number of rewindings is at most slightly greater than 2, implying that
the overall simulation runs in expected polynomial-time. As we have mentioned in Footnote 7,
the simulation can be made to run in strict polynomial-time by aborting if for n consecutive trials
it holds that b′ 6= b. By the argument given above, such an abort can only occur with negligible
probability. This concludes the proof of this corruption case, and thus of the theorem.

Discussion. The proof of Protocol 5.1 in the case that the receiver is corrupted relies heavily on
the fact that the simulator can send cheat and therefore does not need to complete a “standard”
simulation. Take for example the case that A (controlling the receiver) only replies with one valid
response to the encryption-generation challenge. In this case, the receiver can learn both x0 and
x1 with probability 1/2. However, the simulator in the ideal model can never learn both x0 and
x1. Therefore, the simulator cannot generate the correct distribution. However, by allowing the
simulator to declare a cheat, it can complete the simulation as required. This demonstrates why it
is possible to achieve higher efficiency for this definition of security.

The proof of security for a corrupted sender. We stress that we have actually proven
something stronger. Specifically, we have shown that Protocol 5.1 is secure in the presence of a
covert receiver with 1/2-deterrent as stated. However, we have also shown that Protocol 5.1 is
(fully) secure with abort in the presence of a malicious sender.

28

Efficiently recognizable public keys. We remark that in the case that it is possible to efficiently
recognize that a public-key is in the range of the key-generator of the public-key encryption scheme,
it is possible to skip the key-generation challenge step in the protocol (the sender can verify for
itself if the key is valid).

5.2 Extensions

String oblivious transfer. In Protocol 5.1, x0 and x1 are elements in the group over which the
homomorphic encryption scheme is defined. If this group is large, then we can carry out string
oblivious transfer. This is important because later we will use Protocol 5.1 to exchange symmetric
encryption keys. However, if the group contains only 0 and 1, then this does not suffice. In order
to extend Protocol 5.1 to deal with string oblivious transfer, even when the group has only two
elements, we only need to change the last two steps of the protocol. Specifically, instead of S
computing a single encryption for x0 and a single encryption for x1, it computes an encryption for
each bit. That is, denote the bits of x0 by x1

0, . . . , x
n
0 , and likewise for x1. Then, S computes:

c̃0 = x1
0 ·E c0, . . . , x

n
0 ·E c0

and
c̃1 = x1

1 ·E c1, . . . , x
n
1 ·E c1 .

Note that the receiver can still only obtain one of the strings because if σ = 0 then c̃1 just contains
encryptions to zeroes, and vice versa if σ = 1.

Simultaneous oblivious transfer. We will use Protocol 5.1 in Yao’s protocol for secure two-
party computation. This means that we will run one oblivious transfer for every bit of the input.
In principle, these oblivious transfers can be run in parallel, as long as the protocol being used
remains secure under parallel composition. Technically, however, our protocol does not compose
in parallel (in the sense that the honest party views each execution independently). Nevertheless,
we can modify Protocol 5.1 so that it is possible to simultaneously run many oblivious transfers
with a cost that is less than running Protocol 5.1 the same number of times in parallel. We call
this simultaneous oblivious transfer in order to distinguish it from “parallel oblivious transfer”
which considers (stateless) parallel composition. The simultaneous oblivious transfer functionality
is defined as follows:

((x0
1, x

1
1), . . . , (x

0
n, xn

1), (σ1, . . . , σn)) 7→ (λ, (xσ1
1 , . . . , xσn

n))

Thus, we essentially have n oblivious transfers where in the ith such transfer, the sender has input
(x0

i , x
1
i) and the receiver has input σi.

The extension to Protocol 5.1 works as follows. First, the same public-key pair (pk1, pk2) can
be used in all executions. Therefore, Steps 1 and 2 remain unchanged. Then, Step 3 is carried out
independently for all n bits σ1, . . . , σn. That is, for every i, two pairs of ciphertexts encrypting 0
and 1 (in random order) are sent. The important change comes in Step 4. Here, the same challenge
bit b′ is used for every i. The sender then replies as it should, opening the c1

b′ and c2
b′ ciphertexts

for every i. The protocol then concludes by the sender computing the c̃0 and c̃1 ciphertexts for
every i, and the receiver decrypting.

The proof of the above extension is almost identical to the proof of Theorem 5.2. The main point
is that since only a single challenge is used for both the key-generation challenge and encryption-
generation challenge, the probability of achieving b′ = b (as needed for the simulation) and b = γ (as

29

needed for the reduction to the security of the encryption scheme) remains one half. Furthermore,
the probability that a corrupted R will succeed in cheating remains the same because if there is
any i for which the encryptions are not correctly formed, then the receiver will be caught with
probability one half.

Higher values of ε. Finally, we show how it is possible to obtain higher values of ε with only
minor changes to Protocol 5.1. The basic idea is to increase the probability of catching a corrupted
receiver in the case that it attempts to generate an invalid key-pair or send ciphertexts in Step 3 that
do not encrypt the same value. Let k = poly(n) be an integer. Then, first the receiver generates
k pairs of public-keys (pk1

1, pk1
2), . . . , (pkk

1 , pkk
2) instead of just two pairs. The sender then asks the

receiver to reveal the randomness used in generating all the pairs except for one (the unrevealed
key-pair is the one used in the continuation of the protocol). Note that if a corrupted receiver
generated even one key-pair incorrectly, then it is caught with probability 1 − 1/k. Likewise, in
Step 3, the receiver sends k pairs of ciphertexts where in each pair one ciphertext is an encryption
of 0 and the other an encryption of 1. Then, the sender asks the receiver to open all pairs of
encryptions of σi except for one pair. Clearly, the sender still learns nothing about σ because
the reordering is only sent on the ciphertext pair that is not opened. Furthermore, if the receiver
generates even one pair of ciphertexts so that the ciphertexts are not correctly formed, then it
will be caught with probability 1− 1/k. The rest of the protocol remains the same. We conclude
that the resulting protocol is secure in the presence of covert adversaries with ε-deterrent where
ε = 1− 1/k. Notice that this works as long as k is polynomial in the security parameter and thus
ε can be made to be very close to 1, if desired. (Of course, this methodology cannot be used to
make ε negligibly close to 1, because then k has to be super-polynomial.)

Summary. We conclude with the following theorem, derived by combining the extensions above:

Theorem 5.3 Assume that there exist semantically secure homomorphic encryption schemes with
errorless decryption. Then, for any k = poly(n) there exists a protocol that securely computes the
simultaneous string oblivious transfer functionality

((x0
1, x

1
1), . . . , (x

0
n, xn

1), (σ1, . . . , σn)) 7→ (λ, (xσ1
1 , . . . , xσn

n))

in the presence of covert adversaries with ε-deterrent for ε = 1 − 1
k . Furthermore, the protocol

has four rounds of communication, and involves generating 2k encryption keys, carrying out 2kn
encryption operations, 2n homomorphic multiplications and n decryptions.

Note that the amortized complexity of each oblivious transfer is: 2k encryptions, 2 scalar
multiplications with the homomorphic encryption scheme and 1 decryption. (The key generation
which is probably the most expensive is run 2k times independently of n. Therefore, when many
oblivious transfers are run, this becomes insignificant.)

6 Secure Two-Party Computation

In this section, we show how to securely compute any two-party functionality in the presence of
covert adversaries. We present a protocol for the strong explicit cheat formulation, with parameters
that can be set to obtain a wide range of values for the ε-deterrent. Our protocol is based on Yao’s
protocol for semi-honest adversaries [27]. We will base our description on the write-up of [22] of
this protocol, and will assume familiarity with it. Nevertheless, in Appendix A, we briefly describe
Yao’s garbled circuit construction and present an important lemma regarding it.

30

Overview of the protocol. The original protocol of Yao is not secure when the parties may
be malicious. Intuitively, there are two main reasons for this. First, the circuit constructor P1

may send P2 a garbled circuit that computes a completely different function. Second, the oblivious
transfer protocol that is used when the parties can be malicious must be secure for this case.
The latter problem is solved here by using the protocol guaranteed by Theorem 5.3. The first
problem is solved by having P1 send P2 a number of garbled circuits; denote this number by `.
Then, P2 asks P1 to open all but one of the circuits (chosen at random) in order to check that
they are correctly constructed. This opening takes place before P1 sends the keys corresponding
to its input, so nothing is revealed by opening the circuits. The protocol then proceeds similarly
to the semi-honest case. The main point here is that if the unopened circuit is correct, then this
will constitute a secure execution that can be simulated. However, if it is not correct, then with
probability 1−1/` party P1 will have been caught cheating and so P2 will output corrupted1 (recall,
` denotes the number of circuits sent). While the above intuition forms the basis for our protocol,
the actual construction of the appropriate simulator is somewhat delicate, and requires a careful
construction of the protocol. We note some of these subtleties hereunder.

First, it is crucial that the oblivious transfers are run before the garbled circuits are sent by P1

to P2. This is due to the fact that the simulator sends a corrupted P2 a fake garbled circuit that
evaluates to the exact output received from the trusted party (and only this output), as described
in Lemma A.1. However, in order for the simulator to receive the output from the trusted party, it
must first send it the input used by the corrupted P2. This is achieved by first running the oblivious
transfers, from which the simulator is able to extract the corrupted P2’s input.

The second subtlety relates to an issue we believe may be a problem for many other implemen-
tations of Yao that use cut-and-choose. The problem is that the adversary can construct (at least
in theory) a garbled circuit with two sets of keys, where one set of keys decrypt the circuit to the
specified one and another set of keys decrypt the circuit to an incorrect one. This is a problem be-
cause the adversary can supply “correct keys” to the circuits that are opened and “incorrect keys”
to the circuit that is computed. Such a strategy cannot be carried out without risk of detection for
the keys that are associated with P2’s input because these keys are obtained by P2 in the oblivious
transfers before the garbled circuits are even sent (thus if incorrect keys are sent for one of the cir-
cuits, P2 will detect this if that circuit is opened). However, it is possible for a corrupt P1 to carry
out this strategy for the input wires associated with its own input. We prevent this by having P1

commit to these keys and send the commitments together with the garbled circuits. Then, instead
of P1 just sending the keys associated with its input, it sends the appropriate decommitments.

A third subtlety that arises is connected to the difference between Definitions 3.2 and 3.4 (where
the latter is the stronger definition where the decision by the adversary to cheat is not allowed to
depend on the honest parties’ inputs or on the output). Consider a corrupted P1 that behaves
exactly like an honest P1 except that in the oblivious transfers, it inputs an invalid key in the place
of the key associated with 0 as the first bit of P2. The result is that if the first bit of P2’s input is 1,
then the protocol succeeds and no problem arises. However, if the first bit of P2’s input is 0, then
the protocol will always fail and P2 will always detect cheating. Thus, P1’s decision to cheat may
depend on P2’s private input, something that is impossible in the ideal models of Definitions 3.4
and 3.5. In summary, this means that such a protocol achieves Definition 3.2 (with ε = 1/`) but
not Definition 3.4. In order to solve this problem, we use a circuit that computes the function
g(x1, x

1
2, . . . , x

m
2) = f(x1,⊕m

i=1x
i
2), instead of a circuit that directly computes f . Then, upon input

x2, party P2 chooses random x1
2, . . . , x

m−1
2 and sets xm

2 = (⊕m−1
i=1 xi

2)⊕x2. This makes no difference
to the result because ⊕m

i=1x
i
2 = x2 and so g(x1, x

1
2, . . . , x

m
2) = f(x1, x2). However, this modification

makes every bit of P2’s input uniform when considering any proper subset of x1
2, . . . , x

m
2 . This helps

31

because as long as P1 does not provide invalid keys for all m shares of x2, the probability of failure
is independent of P2’s actual input (because any set of m − 1 shares is independent of x2). Since
m− 1 invalid shares are detected with probability 1− 2−m+1 we have that P2 detects the cheating
by P1 with this probability, independently of its input value. This method was previously used
in [23] (however, there they must set m to equal the security parameter).

Intuitively, an adversary can cheat by providing an incorrect circuit or by providing invalid keys
for shares. However, it is then detected with the probabilities described above. Below, we show that
when using ` circuits and splitting P2’s input into m shares, we obtain ε = (1 − 1/`)(1 − 2−m+1).
This enables us to play around with the values of m and ` in order to optimize efficiency versus
ε-deterrent. For example, if we wish to obtain ε = 1/2 we can use the following parameters:

1. Set ` = 2 and m = n: This yields ε = (1 − 1/2)(1− 2−n+1) which is negligibly close to 1/2.
However, since in Yao’s protocol we need to run an oblivious transfer for every one of P2’s
input bits, this incurs a blowup of the number of oblivious transfers (and thus exponentiations)
by n. Thus, this setting of parameters results in a considerable computational blowup.

2. Set ` = 3 and m = 3: This yields ε = (1 − 1/3)(1 − 1/4) = 1/2. The computational cost
incurred here is much less than before because we only need 3 oblivious transfers for each of
P2’s input bits. Furthermore, the cost of sending 3 circuits is not much greater than 2, and
so the overall complexity is much better.

Before proceeding to the protocol, we provide one more example of parameters. In order to achieve
ε = 9/10 it is possible to set ` = 25 and m = 5 (setting ` = m = 10 gives 0.898 which is very close).
This gives a significantly higher value of ε. We remark that such a setting of ε also assumes a value
of ε = 9/10 for the oblivious transfer protocol. As we have seen, this involves a blowup of 5 times
more computation than for oblivious transfer with ε = 1/2.

We are now ready to describe the actual protocol.

Protocol 6.1 (two-party computation of a function f):

• Inputs: Party P1 has input x1 and party P2 has input x2, where |x1| = |x2|. In addition,
both parties have parameters ` and m, and a security parameter n. For simplicity, we will
assume that the lengths of the inputs are n.

• Auxiliary input: Both parties have the description of a circuit C for inputs of length n that
computes the function f . The input wires associated with x1 are w1, . . . , wn and the input
wires associated with x2 are wn+1, . . . , w2n.

• The protocol:

1. Parties P1 and P2 define a new circuit C ′ that receives m+1 inputs x1, x
1
2, , . . . , x

n
2 each

of length n, and computes the function f(x1,⊕m
i=1x

i
2). Note that C ′ has n + mn input

wires. Denote the input wires associated with x1 by w1, . . . , wn, and the input wires
associated with xi

2 by wn+(i−1)m+1, . . . , wn+im, for i = 1, . . . , n.

2. Party P2 chooses m − 1 random strings x1
2, . . . , x

m−1
2 ∈R {0, 1}n and defines xm

2 =
(⊕m−1

i=1 xi
2) ⊕ x2, where x2 is P2’s original input (note that ⊕m

i=1x
i
2 = x2). The value

z2
def= x1

2, . . . , x
m
2 serves as P2’s new input of length mn to C ′. (The input wires associated

with P2’s new input are wn+1, . . . , wn+mn.)

32

3. For each i = 1, . . . , mn and β = 0, 1, party P1 chooses ` encryption keys by running
G(1n), the key generator for the encryption scheme, ` times. The jth key associated
with a given i and β is denoted kj

wn+i,β
; note that this is the key associated with the bit

β for the input wire wn+i in the jth circuit. The result is an `-tuple, denoted:

[k1
wn+i,β, . . . , k`

wn+i,β]

(This tuples constitutes the keys that are associated with the bit β for the input wire wn+i

in all ` circuits.)

4. P1 and P2 run mn executions of an oblivious transfer protocol, as follows. In the ith

execution, party P1 inputs the pair
(
[k1

wn+i,0, . . . , k
`
wn+i,0], [k

1
wn+i,1, . . . , k

`
wn+i,1]

)

and party P2 inputs the bit zi
2 (P2 receives the keys [k1

wn+i,zi
2
, . . . , k`

wn+i,zi
2
] as output).

The executions are run using a simultaneous oblivious transfer functionality, as in The-
orem 5.3. If a party receives a corruptedi or aborti message as output from the oblivious
transfer, it outputs it and halts.

5. Party P1 constructs ` garbled circuits GC1, . . . , GC` using independent randomness (the
circuits are garbled versions of C ′ described above). The keys for the input wires wn+1, . . . ,
wn+mn in the garbled circuits are taken from above (i.e., in GCj the keys associated with
wn+i are kj

wn+i,0
and kj

wn+i,1
). The keys for the inputs wires w1, . . . , wn are chosen

randomly, and are denoted in the same way.
P1 sends the ` garbled circuits to P2.

6. P1 commits to the keys associated with its inputs. That is, for every i = 1, . . . , n, β = 0, 1
and j = 1, . . . , `, party P1 computes

cj
wi,β

= Com(kj
wi,β

; rj
i,β)

where Com is a perfectly-binding commitment scheme, Com(x; r) denotes a commitment
to x using randomness r, and rj

i,β is a random string of sufficient length to commit to a
key of length n.
P1 sends all of the above commitments. The commitments are sent as ` vectors of pairs
(one vector for each circuit); in the jth vector the ith pair is {cj

wi,0
, cj

wi,1
} in a random

order (the order is randomly chosen independently for each pair).

7. Party P2 chooses a random index γ ∈R {1, . . . , `} and sends γ to P1.

8. P1 sends P2 all of the keys for the input wires in all garbled circuits except for GCγ

(this enables a complete decryption of the garbled circuit), together with the associated
mappings and the decommitment values. (I.e. for every i = 1, . . . , n + mn and j 6= γ,
party P1 sends the keys and mappings (kj

wi,0
, 0), (kj

wi,1
, 1). In addition, for every i =

1, . . . , n and j 6= γ it sends the decommitments rj
i,0, r

j
i,1.)

9. P2 checks that everything that it received is in order. That is, it checks:

– That the keys it received for all input wires in circuits GCj (j 6= γ) indeed decrypt
the circuits (when using the received mappings), and the decrypted circuits are all
C ′.

33

– That the decommitment values correctly open all of the commitments cj
wi,β

that were
received, and these decommitments reveal the keys kj

wi,β
that were sent for P1’s input

wires.
– That the keys that it received in the oblivious transfers earlier match the appropriate

keys that it received in the opening (i.e., if it received [k1
i , . . . , k

`
i] in the ith oblivious

transfer, then it checks that kj
i from the oblivious transfer equals kj

wn+i,zi
2

from the
opening).

If all the checks pass, it proceeds to the next step. If not, it outputs corrupted1 and halts.
In addition, if P2 does not receive this message at all, it outputs corrupted1.

10. P1 sends decommitments to the input keys associated with its input for the unopened
circuit GCγ. That is, for i = 1, . . . , n, party P1 sends P2 the key kγ

wi,xi
and decommitment

rγ
i,xi

, where xi is the ith bit of P1’s input.

11. P2 checks that the values received are valid decommitments to the commitments re-
ceived above. If not, it outputs abort1. If yes, it uses the keys to compute C ′(x1, z2) =
C ′(x1, x

1
2, . . . , x

m
2) = C(x1, x2), and outputs the result. If the keys are not correct (and

so it is not possible to compute the circuit), or if P2 doesn’t receive this message at all,
it outputs abort1.

Note that steps 7–10 are actually a single step of P1 sending a message to P2, followed by P2

carrying out a computation.

If any party fails to receive a message as expected during the execution, it outputs aborti
(where Pi is the party who failed to send the message). This holds unless the party is explicitly
instructed above to output corruptedi instead (as in Step 9).

We have motivated the protocol construction above and thus proceed directly to prove its
security.

Theorem 6.2 Let ` and m be parameters in the protocol that are both upper-bound by poly(n),
and set ε = (1−1/`)(1−2−m+1). Let f be any probabilistic polynomial-time function. Assume that
the encryption scheme used to generate the garbled circuits has indistinguishable encryptions under
chosen-plaintext attacks (and has an elusive and efficiently verifiable range), and that the oblivious
transfer protocol used is secure in the presence of covert adversaries with ε-deterrent according to
Definition 3.5. Then, Protocol 6.1 securely computes f in the presence of covert adversaries with
ε-deterrent according to Definition 3.5.

Proof: Our analysis of the security of the protocol is in the hybrid model, where the parties
are assumed to have access to a trusted party computing the oblivious transfer functionality; see
Section 4. Thus the simulator that we describe will play the trusted party in the oblivious transfer,
when simulating for the adversary. We separately consider the different corruption cases (when no
parties are corrupted, and when either one of the parties is corrupted). In the case that no parties
are corrupted, the security reduces to the semi-honest case which has already been proven in [22]
(the additional steps in Protocol 6.1 don’t make a difference here).

Party P2 is corrupted. Intuitively, the security in this case relies on the fact that P2 can only
learn a single set of keys in the oblivious transfers and thus can decrypt the garbled circuit to only
a single value as required. Formally, let A be an adversary controlling P2. The simulator S works
as follows:

34

1. S chooses ` sets of mn random keys as P1 would.

2. S plays the trusted party for the oblivious transfers with A as the receiver. S receives the
input that A sends to the trusted party (as its input as receiver to the oblivious transfers):

(a) If the input is abort2 or corrupted2, then S sends abort2 or corrupted2 (respectively) to
the trusted party computing f , simulates P1 aborting and halts (outputting whatever
A outputs).

(b) If the input is cheat2, then S sends cheat2 to the trusted party. If it receives back
corrupted2, then it hands A the message corrupted2 as if it received it from the trusted
party, simulates P1 aborting and halts (outputting whatever A outputs). If it receives
back undetected (and thus P1’s input x1 as well), then S works as follows. First, it hands
A the string undetected together with the nm random keys that it chose (note that A
expects to receive the inputs of P1 to the oblivious transfers in the case of undetected).
Next, S uses the input x1 of P1 that it received in order to perfectly emulate P1 in
the rest of the execution. That is, it runs P1’s honest strategy with input x1 while
interacting with A playing P2 for the rest of the execution. Let y1 be the output for P1

that it receives. S sends y1 to the trusted party (for P1’s output) and outputs whatever
A outputs. The simulation ends here in this case.

(c) If the input is a series of bits z1
2 , . . . , z

mn
2 , then S hands A the keys from above that are

“chosen” by the zi
2 bits, and proceeds with the simulation below.

3. S defines x2 = ⊕m−1
i=0 (zi·n+1

2 , . . . , zi·n+n
2) and sends x2 to the trusted party computing f . S

receives back some output y.

4. S chooses a random value ζ and computes the garbled circuits GCj for j 6= ζ correctly (using
the appropriate input keys from above as P1 would). However, for the garbled circuit GCζ ,
the simulator S does not use the true circuit for computing f but rather a circuit G̃C that
always evaluates to y (the value it received from the trusted party), using Lemma A.1. S uses
the appropriate input keys from above also in generating GCζ . S also computes commitments
to the keys associated with P1’s input in an honest way.

5. S sends GC1, . . . , GC` and the commitments to A and receives back an index γ.

6. If γ 6= ζ then S rewinds A and returns to Step 4 above (using fresh randomness).

Otherwise, if γ = ζ, then S opens all the commitments and garbled circuits GCj for j 6= γ,
as the honest P1 would, and proceeds to the next step.

7. S hands A arbitrary keys associated with the input wires of P1. That is, for i = 1, . . . , n, S
hands A an arbitrary one of the two keys associated with the input wire wi in GCγ (one key
per wire), together with its correct decommitment.

8. If at any stage, S does not receive a response from A, it sends abort2 to the trusted party
(resulting in P1 outputting abort2). If the protocol proceeds successfully to the end, S sends
continue to the trusted party and outputs whatever A outputs.

Denoting π as Protocol 6.1 and I = {2} (i.e., party P2 is corrupted), we prove that:
{
idealscε

f,S(z),I((x1, x2), n)
}

c≡
{
hybridot

π,A(z),I((x1, x2), n)
}

(6)

35

In order to prove Eq. (6) we separately consider the cases of abort (including a “corrupted” input),
cheat or neither. If A sends abort2 or corrupted2 as the oblivious transfer input, then S sends abort2
or corrupted2 (respectively) to the trusted party computing f . In both cases the honest P1 outputs
the same (abort2 or corrupted2) and the view of A is identical. Thus, the ideal and hybrid output
distributions are identical. The exact same argument is true if A sends cheat2 and the reply to S
from the trusted party is corrupted2. In contrast, if A sends cheat2 and S receives back the reply
undetected, then the execution does not halt immediately. Rather, S plays the honest P1 with its
input x1. Since S follows the exact same strategy as P1, and the output received by P1 from the
execution is the same y1 that S receives from the protocol execution, it is clear that once again the
output distributions are identical (recall that in the ideal model, P1 outputs the same y1 obtained
by S). We remark that the probability of the trusted party answering corrupted2 or undetected
is the same in the hybrid and ideal executions (i.e., ε), and therefore the output distributions in
the cases of abort, corrupted or cheat are identical. We denote the event that A sends an abort,
corrupted or cheat message in the oblivious transfers by badot. Thus, we have shown that

{
idealscε

f,S(z),I((x1, x2), n) | badot

}
≡

{
hybridot

π,A(z),I((x1, x2), n) | badot

}

We now show that the ideal and hybrid distributions are computationally indistinguishable in
the case that A sends valid input in the oblivious transfer phase (i.e., in the event ¬badot). In
order to show this, we consider a modified simulator S ′ who is also given the honest party P1’s real
input x1. Simulator S ′ works exactly as S does, except that it constructs GCζ honestly, and not as
G̃C from Lemma A.1. Furthermore, in Step 7 it sends the keys associated with P1’s input x1 and
not arbitrary keys. It is straightforward to verify that the distribution generated by S ′ is identical
to the distribution generated by A in an execution of the real protocol. This is due to the fact
that all ` circuits received by A are honestly constructed and the keys that it receives from S ′ are
associated with P1’s real input. The only difference is the rewinding. However, since ζ is chosen
uniformly, this has no effect on the output distribution. Thus:

{
idealscε

f,S′(z,x1),I((x1, x2), n) | ¬badot

}
≡

{
hybridot

π,A(z),I((x1, x2), n) | ¬badot

}

Next we prove that the distributions generated by S and S ′ are computationally indistinguishable.
That is,

{
idealf,S(z),I((x1, x2), n) | ¬badot

}
c≡

{
idealε

f,S′(z,x1),I((x1, x2), n) | ¬badot

}

In order to see this, notice that the only difference between S and S ′ is in the construction of the
garbled circuit GCζ . By Lemma A.1 it follows immediately that these distributions are computa-
tionally indistinguishable. (Note that we do not need to consider the joint distribution of A’s view
and P1’s output because P1 has no output from Protocol 6.1.) This yields the above equation. In
order to complete the proof of Eq. (6), note that the probability that the event badot happens is
identical in the ideal and hybrid executions. This holds because the oblivious transfer is the first
step of the protocol and A’s view in this step with S is identical to its view in a protocol execution
with a trusted party computing the oblivious transfer functionality. Combining this fact with the
above equations we derive Eq. (6).

We remark that the simulator S described above runs in expected polynomial-time. In order
to see this, note that by Lemma A.1, a fake garbled circuit is indistinguishable from a real one.
Therefore, the probability that γ = ζ is at most negligibly far from 1/` (otherwise, this fact alone
can be used to distinguish a fake garbled circuit from a real one). It follows that the expected

36

number of attempts by S is close to `, and so its expected running-time is polynomial (by the
assumption on `). By our definition, S needs to run in strict polynomial-time. However, this is
easily achieved by having S halt if it fails after n` rewinding attempts. Following the same argument
as above, such a failure can occur with at most negligible probability.

We conclude that S meets the requirements of Definition 3.5. (Note that S only sends cheat2
due to the oblivious transfer. Thus, if a “fully secure” oblivious transfer protocol were to be used,
the protocol would meet the standard definition of security for malicious adversaries for the case
that P2 is corrupted.)

Party P1 is corrupted. The proof of security in this corruption case is considerably more
complex. Intuitively, security relies on the fact that if P1 does not construct the circuits correctly
or does not provide the same keys in the oblivious transfers and circuit openings, then it will
be caught with probability at least ε. In contrast, if it does construct the circuits correctly and
provide the same keys, then its behavior is effectively the same as an honest party and so security
is preserved. Formally, let A be an adversary controlling P1. The simulator S works as follows:

1. S invokes A and plays the trusted party for the oblivious transfers with A as the sender. S
receives the input that A sends to the trusted party (as its input to the oblivious transfers):

(a) If the input is abort1 or corrupted1, then S sends abort1 or corrupted1 (respectively) to
the trusted party computing f , simulates P2 aborting and halts (outputting whatever
A outputs).

(b) If the input is cheat1, then S sends cheat1 to the trusted party. If it receives back
corrupted1, then it hands A the message corrupted1 as if it received it from the trusted
party, simulates P2 aborting and halts (outputting whatever A outputs). If it receives
back undetected (and thus P2’s input x2 as well), then S works as follows. First, it hands
A the string undetected together with the input string z2 that an honest P2 upon input
x2 would have used in the oblivious transfers (note that A expects to receive P2’s input
to the oblivious transfers in the case of undetected). We remark that S can compute
z2 by simply following the instructions of an honest P2 with input x2 from the start
(nothing yet has depended on P2’s input so there is no problem of consistency). Next,
S uses the derived input z2 that it computed above in order to perfectly emulate P2 in
the rest of the execution. That is, it continues P2’s honest strategy with input z2 while
interacting with A playing P1 for the rest of the execution. Let y2 be the output for P2

that it receives. S sends y2 to the trusted party (for P2’s output) and outputs whatever
A outputs. The simulation ends here in this case.

(c) If the input is a series of mn pairs of `-tuples of keys
(
[k1

wn+i,0, . . . , k
`
wn+i,0], [k

1
wn+i,1, . . . , k

`
wn+i,1]

)

for i = 1, . . . , mn, then S proceeds below.

2. S receives from A a message consisting of ` garbled circuits GC1, . . . , GC` and a series of
commitments.

3. For j = 1, . . . , `, simulator S sends A the message γ = j, receives its reply and rewinds A
back to the point before A receives γ.

4. S continues the simulation differently, depending on the validity of the circuit openings. In
order to describe the cases, we introduce some terminology.

37

Legitimate circuit: We say that a garbled circuit GCj is legitimate if in at least one of its
openings, in response to a challenge γ 6= j, it is decrypted to the auxiliary input circuit
C ′. Note that if a circuit is legitimate then in all valid decryptions of the circuit (for all
γ 6= j) it decrypts to C ′.

Inconsistent key: This notion relates to the question of whether the keys provided by P1

in the oblivious transfers are the same as those provided in the circuit opening. We say
that a key kj

wi,β
received in an oblivious transfer is inconsistent if is different from the

analogous key provided by P1 when opening the garbled circuit GCj .

Inconsistent wire: A wire wi is inconsistent if there exists a circuit GCj such that either
kj

wi,0
or kj

wi,1
is an inconsistent key.

Totally inconsistent input: An original input bit xi
2 is totally inconsistent if all of the

wires associated with the shares of xi
2 are inconsistent (recall that xi

2 is split over m
input wires). Note that the different inconsistent wires need not be inconsistent in the
same circuit, nor need they be inconsistent with respect to the same value (0 or 1).
Note that the determination that a wire is inconsistent is independent of γ because the
oblivious transfers and commitments to keys take place before γ is sent.

S works according to the follows cases:

(a) Case 1 – at least one circuit is illegitimate: Let GCj0 be the first illegitimate circuit.
Then, S sends w1 = cheat1 to the trusted party. By the definition of the ideal model,
with probability ε = (1 − 1/`)(1 − 2−m+1) it receives the message corrupted1, and with
probability 1− ε it receives the message undetected together with P2’s input x2:

i. If S receives the message corrupted1 from the trusted party, then it chooses γ 6= j0

at random and sends γ to A. Then, S receives back A’s opening for the circuits,
including the illegitimate circuit GCj0 , and simulates P2 aborting due to detected
cheating. S then outputs whatever A outputs and halts.

ii. If S receives the message undetected from the trusted party (together with P2’s
input x2), then with probability p = `−1

1−ε it sets γ = j0, and with probability 1− p
it chooses γ 6= j0 at random. It then sends γ to A, and continues to the end of the
execution emulating the honest P2 with the input x2 it received from the trusted
party. (When computing the circuit, S takes the keys from the oblivious transfer
that P2 would have received when using input x2 and when acting as the honest P2

to define the string z2.) Let y2 be the output that S received when playing P2 in
this execution. S sends y2 to the trusted party (to be the output of P2) and outputs
whatever A outputs). Note that if the output of P2 in this emulated execution would
have been corrupted1 then S sends y2 = corrupted1 to the trusted party.9

(We remark that below we will show below that the above probabilities result in γ
being uniformly distributed in {1, . . . , `}.)

(b) Case 2 – All circuits are legitimate but there is a totally inconsistent input: Let xi
2 be

the totally inconsistent input and, for brevity, assume that the inconsistent keys are all
for the 0-value on the wires (i.e. there are inconsistent keys kj1

wn+(i−1)m+1,0, . . . , k
jm
wn+im,0

for some j1, . . . , jm ∈ {1, . . . , `}). In this case, S sends w1 = cheat1 to the trusted
9We remark that P2 may output corrupted1 with probability that is higher than ε. This possibility is dealt with

by having S play P2 and force a corrupted1 output if this would have occurred in the execution.

38

party. With probability ε it receives the message corrupted1, and with probability 1− ε
it receives the message undetected together with P2’s input x2:

i. If S receives the message corrupted1 from the trusted party, then it chooses random
values for the bits on the wires wn+(i−1)m+1, . . . , wn+im−1, subject to the constraints
that not all are 1; i.e. at least one of these wires gets a value with an inconsistent
key.10 Let wn+(i−1)m+t be the first of these that is 0, and let Gj0 be the first circuit
for which the key of this wire is inconsistent. S chooses γ 6= j0 at random and sends
it to A. Among other things, S receives back A’s opening of GCj0 , and simulates
P2’s aborting due to detected cheating. (Note that the probability that a real P2

will make these two choices – choose the values for the first m− 1 wires so that not
all are 1, and choose γ 6= j0 – is exactly ε.) S then outputs whatever A outputs and
halts.

ii. If S receives the message undetected (and thus the real input x2 of P2) from the
trusted party, it first determines the values for the shares of xi

2 and for the value γ,
as follows:
• With probability p = 2−m+1

1−ε , for all t = 1, . . . ,m−1 it sets the value on the wire
wn+(i−1)m+t to equal 1 (corresponding to not choosing the inconsistent keys),
and the value on the wire wn+im to equal the XOR of xi

2 with the values set
on the wires wn+(i−1)m+1, . . . , wn+(i−1)m+m−1. The value γ is chosen at random
(out of 1, . . . , `).

• With probability 1 − p, for all t = 1, . . . , m − 1 it sets the value on the wire
wn+(i−1)m+t to a random value, subject to the constraint that not all are 1
(i.e. at least one of the shares has an inconsistent key), and it sets the value
on the wire wn+im to equal the XOR of xi

2 with the values set on the wires
wn+(i−1)m+1, . . . , wn+(i−1)m+m−1. Let wn+(i−1)m+t be the first wire that is 0,
and let j0 be the first circuit for which the key of this share is inconsistent.
Then S sets γ = j0.

The values for shares of all other input bits are chosen at random (subject to the
constraint that their XOR is the input value obtained from the trusted party, as
an honest P2 would choose). S now sends γ to A, and completes the execution
emulating an honest P2 using these shares and γ. It outputs whatever A would
output, and sets P2’s output, as explained in step 4(a)ii above (i.e., if the emulated
P2 would receive corrupted1 then S causes P2 to receive corrupted1 in the ideal
model).

(c) Case 3 – All circuits are legitimate and there is no totally inconsistent input: For each
inconsistent wire (i.e. a wire for which there exists an inconsistent key), if there are any,
S chooses a random value, and checks whether the value it chose corresponds to an
inconsistent key. There are two cases:

i. Case 3a – S chose values with inconsistent keys: In this case, S sends w1 = cheat1
to the trusted party. With probability ε it receives the message corrupted1, and with
probability 1− ε it receives the message undetected together with P2’s input x2. Let
wi0 be the first of the wires for which the value chosen has an inconsistent key, and
let GCj0 be the first circuit in which the key is inconsistent:

10Recall that the input wires associated with P2’s input bit xi
2 are wn+(i−1)m+1, . . . , wn+im. Thus, the simulator

here fixes the values on all the wires except the last (recall also that the first m − 1 values plus P2’s true input bit
fully determine the value for the last wire wn+im.

39

A. If S receives the message corrupted1 from the trusted party, then it chooses
γ 6= j0 at random and sends it to A. S then simulates P2 aborting due to
detected cheating. S then outputs whatever A outputs and halts.

B. If S receives the message undetected, together with x2 = (x1
2, . . . , x

n
2), from the

trusted party, then first it chooses values for the remaining (consistent) shares
at random, subject to the constraint that for any input bit xi

2, the XOR of all its
shares equals the value of this bit, as provided by the trusted party. In addition:
• With probability p = `−1

1−ε , simulator S sets γ = j0.
• With probability 1− p, simulator S chooses γ 6= j0 at random.
In both cases, S sends γ to A and completes the execution emulating an honest
P2 using the above choice of shares, and outputting the values as explained in
step 4(a)ii above (in particular, if the output of the emulated P2 is corrupted1,
then S causes this to be the output of P2 in the ideal model).

ii. Case 3b – S chose only values with consistent keys: S reaches this point of the
simulation if all garbled circuits are legitimate and if either all keys are consistent
or it is simulating the case that no inconsistent keys were chosen. Thus, intuitively,
the circuit and keys received by S from A are the same as from an honest P1. The
simulator S begins by choosing a random γ and sending it to A. Then, S receives
the opening of the other circuits, as before. In addition, S receives from A the
set of keys and decommitments (for the wires w1, . . . , wn) for the unopened circuit
GCγ . If anything in this process is invalid (i.e. any of the circuits is not correctly
decrypted, or the decommitments are invalid, or the keys cannot be used in the
circuit), then S sends abort1 or corrupted1 to the trusted party causing P2 to output
abort1 or corrupted1, respectively (the choice of whether to send abort1 or corrupted1

is according to the protocol description and what causes P2 to output abort1 and
what causes it to output corrupted1). Otherwise, S uses the opening of the circuit
GCγ obtained above, together with the keys obtained in order to derive the input
x′1 used by A. This input is derived by comparing the keys for the wires associated
with P1’s inputs as received by S from A with the keys provided by A in a legitimate
opening of the circuit. This legitimate opening provides the association of each key
to a bit, and the input bits of x′1 are derived using this association. S sends the
trusted party x′1 (and continue) and outputs whatever A outputs.

This concludes the description of S. Denote by badot the event that A sends abort1, corrupted1

or cheat1 in the oblivious transfers. The analysis of the event badot is identical to the case that P2

is corrupted and so denoting π as Protocol 6.1 and I = {1} (i.e., party P1 is corrupted), we have
that: {

idealscε
f,S(z),I((x1, x2), n) | badot

}
≡

{
hybridot

π,A(z),I((x1, x2), n) | badot

}

It remains to analyze the case that ¬badot (i.e., the oblivious transfer is not aborted). We will prove
the case following the same case analysis as in the description of the simulator. Before doing so,
notice that the only messages that A receives in a protocol execution are in the oblivious transfers
and the challenge value γ. Thus, when analyzing Protocol 6.1 in a hybrid model with a trusted
party computing the oblivious transfer functionality, its view consists only of the value γ. Thus, in
order to show that A’s view in the simulation is indistinguishable from its view in a real execution,
it suffices to show that the value γ that S hands A is (almost) uniformly distributed in {1, . . . , `}.
We stress that this is not the case when considering the joint distribution including P2’s output

40

(because cheating by A can cause P2 to output an incorrect value). The focus of the proof below
is thus to show that the distribution over the challenge value γ sent by S during the simulation is
uniform, and that the joint distribution over A’s view and the output of P2 in the simulation is
statistically close to a real execution.

1. Case 1 – at least one circuit is illegitimate: We first show that the value γ sent by S in the
simulation is uniformly distributed over {1, . . . , `}, just like the value sent by P2 in a real
execution. In order to see this, we distinguish between the case that S receives corrupted1

and the case that it receives undetected. We first prove that γ = j0 with probability 1/`:

Pr[γ = j0] = Pr[γ = j0 | corrupted1]Pr[corrupted1] + Pr[γ = j0 | undetected]Pr[undetected]

= 0 · Pr[corrupted1] +
`−1

1− ε
· Pr[undetected]

=
1
`
· 1
1− ε

· (1− ε) =
1
`

where the second equality is by the simulator’s code, and the third follows from the fact that
Pr[undetected] = 1 − ε, by definition. We now proceed to prove that for every j 6= j0 it also
holds that Pr[γ = j] = 1/`. For every j = 1, . . . , ` with j 6= j0:

Pr[γ = j] = Pr[γ = j | corrupted1]Pr[corrupted1] + Pr[γ = j | undetected]Pr[undetected]
= Pr[γ = j | corrupted1] · ε + Pr[γ = j | undetected] · (1− ε)

=
(

1
`− 1

)
· ε +

((
1− 1

`(1− ε)

)
· 1
`− 1

)
· (1− ε)

=
1

`− 1
·
(

ε + (1− ε)− 1− ε

`(1− ε)

)

=
1

`− 1
·
(

1− 1
`

)
=

1
`

where, once again, the second equality is by the code of the simulator. We now proceed to show
that the joint distribution of A’s view and P2’s output in a real execution (or more exactly, a
hybrid execution where the oblivious transfers are computed by a trusted party) is identical to
the joint distribution of S and P2’s output in an ideal execution. First, note that when a real
P2 chooses γ 6= j0, then it always outputs corrupted1. Likewise, in an ideal execution where
the trusted party sends corrupted1 to P2, the simulator S chooses γ 6= j0. Recalling from
above that γ as chosen by S is uniformly distributed, we have that the distributions in this
case are identical. Next, observe that when S receives undetected, it emulates a real execution
between P2 and A by using the real input that P2 holds. Furthermore, the output of P2 in the
ideal execution is the output that S receives in this emulation (playing P2). Thus, the output
distributions are again identical. (Note that P2 may output corrupted1 even when S receives
undetected. However, what we have shown is that when the trusted party sends corrupted1, the
simulation by S results in execution transcripts that would result in P2 certainly outputting
corrupted1. Furthermore, when the trusted party sends undetected, the simulation fills in the
rest of the cases that are not included in the ε probability of P2 outputting corrupted1 that
were covered when the trusted party sends corrupted1.) This completes this case.

2. Case 2 – All circuits are legitimate but there is a totally inconsistent input: We analyze this
case in an analogous way to above. Let ‘all=1’ denote the case that in a real execution all of
the m− 1 first wires associated with the totally inconsistent input are given value 1 (and so

41

the inconsistent keys determined for those wires are not revealed). Since the values on these
wires are chosen by P2 uniformly, we have that Pr[‘all=1’] = 2−m+1. Noting also that γ is
chosen by P2 independently of the values on the wires, we have that:

Pr[γ 6= j0 & ¬‘all=1’] =
(

1− 1
`

) (
1− 1

2m−1

)
= ε

where the second equality is by the definition of ε (recall that j0 is the index of the first
circuit for which an inconsistent key is chosen by S). Now, the trusted party sends corrupted1

with probability exactly ε. Furthermore, in this case, S generates a transcript for which the
event γ 6= j0 & ¬‘all=1’ holds, and such an event in a real execution results in P2 certainly
outputting corrupted1. We thus have that the corrupted1 event in the ideal model is mapped
with probability exactly ε to a sub-distribution over the real transcripts in which P2 outputs
corrupted1.

Next we analyze the case that not all values on the wires are 1, but γ = j0. In a real execution,
we have that this event occurs with the following probability:

Pr[γ = j0 & ¬‘all=1’] =
1
`
·
(
1− 2−m+1

)

By the description of S, this occurs in the simulation with probability (1 − ε)(1 − p) where
p = 2−m+1/(1− ε); see the second bullet of Case (2), subitem (ii). Now,

(1− ε)(1− p) = (1− ε) ·
(

1− 2−m+1

1− ε

)

= 1− ε− 2−m+1

= 1−
(
1− 2−m+1

) (
1− `−1

)
− 2−m+1

= 1−
(

1− 1
`
− 2−m+1 +

2−m+1

`

)
− 2−m+1

=
1
`
− 2−m+1

`

=
1
`
·
(
1− 2−m+1

)
.

Thus, the probability of this event in the simulation by S is exactly the same as in a real
execution. Furthermore, the transcript generated by S in this case (and the output of P2) is
identical to in a real execution, because S runs an emulation using P2’s real input.

Combining the above, we have shown that in the case that not all wires are 1, the simulation
by S is perfect. It remains to consider the case that all m − 1 wires do equal 1; this case is
covered by the simulation in the first bullet of Case (2), subitem (ii). In a real execution, this
case occurs with probability 2−m+1. Likewise, in the simulation, S reaches subitem (ii) with
probability 1 − ε and then proceeds to the first bullet with probability p = 2−m+1/(1 − ε).
Therefore, this case appears with overall probability 2−m+1 exactly as in a real execution.
Furthermore, as above, the simulation by S is perfect because it emulates using P2’s real
input.

We conclude that the simulation by S in this case is perfect (meaning that when all circuits
are legitimate but there is a totally inconsistent input, the joint output distribution of S and
P2 in an ideal execution is identical to the joint output distribution of A and P2 in a hybrid
execution of the protocol where a trusted party is used for the oblivious transfers).

42

3. Case 3 – all circuits are legitimate and there is no totally inconsistent input: We have the
following subcases:

(a) Case 3a – S chose values with inconsistent keys: First observe that S chooses values
with inconsistent keys with exactly the same probability as P2 in a real execution. This
holds because there are no totally inconsistent values and thus the choice of values on
the wires with inconsistent keys in uniform. (Note that P2’s strategy for choosing values
is equivalent to choosing any subset of m−1 values uniformly and then choosing the last
value so that the XOR equals the associated input bit.) We therefore fix the choice of
values for the wires and proceed to analyze the transcripts generated by the simulator,
conditioned on this choice of keys.
In a real execution in which P2 chose inconsistent keys, it outputs corrupted1 if the circuit
in which the inconsistent keys were chosen is opened (it may also output corrupted1 if
the circuit is opened but this is not relevant here). Now, if the trusted party sends
corrupted1, then the simulator ensures that the circuit in which the inconsistent keys
were chosen is opened (it does this by chooses γ uniformly under the constraint that
γ 6= j0; see subitem (A) of subitem (i) in Case 3a). In contrast, if the trusted party sends
undetected, then S runs a perfect emulation using P2’s real input; the two subcases (with
probability p and 1 − p) are to ensure that γ is chosen uniformly. Thus, it remains to
show that in this case, for every j = 1, . . . , ` we have Pr[γ = j] = 1/`. As above, we
separately analyze the probability for j = j0 and j 6= j0. The computation is almost the
same as in Case 1 above and we are therefore brief:

Pr[γ = j0] = Pr[γ = j0 | corrupted1] · ε + Pr[γ = j0 | undetected] · (1− ε)

= 0 · ε +
`−1

1− ε
· (1− ε) =

1
`

.

In addition, for all j 6= j0:

Pr[γ = j] = Pr[γ = j | corrupted1] · ε + Pr[γ = j | undetected] · (1− ε)

=
(

1
`− 1

)
· ε +

((
1− 1

`(1− ε)

)
· 1
`− 1

)
· (1− ε) =

1
`

Thus, in this case, S chooses γ uniformly in {1, . . . , `}. Furthermore, the transcript in
each subcase is exactly as in a real execution, as required.

(b) Case 3b – S chose only values with consistent keys: As above, the probability that
S chose only values with consistent keys is identical to the probability that a real P2

chooses only values with consistent keys. Now, in such a case, all circuits are legitimate,
and in addition, all keys that are retrieved by P2 are consistent (this includes the keys
for the opened circuits and for the circuit that is computed). This means that the
computation of the circuit using the keys retrieved by P2 is identical to the computation
of an honestly generated circuit. (Note that P2 may abort or output corrupted1 in this
case. However, here we are interested in the result of the computation of the circuit Gγ ,
if it is computed by P2.) We also note that the keys provided by P1 that are associated
with its own input are provided via decommitments. Thus, P1 can either not provide
valid decommitments, or must provide decommitments that yield keys that result in
the circuit being decrypted correctly. This also means that the associations made by S
between the input keys of P1 and the string x′1 that it sends to the trusted party are

43

correct. We conclude that in this case, the joint output of A and the real P2 in a real
execution is identical to the joint output of S and P2 in an ideal execution, as required.

This completes the proof.

6.1 Non-Halting Detection Accuracy

It is possible to modify Protocol 6.1 so that it achieves non-halting detection accuracy; see Def-
inition 3.3. Before describing how we do this, notice that the reason that we need to recognize
a halting-abort as cheating in Protocol 6.1 is that if P1 generates one faulty circuit, then it can
always just refuse to continue (i.e., abort) in the case that P2 asks it to open the faulty circuit.
This means that if aborting is not considered cheating, then a corrupted P1 can form a strategy
whereby it is never detected cheating, but succeeds in actually cheating with probability 1/`. In
order to solve this problem, we construct a method whereby P1 does not know if it will be caught
or not. We do so by having P2 receive the circuit openings via a fully secure 1-out-of-` oblivious
transfer protocol, rather than having P1 send it explicitly. This forces P1 to either abort before
learning anything, or to risk being caught with probability 1 − 1/`. In order to describe this in
more detail, we restate the circuit opening stage of Protocol 6.1 as follows:

1. Party P1 sends ` garbled circuits GC1, . . . , GC` to party P2.

2. P2 sends a random challenge γ ∈R {1, . . . , `}.
3. P1 opens GCj for all j 6= γ by sending decommitments, keys and so on. In addition, it sends

the keys associated with its own input in GCγ .

4. P2 checks the circuits GCj for j 6= γ and computes GCγ (using the keys from P1 in the
previous step and the keys it obtained earlier in the oblivious transfers). P2’s output is
defined to be the output of GCγ .

Notice that P2 only outputs corrupted1 if the checks from the circuit that is opened do not pass.
As we have mentioned, there is no logical reason why an adversarial P1 would ever actually reply
with an invalid opening; rather it would just abort. Consider now the following modification:

1. Party P1 sends ` garbled circuits GC1, . . . , GC` to party P2.

2. P1 and P2 participate in a (fully secure) 1-out-of-` oblivious transfer with the following inputs:

(a) P1 defines its inputs (x1, . . . , x`) as follows. Input xi consists of the opening of circuits
GCj for j 6= i together with the keys associated with its own input in GCi.

(b) P2’s input is a random value γ ∈R {1, . . . , `}.
3. P2 receives an opening of ` − 1 circuits together with the keys needed to compute the other

and proceeds as above.

Notice that this modified protocol is essentially equivalent to Protocol 6.1 and thus its proof of
security is very similar. However, in this case, an adversarial P1 who constructs one faulty circuit
must decide before the oblivious transfer if it wishes to abort (in which case there is no successful
cheating) or if it wishes to proceed (in which case P2 will receive an explicitly invalid opening).
Note that due to the security of the oblivious transfer, P1 cannot know what value γ party P2

inputs, and so cannot avoid being detected.

44

The price of this modification is that of one fully secure 1-out-of-` oblivious transfer and the
replacement of all of the original oblivious transfer protocols with fully secure ones. (Of course, we
could use oblivious transfer protocols that are secure in the presence of covert adversaries with non-
halting detection accuracy, but we do not know how to construct such a protocol more efficiently
than a fully secure one.) Fully-secure oblivious transfer is rather expensive, but reasonably efficient
protocols do exist [21]. (We remark that one should not be concerned with the lengths of x1, . . . , x`

in P1’s input to the oblivious transfer. This is because P1 can send them encrypted ahead of time
with independent symmetric keys k1, . . . , k`. Then the oblivious transfer takes place only on the
keys.)

Acknowledgements

We would like to thank Carmit Hazay for some helpful comments on the write-up, and Tal Zarsky
for discussions on the social and legal implications of this adversary model.

References

[1] L. von Ahn, N. Hopper and J. Langford. Covert Two-Party Computation. In 37th STOC,
pages 513–522, 2005.

[2] W. Aiello, Y. Ishai and O. Reingold. Priced Oblivious Transfer: How to Sell Digital Goods.
In EUROCRYPT 2001, Springer-Verlag (LNCS 2045), pages 119–135, 2001.

[3] D. Beaver. Foundations of Secure Interactive Computing. In CRYPTO’91, Springer-Verlag
(LNCS 576), pages 377–391, 1991.

[4] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. In 20th STOC, pages 1–10, 1988.

[5] R. Canetti. Security and Composition of Multiparty Cryptographic Protocols. Journal of
Cryptology, 13(1):143–202, 2000.

[6] R. Canetti and R. Ostrovsky. Secure Computation with Honest-Looking Parties: What If
Nobody Is Truly Honest? In 31st STOC, pages 255–264, 1999.

[7] D. Chaum, C. Crépeau and I. Damgard. Multi-party Unconditionally Secure Protocols. In
20th STOC, pages 11–19, 1988.

[8] N. Chandran, V. Goyal, R. Ostrovsky and A. Sahai. Covert Multiparty Computation. In
48th FOCS, 2007.

[9] B. Chor, O. Goldreich, E. Kushilevitz and M. Sudan. Private Information Retrieval. Journal
of the ACM, 45(6):965–981, 1998.

[10] S. Even, O. Goldreich and A. Lempel. A Randomized Protocol for Signing Contracts. In
Communications of the ACM, 28(6):637–647, 1985.

[11] M.K. Franklin and M. Yung. Communication Complexity of Secure Computation. In 24th
STOC, 699–710, 1992.

45

[12] O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications. Cambridge
University Press, 2004.

[13] O. Goldreich and Y. Lindell. Session-Key Generation using Human Passwords Only. Journal
of Cryptology, 19(3):241–340, 2006.

[14] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game – A Completeness
Theorem for Protocols with Honest Majority. In 19th STOC, pages 218–229, 1987.

[15] S. Goldwasser and L. Levin. Fair Computation of General Functions in Presence of Immoral
Majority. In CRYPTO’90, Springer-Verlag (LNCS 537), pages 77–93, 1990.

[16] S. Goldwasser and Y. Lindell. Secure Computation Without Agreement. Journal of Cryp-
tology, 18(3):247–287, 2005.

[17] Y. Ishai. Personal Communication, 2007.

[18] Y. Ishai, J. Kilian, K. Nissim and E. Petrank. Extending Oblivious Transfers Efficiently. In
CRYPTO 2003, Springer-Verlag (LNCS 2729), pages 145–161, 2003

[19] Y. Ishai, E. Kushilevitz, Y. Lindell and E. Petrank. Black-Box Constructions for Secure
Computation. In 38th STOC, pages 99–108, 2006.

[20] Y.T. Kalai. Smooth Projective Hashing and Two-Message Oblivious Transfer. In EURO-
CRYPT 2005, Springer-Verlag (LNCS 3494) pages 78–95, 2005.

[21] Y. Lindell. Efficient Fully-Simulatable Oblivious Transfer. Manuscript, 2007.

[22] Y. Lindell and B. Pinkas. A Proof of Yao’s Protocol for Secure Two-Party Computation.
Cryptology ePrint Archive, Report 2004/175, 2004. To appear in the Journal of Cryptology.

[23] Y. Lindell and B. Pinkas. An Efficient Protocol for Secure Two-Party Computation in the
Presence of Malicious Adversaries. In EUROCRYPT 2007, Springer-Verlag (LNCS 4515),
pages 52-78, 2007.

[24] D. Malkhi, N. Nisan, B. Pinkas and Y. Sella. Fairplay – A Secure Two-Party Computation
System. In the 13th USENIX Security Symposium, pages 287–302, 2004.

[25] S. Micali and P. Rogaway. Secure Computation. Unpublished manuscript, 1992. Preliminary
version in CRYPTO’91, Springer-Verlag (LNCS 576), pages 392–404, 1991.

[26] M. Rabin. How to Exchange Secrets by Oblivious Transfer. Tech. Memo TR-81, Aiken
Computation Laboratory, Harvard U., 1981.

[27] A. Yao. How to Generate and Exchange Secrets. In 27th FOCS, pages 162–167, 1986.

A Yao’s Protocol for Semi-Honest Adversaries

We now describe Yao’s protocol for secure two-party computation (in the presence of semi-honest
adversaries) which is proven secure in [22]. Yao’s protocol is based on the following “garbled-circuit”
construction.

46

The garbled circuit construction. Let C be a Boolean circuit that receives two inputs x1, x2 ∈
{0, 1}n and outputs C(x1, x2) ∈ {0, 1}n (for simplicity in this description, we assume that the input
length, output length and the security parameter are all of the same length n). We also assume
that C has the property that if a circuit-output wire comes from a gate g, then gate g has no wires
that are input to other gates.11 (Likewise, if a circuit-input wire is itself also a circuit-output,
then it is not input into any gate.) The reduction uses a private key encryption scheme (G,E,D)
that has indistinguishable encryptions for multiple messages, and also a special property called an
elusive efficiently verifiable range; see [22].12

We begin by describing the construction of a single garbled gate g in C. The circuit C is
Boolean, and therefore any gate is represented by a function g : {0, 1} × {0, 1} → {0, 1}. Now,
let the two input wires to g be labelled w1 and w2, and let the output wire from g be labelled
w3. Furthermore, let k0

1, k
1
1, k

0
2, k

1
2, k

0
3, k

1
3 be six keys obtained by independently invoking the key-

generation algorithm G(1n); for simplicity, assume that these keys are also of length n. Intuitively,
we wish to be able to compute k

g(α,β)
3 from kα

1 and kβ
2 , without revealing any of the other three

values k
g(1−α,β)
3 , k

g(α,1−β)
3 , k

g(1−α,1−β)
3 . The gate g is defined by the following four values

c0,0 = Ek0
1
(Ek0

2
(kg(0,0)

3))

c0,1 = Ek0
1
(Ek1

2
(kg(0,1)

3))

c1,0 = Ek1
1
(Ek0

2
(kg(1,0)

3))

c1,1 = Ek1
1
(Ek1

2
(kg(1,1)

3))

The actual gate is defined by a random permutation of the above values, denoted as c0, c1, c2, c3;
from here on we call them the garbled table of gate g. Notice that given kα

1 and kβ
2 , and the values

c0, c1, c2, c3, it is possible to compute the output of the gate k
g(α,β)
3 as follows. For every i, compute

D
kβ
2
(Dkα

1
(ci)). If more than one decryption returns a non-⊥ value, then output abort. Otherwise,

define kγ
3 to be the only non-⊥ value that is obtained. (Notice that if only a single non-⊥ value is

obtained, then this will be k
g(α,β)
3 because it is encrypted under the given keys kα

1 and kβ
2 . By the

properties of the encryption scheme, it can be shown that except with negligible probability, only
one non-⊥ value is indeed obtained.)

We are now ready to show how to construct the entire garbled circuit. Let m be the number
of wires in the circuit C, and let w1, . . . , wm be labels of these wires. These labels are all chosen
uniquely with the following exception: if wi and wj are both output wires from the same gate g,
then wi = wj (this occurs if the fan-out of g is greater than one). Likewise, if an input bit enters
more than one gate, then all circuit-input wires associated with this bit will have the same label.
Next, for every label wi, choose two independent keys k0

i , k
1
i ← G(1n); we stress that all of these

keys are chosen independently of the others. Now, given these keys, the four garbled values of
each gate are computed as described above and the results are permuted randomly. Finally, the
output or decryption tables of the garbled circuit are computed. These tables simply consist of the
values (0, k0

i) and (1, k1
i) where wi is a circuit-output wire. (Alternatively, output gates can just

11This requirement is due to our labelling of gates described below, that does not provide a unique label to each
wire (see [22] for more discussion). We note that this assumption on C increases the number of gates by at most n.

12Loosely speaking, an encryption scheme has an elusive range if without knowing the key, it is hard to generate a
ciphertext that falls in the range. An encryption scheme has a verifiable range if given the key and a ciphertext, it is
easy to verify that the ciphertext is in the range. Such encryption schemes can be constructed using pseudorandom
functions by encrypting the message together with n zeroes. It is easy to see that this provides both an elusive range
and an efficiently verifiable one. We denote by ⊥ the result of decrypting a value not in the range.

47

compute 0 or 1 directly. That is, in an output gate, one can define cα,β = Ekα
1
(E

kβ
2
(g(α, β))) for

every α, β ∈ {0, 1}.)
The entire garbled circuit of C, denoted G(C), consists of the garbled table for each gate and

the output tables. We note that the structure of C is given, and the garbled version of C is simply
defined by specifying the output tables and the garbled table that belongs to each gate. This
completes the description of the garbled circuit.

Let x1 = x1
1 · · ·xn

1 and x2 = x1
2 · · ·xn

2 be two n-bit inputs for C. Furthermore, let w1, . . . , wn be
the input labels corresponding to x1, and let wn+1, . . . , w2n be the input labels corresponding to x2.
It is shown in [22] that given the garbled circuit G(C) and the strings k

x1
1

1 , . . . , k
xn
1

n , k
x1
2

n+1, . . . , k
xn
2

2n ,
it is possible to compute C(x1, x2), except with negligible probability.

Yao’s protocol. Yao’s protocol works by designating one party, say P1, to be the circuit con-
structor. P1 builds a garbled circuit to compute f and hands it to P2. In addition, P1 sends P2 the
keys k

x1
1

1 , . . . , k
xn
1

n that are associated with its input x1. Finally, P2 obtains the keys k
x1
2

n+1, . . . , k
xn
2

2n

associated with its input via (semi-honest) oblivious transfer. That is, for every i = 1, . . . , n,
parties P1 and P2 run an oblivious transfer protocol. In the ith execution, P1 plays the sender
with inputs (k0

n+i, k
1
n+i) and P2 plays the receiver with input xi

2. Following this, P2 has the keys

k
x1
1

1 , . . . , k
xn
1

n , k
x1
2

n+1, . . . , k
xn
2

2n and so, as stated above, it can compute the circuit to obtain C(x1, x2).
Furthermore, since it has only these keys, it cannot compute the circuit for any other input.

A Lemma. In our proof of security, we will use the following lemma:

Lemma A.1 Given a circuit C with inputs wires w1, . . . , w2n and an output value y (of the same
length as the output of C) it is possible to efficiently construct a garbled circuit G̃C such that:

1. The output of G̃C is always y, regardless of the garbled values that are provided for P1 and
P2’s input wires, and

2. If y = f(x1, x2), then no non-uniform probabilistic polynomial-time adversary A can distin-
guish between the distribution ensemble consisting of G̃C and a single arbitrary key for every
input wire, and the distribution ensemble consisting of a real garbled version of C, together
with the keys k

x1
1

1 , . . . , k
xn
1

n , k
x1
2

n+1, . . . , k
xn
2

2n .

Proof Sketch: The proof of this lemma is taken from [22] (it is not stated in this way there, but is
proven). We sketch the construction of G̃C here for the sake of completeness, and refer the reader
to [22] for a full description and proof. The first step in the construction of the fake circuit G̃C is to
choose two random keys ki and k′i for every wire wi in the circuit C. Next, the gate tables of C are
computed: let g be a gate with input wires wi, wj and output wire w`. The table of gate g contains
encryptions of the single key k` that is associated with wire w`, under all four combinations of the
keys ki, k

′
i, kj , k

′
j that are associated with the input wires wi and wj to g. (This is in contrast to a

real construction of the garbled circuit that involves encrypting both k` and k′`, depending on the
function that the gate in question computes.) That is, the following values are computed:

c0,0 = Eki(Ekj (k`))
c0,1 = Eki(Ek′j

(k`))

c1,0 = Ek′i
(Ekj (k`))

c1,1 = Ek′i
(Ek′j

(k`))

48

The gate table for g is then just a random ordering of the above four values. This process is carried
out for all of the gates of the circuit. It remains to describe how the output decryption tables
are constructed. Denote the n-bit output y by y1 · · · yn, and denote the circuit-output wires by
wm−n+1, . . . , wm. In addition, for every i = 1, . . . , n, let km−n+i be the (single) key encrypted in
the gate whose output wire is wm−n+i, and let k′m−n+i be the other key (as described above). Then,
the output decryption table for wire wm−n+i is given by: [(0, km−n+i), (1, k′m−n+i)] if yi = 0, and
[(0, k′m−n+i), (1, km−n+i)] if yi = 1. This completes the description of the construction of the fake
garbled circuit G̃C.

Notice that by the above construction of the circuit, the output keys (or garbled values) obtained
by P2 for any set of input keys (or garbled values), equals km−n+1, . . . , km. Furthermore, by the
above construction of the output tables, these keys km−n+1, . . . , km decrypt to y = y1 · · · yn exactly.
Thus, property (1) of the lemma trivially holds. The proof of property (2) follows from a hybrid
argument in which the gate construction is changed one at a time from the real construction to
the above fake one (indistinguishability follows from the indistinguishability of encryptions). The
construction and proof of this hybrid are described in full in [22].

49

