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Abstract

Recently the major performance chip manufacturers have turned to multi-core technology as a more
cost effective alternative to ever increasing clock speeds. Well known examples of multi-core architec-
tures include the Intel Core Duo and AMD Athlon 64 X2 range of chips. IBM have introduced the Cell
Broadband Engine (Cell) as their next generation CPU to feed the insatiable appetite modern multimedia
and number crunching applications have for processing power.

The Cell is the “Wicked Smart”1 technology at the heart of Sony’s Playstation 3TM. The Cell contains
a number of specialist synergistic processor units (SPUs) optimised for multimedia processing and offer a
rich programming interface to applications that can make use of the vector processing capabilities. Multi-
precision number manipulation for use in cryptography is one such application. This paper explores the
implementation and performance gains when using these capabilities for SSL.

1 Why SSL?

Despite huge gains in computing performance and bandwidth, the widespread use of secure communications
on the Internet is still essentially limited to SSL connections for password logins or with credit card pay-
ments. Just a small minority of tech savvy systems engineers use SSH for a variety of other tasks. Despite
this the general public is still unaware that the day to day use of web services such as Internet forums, Web
mail, and even search engines do not protect them from malicious eavesdropping. The main reason for such
a glaring omission in privacy protection is the perception that encrypted communication protocols such as
SSL place too high demands on bandwidth and processing power at the server side of the communication
and can interrupt the browsing experience of the client. This paper sets out to show that with the perfor-
mance and architecture of modern multi-core hardware devices it is now possible to enable secure channels
for a wider range of network communications.

2 The Cell Broadband Engine

When Sony examined the options for the Playstation 2’s successor they realised that traditional clock speed
improvements were not going to deliver to next generation demands. They wanted something more than the

∗Research supported by the Irish Research Council for Science, Engineering and Technology, (IRCSET).
1“Wicked Smart” is an advertising slogan used by Sony
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traditional CPU if the Playstation brand was going to maintain its lead over its chief competitor Microsoft’s
XBoxTMbrand of gaming consoles. In early 2001 they turned to IBM and Toshiba. Together they formed a
partnership to deliver a chip that would both provide the power for the next generation of media rich gaming
consoles, while also being a scalable, adaptable design that would meet the most demanding computational
tasks. The result is a unique architecture combining a traditional central processor and specialised high
performance processors similar to those found in graphics cards (GPUs). These processing units are com-
bined across a circular high bandwidth bus to offer a unique multi-instruction set multi-core environment
with enormous processing power. Sony use a subset of the chip inside its Playstation 3 gaming and media
console. IBM offer a range of configurations inside a Blade series suitable for server and super-computing
use. Central to the Cell Broadband Engine (more commonly referred to as ‘Cell’) is a 3.2 GHz 64-bit Power
Processing Unit (PPU). The PPU is a variant (970) of the G5/PowerPC product line, a RISC driven proces-
sor found in IBM’s servers and Apple’s PowerMac range. This PPU works as the primary processor and as
supervisor for the other cores.
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Figure 1: Cell BE Die Layout

The Cell’s SPU The real power of the Cell is in the ability to harness the additional Synergistic Pro-
cessing Units (SPUs). The SPU is a specialist processor with a RISC-like SIMD instruction set and a large
(128) array of 128-bit registers. Each SPU has its own local memory store (LS). Currently, and on the
Playstation 3, this LS is limited to just 256K. The LS is not a traditional hardware cache but the SPU can
access the LS in the same clock cycle as its register operations. The latest SDK (2.0) has a beta software
cache implementation. While the SPU does not directly access main memory the central PPU can access
each SPU’s local memory store. The SPU has no hardware cache so each software application directly
manages data transfer to and from each SPU. This leads to a number of interesting programming models.

While the architecture allows for any number of SPUs, a standard Cell, and those currently in production,
has 8 SPUs. Interestingly Sony have chosen to utilise just 7 as they can gain much higher production yields
if they can discard an SPU that shows a failure during silicon testing. Furthermore Sony restrict access to
one SPU for DRM purposes on a Playstation running in Linux mode.

Currently the SPUs run at 3.2GHz but IBM have recently announced a roadmap bringing these up to
5GHz and beyond. A processor with just 256K, no hardware cache and with no access to I/O doesn’t appear
to be anything exciting when compared to the PPU or other modern CPUs. It is the 128-bit register set and
the ability to work with up to 4 32-bit integer operations in just one clock cycle (referred to as SIMD) that
make the SPU so interesting. The SPU also contains 2 instruction pipelines and while the pipelines are not
equal, careful management of the order of instructions can lead to huge amounts of data being processed
with very few clock cycles and a very low clock cycles per instruction (CPI) ratio.
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The large register size is ideal for the number crunching operations required for cryptography. However,
the fact that the size of the register is too large for most high level language’s basic types, and that most
operations work with, at most, 32-bit sub-sections of the quadword register, makes development a little
tricky. The programmer accesses the registers through a set of C extensions which operate exclusively on
vectors rather than traditional direct memory access. The C extensions (or intrinsics) also offer a degree
of code portability with similar CPUs such as the Altivec [11]. It is possible to develop small, dedicated,
standalone, SPU applications (spulets). A more interesting, but more complex model, is the capability of
the PPU to call SPU applications through a POSIX threads-like library passing data through a rich direct
memory access (DMA) library.

To stimulate interest within the development community IBM offer a software development kit and
ample documentation [1]. This SDK contains a full range of development tools and code samples including
a powerful cycle accurate simulator for the SPU and a vector optimised multi-precision Math library (IBM
MPM) [6].

Multi-instruction sets One interesting issue with the different architectures of the PPU and SPU is the
need for multi-instruction set binaries. Traditional applications compile individual source modules and then
link the results to bind all program data symbols (variable, types functions etc.), but as the SPUs LS memory
is physically separate and makes use of wide 128-bit registers, its program code needs to be compiled and
linked separately. Both the SPU and PPU use standard ELF binary formats. An application’s binary contains
64-bit code for the main PPU but embedded inside this is an object file with the SPU instructions and data
ready to be pushed to the SPU on a createthread() call from the PPC. The build process involves two
separate compilers and two linkers. The SPU ELF binary is passed through an embedspu command which
builds a wrapper (a CESOF linkable) to the SPU binary marking it with PPU compatible symbols. Finally
there is one more link stage which binds all executables together. Figure 2 [3] outlines the build process.

Figure 2: Cell BE build process [3]

For further information on the Cell see IBM’s excellent Cell resource centre [5]
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Direct Memory Access As mentioned above the PPU can access main memory and has instructions
to transfer data between the main memory and its registers. The SPU, on the other hand, works with its
own smaller local store and so to access data from the main memory the SPU goes through a Memory Flow
Controller (MFC) which translates SPU main memory requests over the high speed bus via a set of DMA
channel calls. These DMA calls are directional (read or write), blocking or non-blocking, can be issued in
parallel, and can be tagged by the programmer to allow for identification management of data.

When communicating either the PPU or an SPU can initiate and manage a DMA transfer. However it is
optimal for the SPU to do the ‘protocol’ management as it can free PPU clock cycles that can occur if, for
example, a number of SPUs have blocking calls. When the PPU needs to initiate the transfer the procedure
is for the PPU to push a pointer to the SPU with a tag and then let the SPU pull the data from the pointed
reference and informing the PPU, via the tag, that it has done so.

Vector Programming To utilise the full performance of SPU SIMD instructions a developer works
with a combination of Vector C extensions with assembly like code. Space is limited so we will look at the
following extracts to highlight typical techniques used. We implemented a primitive MADD() commonly
used in cryptographic libraries which fully utilises the 128-bit register by implementing a 64x64-bit multiply
function.

For example the following code fragment is used to fill a quadword with two scalars (in this case standard
C 64-bit unsigned long long) and to ‘splat’ across a vector. Splat is a term used when filling a vector
with a mask. In a big number context we utilise splats to allow us operate on different elements of a
quadword when filling partial products.

u n s i g n e d long lon g a , b
v e c t o r u n s i g n e d s h o r t AB;
AB=( v e c t o r u n s i g n e d s h o r t ) \

s p u i n s e r t ( a , ( v e c t o r u n s i g n e d long long )AB, 0 x1 ) ;
AB=( v e c t o r u n s i g n e d s h o r t ) \

s p u i n s e r t ( b , ( v e c t o r u n s i g n e d long long )AB, 0 x0 ) ;
/∗ s e l e c t two b y t e s ∗ /
c o n s t v e c t o r u n s i g n e d c h a r s p l a t s h o r t 1 = \

( v e c t o r u n s i g n e d c h a r ) ( VEC SPLAT U32 (0 x80800405 ) ) ;

Here we utilise a C macro to guarantee all vector multiplies (spu mulo()) are at a 16-bit level to
efficiently use the 16x16-bit multiplier in the SPU.

# d e f i n e MULTIPLY( a , b )\
( s p u e x t r a c t ( spu mulo ( ( v e c t o r u n s i g n e d s h o r t ) s p u p r o m o t e ( a , 0 ) , \

( v e c t o r u n s i g n e d s h o r t ) s p u p r o m o t e ( b , 0 ) ) , 0 ) )

Finally an assembly-like example of a speed up technique when adding a 128-bit value to a 64-bit value
where we know there is no need to manage an overflow. This technique is used in summing partial products
inside the big number multiply.

v e c t o r u n s i g n e d i n t o u t s , i n a 1 2 8 , i n a 6 4 ;
v e c t o r u n s i g n e d i n t sum , c0 , t 0 ;

c0 = s p u g e n c ( i n a 1 2 8 , i n a 6 4 ) ; / / g e n e r a t e c a r r y b i t s
sum = s p u a d d ( i n a 1 2 8 , i n a 6 4 ) ; / / add
t 0 = s p u s l q w b y t e ( c0 , 4 ) ; / / s h i f t quadword l e f t 4 b y t e s
o u t s = s p u ad d ( sum , t 0 ) ; / / add i n t h e c a r r y
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3 OpenSSL

OpenSSL [8] is an open source toolkit released under under a BSD style license. It evolved out of Eric
Young’s popular SSLeay and in 1998 passed to a dedicated team of developers. It has since become the de
facto open source SSL toolkit. It is the security sub-system of choice for large open source projects such as
Apache [9] and MySQL [13] and included in virtually all UNIX distributions including Linux, MacOSXTM,
and SolarisTM.

The name ‘OpenSSL’ is misleading as the toolkit provides a vast array of building blocks and interfaces
from cryptographic primitives through big number routines to PKI components such as certificate authorities
and OCSP responders. One of the most useful features is the ability to factor out processing intensive
operations to specialist hardware through an ‘engine’ interface. It is through this engine subsystem that we
accelerate SSL by using the Cell SPU’s vector processing capabilities.

SSL operates in two phases: an initial handshake and a bulk encryption phase. The purpose of the
handshake is to swap identification credentials, algorithm capabilities, and negotiate a bulk encryption key.
The reason for the key negotiation is that asymmetric cryptography, whilst needed to establish a shared
secret, incurs a large computational overhead compared to a symmetric encryption algorithm. By analysing
clock cycles, Zhao et al. [2] found that 90.4% of the SSL handshake comprises public key operations.
Cryptographic operations take, in total, about 95% of the total CPU load.

Since the CPU load will be heaviest at the server side, and since the main computationally load incurred
by the server for its part in the handshake is asymmetric decryption, we focus our attempts on speeding up
asymmetric decryption.

Isolating the SSL handshake to measure our improvements is a challenging task as there are can be
many dependencies (network traffic, HTTP server etc.) on a running machine which make accurate sam-
pling difficult. Fortunately OpenSSL provides the utility openssl speed which can measure individual
algorithms. Using this utility we can demonstrate improvements to the throughput of the critical algorithms.
The SSL protocol supports a range of asymmetric algorithms, (RSA, DSA, ECC etc.). In this paper we
focus on RSA but the technique is relevant to all.

OpenSSL engine When taking over computational tasks from OpenSSL two issues which must be
considered are

1. How the engine informs the library of the scope of its responsibilities.

2. Marshalling the big number format to and from OpenSSL’s internal representation.

To tell OpenSSL exactly what the engine will do the developer provides a static library with a set of
defined interfaces with descriptive text to describe the engine. Then, through function pointer replacement,
a defining a set of functions which implement the algorithms that the engine intends to provide.

While there are dynamic loading techniques for closed source libraries, at the current OpenSSL version
(0.9.8d) the simplest method to integrate the engine is to statically link the engine code and add a call inside
ENGINE load built in engines(). This will add the engine as an option to any application using
the OpenSSL default engine.

Through this call OpenSSL then loads any engine that conforms to the correct interface at start-up,
and subsequently any OpenSSL command that uses the -engine <id> option will redirect to the named
engine. At the Engine init() stage the calling library passes an OpenSSL data structure containing a
set of initialisation variables and an opening via a free additional pointer for the engine to append its own
data structure which can be accessed later by subsequent engine functions. The engine is responsible for its
own memory management. It is through this Engine init() call that we gather OpenSSL parameters
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and convert the OpenSSL big number representation to the native Cell IBM Multi-precision Big number
format.

Big number representation Unfortunately there is no standard method for big number representation
with most multi-precision systems/libraries choosing variants of

struct {
unsigned int size;
<largest basic type> *words;

}

Subtle differences exist. Be it big endian or little endian ordering of the words, or if the number structure
keeps track of its own data size. The OpenSSL representation is of the form

struct bignum_st{
BN_ULONG *d;
int top;
int dmax;
int neg;
int flags;

};

BN ULONG represents the largest underlying type and dmax, neg, and flags hold useful inter-
nal management data. On the PPU we can build either a 32-bit or 64-bit binary. We chose 64 and so
BN ULONG is a 64 bit type (unsigned long long). The IBM MPM on the SPU can utilise the vector
quadword register to contain 8 elements of a smaller 16-bit unsigned short type which it can handle
very efficiently in its 16x16 multiplier. For example a 12 instruction load and store (LS) has a latency of just
6 clock cycles [7]. The type is implicit and of the simple form

vector * unsigned int;

Use of the IBM MPM library is, therefore, a little more complicated as one needs to keep track of the
size of each variable and one has to remember that the most significant word is a zero padded quadword. An
example can illustrate.

Take the big number

0x111122223333444455556666777788889999

OpenSSL places this in an array

[0] 66667777 88889999
[1] 22223333 44445555
[2] 00000000 00001111

The IBM MPM library represents this in a 2 quadword array as follows:

[0] 00000000 00000000 00000000 00001111
[1] 22223333 44445555 66667777 88889999
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4 Development

To recap: we need to build a PPU library (32 or 64-bit) that plugs into a PPU build of OpenSSL. Inside
this library we embed an SPU ELF executable which can act upon the 128-bit registers and utilises IBM’s
MPM library. This SPU ELF executable needs to be under 256K including all code and data. The multi-
core environment with the limitations on code and data size requires some unconventional, data centric,
programming models which the engineering community are still evolving. The cardinal rule appears to be
‘offload as much as one can to the SPUs’. Many data intensive multimedia applications employ a model
where data is streamed through a chain of SPUs with each SPU carrying out a specific operation on the
data, then calling another SPU with the processed data. Yet another model makes the PPU act as a sched-
uler pushing data segments and code ‘blobs’ to any SPU with the PPU managing the operations and data
ordering through double buffering. To fit the OpenSSL engine model, we mirror the operation of a similar
engine developed by Geoff Thorpe of the OpenSSL core team for the GNU Multi-Precision library (GMP)
[10]. To have the SPUs do as much work as possible we chose to overload the RSA mod exp() function
and indicate through control flags that the engine would perform full RSA decryption using the Chinese
Remainder Theorem. Figure 3 describes the interaction between the various components. This allows us to
potentially parallelise the modular exponentiation calls. We could approach this a number of ways:

OpenSSL

SPU

PPU Engine

SPU

SPU

Figure 3: OpenSSL with Engine and SPUs

1. Have the PPU do the RSA/CRT but invoke SPUs to manage the expensive modular exponential
(mod exp()). Different SPUs would handle the p and q mod exp().

2. Have the PPU pass the whole RSA/CRT to an SPU.

3. Have the PPU pass the whole RSA/CRT to an SPU with this SPU passing the the two mod exp() to
two other SPUs.

4. Have the PPU pass the whole RSA/CRT to an SPU with this SPU passing one of the two mod exp()
to another SPU and, in parallel, handle the other.

There are a number of advantages to each. With (1) the amount of data in the DMA bus is reduced but
breaks the guideline of offloading as much computation as possible to an SPU. With (3&4) the latency per
SSL connection will probably be reduced but, as it adds extra DMA data to the bus, the over all maximum
throughput will be slightly affected. With (2, 3 & 4) we can double buffer the data transfer, for example
passing the p parameter to the bus while the SPU is processing the q mod exp(). The double buffering
technique would offer relatively small speed gains. In an attempt to measure the maximum throughput we
chose to focus on (2).
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To maintain compatibility with OpenSSL and other engine implementations we use notation matching
OpenSSL code: dmp1, the decryption exponent mod p − 1, dmq1, the decryption exponent mod q − 1.
iqmp is the inverse of q mod p. I0 is the cyphertext. A decryption exponent d, for a prime p, is a number d,
such that med mod p = m or ed = 1 mod (p− 1), where e is the encryption exponent, commonly chosen
to be 3 or 65537.

At the RSA initialisation stage OpenSSL passes the parameters (p, q, dmp1, dmq1, iqmp) to the engine.
At this stage we check the parameters, allocate a memory store, fill the store with local copies of the big
numbers ready to pass to an SPU, and then pass the memory store pointer back through a thread safe thread
local memory store. OpenSSL later makes a call to the main overloaded RSA mod exp() function with I0

and the same thread memory store parameter. The overloaded mod exp() extracts the thread local data,
calls an SPU thread, DMA transfers the location and size of the memory store to the SPU. It then allocates
space for the return data from the SPU.

As mentioned above, the SPU thread when activated could either receive all parameters in a full DMA
transfer or, more efficiently, a pointer to the block of big numbers in memory on the Cell’s main store. By
passing the pointer, the SPU’s memory flow controller effectively takes the memory processing away from
the main PPU, further improving the performance.

At this stage the SPU thread converts the big number set to the IBM MPM format and carries out the
CRT logic. On success it takes the result, pushes it back to the PPU using the DMA tag that the I0 parameter
was sent with, finally cleaning up any memory used by the engine and exiting.

RSA/CRT We implement traditional RSA Decryption using Chinese Remainder Theorem but with
a small modification. Because the SPU is restrictive in some respects and as we can’t be certain that the
parameter p is always greater than q we need to maintain a sequence of calls that ensure the results of any
modular exponentiation stay positive.

1. The SPU compiler optimiser is most efficient when there is no branching.

2. The current version (SDK 2.0) of the IBM MPM is intended to work with unsigned numbers.

3. Integer comparison operations (less than, greater than) on negative numbers are undefined.

To overcome these restrictions we assume p is always less than q. A condition OpenSSL guarantees.
The modified algorithm is outlined in Algorithm 1.

5 Results

Table 1 lists timings in cycles counts and milliseconds for the time consuming functions of the RSA/CRT
implementation. Two totals are presented: sum of these calls and an observed timing for all calls including
some initialisation and the DMA receive calls. These timings are made using an engine with just one SPU
configured.

We can see that, as expected, the mpm mont mod exp()2 calls represent the bulk of the time con-
suming operations. A case could be made for a design that offloaded just this call to an SPU. Theoretically
(from the results of Table 1) we can expect the SPU to be able to process 14.8 4096-bit decryptions in a
second. Interesting (from Table 2) we achieve close to this at 14.1. Obviously there is additional overhead
from DMA and the process queue on the main PPU. Cycle counts are from the latest (2.0) version of the
SDK’s simulator. Unfortunately the simulator (at this time) cannot measure DMA or PPU latency.

2The generic mpm mod exp() clocks at 136914856 cycles for a 4096-bit modulus
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Algorithm 1 RSA Decryption using Chinese Remainder Theorem modified for the IBM MPM unsigned
restrictions. Note: We follow OpenSSL notation found in all engine implementations
INPUT: p, q, I0, dmq1, dmp1, iqmp
OUTPUT: r0

r1 ← I0 mod q
m1 ← r1

dmq1 mod q
r1 ← I0 mod p
r0 ← rdmp1

1 mod p
r0 ← r0 −m1

if r0 < 0 then
r0 ← r0 + p

end if
r1 ← r0 · iqmp
r0 ← r1 mod p
r1 ← r0 · q
r0 ← r1 + m1

function calls cycle count total cycles total millisecs secs #/sec
big number convert() 7 877 6139 0.00192
mpm mod() 4 77731 310924 0.09716
mpm mont mod exp() 2 93328909 186657818 58.33057
mpm mul() 1 22733 22733 0.00710
mpm sub() 1 704 704 0.00022
mpm add() 1 1116 1116 0.00035
mpm madd() 1 39648 39648 0.01239
total function calls 187039082 0.05845
Total includes other calls 215159632 0.06724 14.87

Table 1: RSA/CRT decryption implemented in IBM MPM function calls with cycle count and time in
milliseconds for a 4096-bit key

As mentioned previously, to get some sense of the improvements our optimisations have made we use
the openssl speed command on RSA with the engine off (native OpenSSL on the PPU) and with our
engine on utilising the SPU.

Tests are run on a 3.2 GHz Playstation 3 with just 6 SPUs running Yellow Dog Linux 5.0 [15] with
kernel version 2.6.16-20061110.ydl.1ps3. A server/blade Cell system would have up to 16 SPUs. We could
expect the Playstation Cell to deliver a throughput of up to 89 sign/sec and a blade server to go as high as
237 sign/sec. Our observations (Table 3) see slightly smaller results. As mentioned there are number of
factors that could skew our observed numbers, mainly the design of the OpenSSL speed post-processing,
DMA overhead and the fact that the PPU is busy managing the multiprocess queue.

We are using the openssl speed -elapsed time option instead of the more often quoted CPU
user time as on the multi-core processor the CPU timer will just count the CPU time of the driving PPU
thread whereas the multi-threaded nature of the SPU based system is better represented by elapsed time.
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OpenSSL is configured for 64-bit PPC/G5 ASM 3.

o p e n s s l speed r s a −e l a p s e d
o p e n s s l speed r s a −e n g i n e cel lspumpm −e l a p s e d

RSA PPU 1 SPU
key length sign sign/sec sign sign/sec
1024-bits 0.003435s 291.2 0.005655s 176.8
2048-bits 0.017541s 57.0 0.015636s 64.0
4096-bits 0.109793s 9.1 0.070915s 14.1

Table 2: OpenSSL speed on PPU vs. 1 SPU using IBM-MPM on 3.2GHz Cell/PS3.

From Table 3 we can see that the overhead of the DMA transfer and the big number conversion impact
the performance improvements just above the 1024-bit key. The benefits of the 128-bit registers are apparent
at 4096-bit level with improvements in the order of 150% (14.1 vs. 9.1).

To see the full impact of the multi-core we need to use the -multi [n] option to the speed command which
can (through fork()) generate multiple simultaneous RSA operations. We have picked a number (6) of
parallel processes to run matching the number of SPUs on the Playstation 3. It is important to note that the
-multi option introduces some small processing overhead to the speed command and that comparison’s are
only valid between invocations with the same -multi [n]. Again we compare the PPU with an SPU enabled
engine.

o p e n s s l speed r s a −e l a p s e d −m u l t i 6
o p e n s s l speed r s a −e n g i n e cel lspumpm −e l a p s e d −m u l t i 6

We see from Table 3 similar overheads impacting the 1024-bit keys. However there is huge improve-
ments in 2048-bit (329.7 vs.71.7) and 4096-bit (83.6 vs 11.2).

RSA PPU 6 SPUs
key length sign sign/sec sign sign/sec
1024-bits 0.000724s 384.5 0.001906s 524.7
2048-bits 0.002600s 71.7 0.003033s 329.7
4096-bits 0.089455s 11.2 0.011925s 83.9

Table 3: OpenSSL speed on PPU vs. 6 SPUs using IBM-MPM on 3.2GHz Cell / PS3, 6 parallel processes.

6 Conclusions and Future Work

The numbers speak for themselves: even on the restricted Playstaion Cell we see over 700% improvement
in performance. With the widespread use of specialised multi-core processors there is no reason to prevent
the roll out of always on encryption leading the improvements in privacy for the general user.

We believe that we have pushed the Cell SDK’s IBM-MPM library to its limits. The library is intended
for general purpose use for applications such as scientific computing. It is a excellent demonstration of

3Options: bn(64,64) md2(int) rc4(ptr,char) des(idx,risc1,16,long) aes(partial) idea(int) blowfish(idx) compiler: ppu-
gcc -DOPENSSL USE MPM SPU -DOPENSSL THREADS -D REENTRANT -DDSO DLFCN -DHAVE DLFCN H -m64 -
DB ENDIAN -DTERMIO -O3 -Wall
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the power of SPU instrincs ‘vector’ programming. However, we believe the introduction of an optimised
number library more suited to crypto can substantially improve the performance, possibly doubling the
figures presented above.

As mentioned the results are based on using generic Montgomery mpm mont mod exp() function.
This function allows for any size of parameter whereas we know the size of parameters are based on fixed
key lengths (1024, 2048 etc.) These fixed lengths can offer further optimisations as they always align on the
128-bit boundaries of the vectors and that the number of partial products to be summed inside any multiplies
can be determined allowing for very efficient carry management.

The multiplication inside the mpm mont mod exp() needs to be examined in more detail. MPM uses
‘row by row’ operand scanning to do big number multiplies whereas a ‘column by column’ product scanning
technique used by the Comba [4] method would be more suitable for the large, fixed sized numbers used
by crypto. Furthermore, as the number length moves beyond 1024-bit the Comba method can be combined
with the Karatsuba technique [12] for further improvement.

OpenSSL uses this Comba/Karatsuba combination at key lengths above 1024-bit irrespective of the
architecture. We hope to swap out the IBM MPM library and use a fine tuned version of MIRACL [14]
with fixed key sizes on fixed 128-bit alignment, and utilising the Comba/Karatsuba speed ups on longer key
lengths.

The threshold key length to optimally use the Karatsuba method depends heavily on the underlying word
size and the architecture’s instruction set, specifically how fast the multiplier is compared to the addition.
We hope to examine this threshold in more detail with the more flexible MIRACL library.

The performance figures focus on raw crypto performance. We would like to examine the SSL perfor-
mance of real word data using a commercial grade SSL/HTTP load testing suite. We also intend to offer
support for DSA and ECC algorithms.
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