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Abstract

We present a method for constructing new quadratic APN functions from known
ones. Applying this method to the Gold power functions we construct an APN func-
tion x3+tr(x9) over F2n . It is proven that in general this function is CCZ-inequivalent
to the Gold functions (and therefore EA-inequivalent to power functions), to the in-
verse and Dobbertin mappings, and in the case n = 7 it is CCZ-inequivalent to all
power mappings.
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1 Introduction

A function F : F
n
2 → F

n
2 is called almost perfect nonlinear (APN) if, for every a 6= 0 and

every b in F
n
2 , the equation F (x)+F (x+a) = b admits at most two solutions (it is also called

differentially 2-uniform). Vectorial Boolean functions used as S-boxes in block ciphers must
have low differential uniformity to allow high resistance to the differential cryptanalysis
(see [3, 31]). In this sense APN functions are optimal. The notion of APN function is
closely connected to the notion of almost bent (AB) function. A function F : F

n
2 → F

n
2

is called AB if the minimum Hamming distance between all the Boolean functions v · F ,
v ∈ F

n
2 \{0} (called the component functions of F ), and all affine Boolean functions on

F
n
2 is maximal. Here, “·” denotes the usual inner product in F

n
2 . Any other choice of an

inner product would lead to the same notion. For instance, the vector space F
n
2 can be

identified to the field F2n and we can then take for inner product x · y = tr(xy) where tr
is the absolute trace function. The minimum Hamming distance between all component
functions of F and all affine Boolean functions on F

n
2 is called the nonlinearity of F and its

maximum equals 2n−1 − 2
n−1

2 (see [16]). AB functions exist for n odd only and oppose an
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optimum resistance to the linear cryptanalysis (see [29, 16]). Besides, every AB function
is APN [16], and in the n odd case, any quadratic function is APN if and only if it is AB
[15].

The APN and AB properties are preserved by some transformations of functions [15, 31].
If F is an APN function, A1, A2 are affine permutations and A is affine then the function
F ′ = A1 ◦ F ◦ A2 + A is also APN (the functions F and F ′ are called extended affine
equivalent (EA-equivalent)). Besides, the inverse of any APN permutation is APN too.
Until recently, the only known constructions of APN and AB functions were EA-equivalent
to power functions F (x) = xd over finite fields (F2n being identified with F

n
2 ). Table 1 gives

all known values of exponents d (up to multiplication by a power of 2 modulo 2n − 1, and
up to taking the inverse when a function is a permutation) such that the power function
xd over F2n is APN. For n odd the Gold, Kasami, Welch and Niho APN functions from
Table 1 are also AB (for the proofs of AB property see [12, 13, 24, 25, 27, 31]).

Table 1
Known APN power functions xd on F2n .

Functions Exponents d Conditions Proven in

Gold 2i + 1 gcd(i, n) = 1 [24, 31]

Kasami 22i − 2i + 1 gcd(i, n) = 1 [26, 27]

Welch 2t + 3 n = 2t + 1 [21]

Niho 2t + 2
t

2 − 1, t even n = 2t + 1 [20]

2t + 2
3t+1

2 − 1, t odd

Inverse 22t − 1 n = 2t + 1 [2, 31]

Dobbertin 24t + 23t + 22t + 2t − 1 n = 5t [22]

Table 2
Known APN functions EA-inequivalent to power functions on F2n .

Functions Conditions Alg. degree

n ≥ 4

x2i+1 + (x2i

+ x + tr(1) + 1) tr(x2i+1 + x tr(1)) gcd(i, n) = 1 3

n divisible by 6
(

x + trn/3(x
2(2i+1) + x4(2i+1)) + tr(x) trn/3(x

2i+1 + x22i(2i+1))
)2i+1

gcd(i, n) = 1 4

n divisible by 3
(

x
1

2i+1 + trm/3(x + x22i

)
)−1

gcd(2i, n) = 1 4

m 6= n

x2i+1 + trn/m(x2i+1) + x2i

trn/m(x) + x trn/m(x)2
i

n odd

+
(

trn/m(x)2
i+1 + trn/m(x2i+1) + trn/m(x)

)
1

2i+1

(x2i

+ trn/m(x)2
i

+ 1) n divisible by m m + 2

+
(

trn/m(x)2
i+1 + trn/m(x2i+1) + trn/m(x)

)
2i

2i+1

(x + trn/m(x)) gcd(i, n) = 1

In [15], Carlet, Charpin and Zinoviev introduced an equivalence relation of functions,
more recently called CCZ-equivalence, which corresponds to the affine equivalence of the
graphs of functions and preserves APN and AB properties. EA-equivalence is a particular
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case of CCZ-equivalence and any permutation is CCZ-equivalent to its inverse [15]. In
[9, 10], it is proven that CCZ-equivalence is more general, and applying CCZ-equivalence
to the Gold mappings classes of APN functions EA-inequivalent to power functions are
constructed in [5, 9, 10]. These classes are presented in Table 2. When n is odd, these
functions are also AB.

These new results on CCZ-equivalence have raised several interesting questions. One
of them is whether the known classes of APN power functions are CCZ-inequivalent.
Partly the answer is given in [7]: it is proven that in general the Gold functions are
CCZ-inequivalent to the Kasami and Welch functions, and that for different parameters
1 ≤ i, j ≤ n−1

2
the Gold functions x2i+1 and x2j+1 are CCZ-inequivalent. Another inter-

esting question is the existence of APN polynomials CCZ-inequivalent to power functions.
In [23] it is shown that one of the ways to construct such polynomials is to consider lin-
ear combinations of two different Gold power functions. Using this approach they have
introduced two quadratic APN binomials on F210 and F212 which are CCZ-inequivalent to
power maps. After that, two infinite classes of quadratic APN binomials CCZ-inequivalent
to power functions have been constructed in [6, 7, 8]. These classes are presented in Table 3
(this table gives all known classes of APN functions CCZ-inequivalent to power functions)
for the cases n divisible by 3 and 4. Another approach for constructing quadratic APN
polynomials CCZ-inequivalent to power functions is introduced in [18]: the idea is to
consider quadratic hexanomials of a certain type over F22m as good candidates for being
differentially 4-uniform. This approach gives new examples of quadratic APN functions
over F26 and F28 which are CCZ-inequivalent to power functions [18]. Similar approach
was used to construct new quadratic APN quadrinomials over F26 in [30]. Also it is proven
in [4] that for n ≤ 5 there exist no APN functions CCZ-inequivalent to power mappings.

Table 3

Known APN functions CCZ-inequivalent to power functions on F2n .
Functions Conditions Proven in

n = 3k, gcd(k, 3) = gcd(s, 3k) = 1

The case n x2s+1 + wx2ik+2mk+s

k ≥ 4, i = sk mod 3, m = 3 − i [7, 8]

divisible by 3 w has the order 22k + 2k + 1

n = 4k, gcd(k, 2) = gcd(s, 2k) = 1

The case n x2s+1 + wx2ik+2mk+s

k ≥ 3, i = sk mod 4, m = 4 − i [6]

divisible by 4 w has the order 23k + 22k + 2k + 1

n ≥ 7

The new case x3 + tr(x9) n > 2p for the smallest possible p > 1 Corollary 1 of

such that p 6= 3, gcd(p, n) = 1 the present paper

All constructions of APN polynomials CCZ-inequivalent to power functions mentioned
above have not given new APN polynomials with coefficients in F2. A natural question is
whether all APN polynomials with coefficients in F2 are CCZ-equivalent to power functions.
In the present paper we show that the answer to this question is negative. We give a new
approach for constructing quadratic APN functions and using it we construct a class of
quadratic APN polynomials with coefficients in F2. We prove that the function F (x) =

3



x3 +tr(x9) is APN over F2n for any n, and that for almost all n ≥ 7 it is CCZ-inequivalent
to the Gold functions (and therefore EA-inequivalent to power functions), to the inverse
and Dobbertin functions. Obviously, this function is AB for all odd n. We conjecture
that for n ≥ 7 the function F is CCZ-inequivalent to any power function. This conjecture
is confirmed for the case n = 7. Further we show that applying CCZ-equivalence to
quadratic APN functions, it is possible to construct classes of nonquadratic APN mappings
CCZ-inequivalent to power functions. Note that the existence of APN functions CCZ-
inequivalent to power functions and to quadratic functions is still an open problem.

2 Preliminaries

Let F
n
2 be the n-dimensional vector space over the field F2. Any function F from F

n
2 to

itself can be uniquely represented as a polynomial on n variables with coefficients in F
n
2 ,

whose degree with respect to each coordinate is at most one:

F (x1, ..., xn) =
∑

u∈F
n
2

c(u)
(

n
∏

i=1

xui

i

)

, c(u) ∈ F
n
2 .

This representation is called the algebraic normal form of F and its degree d◦(F ) the
algebraic degree of the function F .

Besides, the field F2n can be identified with F
n
2 as a vector space. Then, viewed as a

function from this field to itself, F has a unique representation as a univariate polynomial
over F2n of degree smaller than 2n:

F (x) =

2n−1
∑

i=0

cix
i, ci ∈ F2n .

For any k, 0 ≤ k ≤ 2n − 1, the number w2(k) of the nonzero coefficients ks ∈ {0, 1} in
the binary expansion

∑n−1
s=0 2sks of k is called the 2-weight of k. The algebraic degree of

F is equal to the maximum 2-weight of the exponents i of the polynomial F (x) such that
ci 6= 0, that is, d◦(F ) = max0≤i≤n−1,ci 6=0 w2(i) (see [15]).

A function F : F
n
2 → F

n
2 is linear if and only if F (x) is a linearized polynomial over

F2n , that is,
n−1
∑

i=0

cix
2i

, ci ∈ F2n .

The sum of a linear function and a constant is called an affine function.
Let F be a function from F2n to itself and A1, A2 : F2n → F2n be affine permutations.

The functions F and A1◦F ◦A2 are then called affine equivalent. Affine equivalent functions
have the same algebraic degree (i.e. the algebraic degree is affine invariant).

As recalled in the Introduction, we say that the functions F and F ′ are extended affine

equivalent if F ′ = A1◦F ◦A2+A for some affine permutations A1, A2 and an affine function
A. If F is not affine, then F and F ′ have again the same algebraic degree.
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Two mappings F and F ′ from F2n to itself are called Carlet-Charpin-Zinoviev equivalent
(CCZ-equivalent) if the graphs of F and F ′, that is, the subsets GF = {(x, F (x)) | x ∈ F2n}
and GF ′ = {(x, F ′(x)) | x ∈ F2n} of F2n × F2n , are affine equivalent. Hence, F and F ′ are
CCZ-equivalent if and only if there exists an affine automorphism L = (L1, L2) of F2n ×F2n

such that
y = F (x) ⇔ L2(x, y) = F ′(L1(x, y)).

Note that since L is a permutation then the function L1(x, F (x)) has to be a permutation
too (see [7]). As shown in [15], EA-equivalence is a particular case of CCZ-equivalence and
any permutation is CCZ-equivalent to its inverse.

For a function F : F2n → F2n and any elements a, b ∈ F2n we denote

δF (a, b) = |{x ∈ F
n
2 : F (x + a) + F (x) = b}|.

F is called a differentially δ-uniform function if maxa∈F
∗

2n ,b∈F2n δF (a, b) ≤ δ. Note that
δ ≥ 2 for any function over F2n . Differentially 2-uniform mappings are called almost

perfect nonlinear.
For any function F : F2n → F2n we denote

λF (a, b) =
∑

x∈F2n

(−1)tr(bF (x)+ax), a, b ∈ F2n ,

where tr(x) = x + x2 + x4 + ... + x2n−1

is the trace function from F2n into F2. The set
ΛF = {λF (a, b) : a, b ∈ F2n , b 6= 0} is called the Walsh spectrum of the function F and the
multiset {|λF (a, b)| : a, b ∈ F2n , b 6= 0} is called the extended Walsh spectrum of F . The
value

NL(F ) = 2n−1 −
1

2
max

a∈F2n ,b∈F
∗

2n

|λF (a, b)|

equals the nonlinearity of the function F . The nonlinearity of any function F satisfies the
inequality

NL(F ) ≤ 2n−1 − 2
n−1

2

([16, 33]) and in case of equality F is called almost bent or maximum nonlinear.
Obviously, AB functions exist only for n odd. It is proven in [16] that every AB function

is APN and its Walsh spectrum equals {0,±2
n+1

2 }. If n is odd, every APN mapping which
is quadratic (that is, whose algebraic degree equals 2) is AB [15], but this is not true for
nonquadratic cases: the Dobbertin and the inverse APN functions are not AB (see [13, 15]).
When n is even, the inverse function x2n−2 is a differentially 4-uniform permutation [31]
and has the best known nonlinearity [28], that is 2n−1 − 2

n
2 (see [13, 19]). This function

has been chosen as the basic S-box, with n = 8, in the Advanced Encryption Standard
(AES), see [17]. A comprehensive survey on APN and AB functions can be found in [14].

It is shown in [15] that, if F and G are CCZ-equivalent, then F is APN (resp. AB)
if and only if G is APN (resp. AB). More generally, CCZ-equivalent functions have the
same differential uniformity and the same extended Walsh spectrum (see [9]). Further
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invariants for CCZ-equivalence are given in [23] (see also [18]) in terms of group algebras.
Let G = F2[F2n ×F2n ] be the group algebra of F2n ×F2n over F2. It consists of the formal
sums

∑

g∈G

agg

where ag ∈ F2. If S is a subset of F2n ×F2n then it can be identified with the element
∑

s∈S s of G. For any APN mapping F we denote

∆F = {(a, b) : F (x) + F (x + a) = b has 2 solutions} ⊂ F2n ×F2n .

The dimensions of the ideals of G generated by ∆F and by the graph GF of F are called ∆-
and Γ-ranks, respectively. According to [23] (and also [18]), ∆- and Γ-ranks of a function
are CCZ-invariant.

3 Construction of new quadratic APN functions

In the theorem below we give a general approach for constructing new quadratic APN
functions from known ones.

Theorem 1 Let F be a quadratic APN function from F
n
2 to itself, let f be a quadratic

Boolean function on F
n
2 and

ϕF (x, a) = F (x) + F (x + a) + F (a) + F (0),

ϕf(x, a) = f(x) + f(x + a) + f(a) + f(0).

Then the function F (x) + f(x) is APN if for every nonzero a ∈ F
n
2 there exists a linear

Boolean function ℓa satisfying the conditions

1) ϕf(x, a) = ℓa(ϕF (x, a)),

2) if ϕF (x, a) = 1 for some x ∈ F
n
2 then ℓa(1) = 0.

Proof. Since the function F (x) + f(x) is quadratic, it is APN if and only if, for every
nonzero a ∈ F

n
2 , the equation ϕF (x, a) + ϕf(x, a) = 0 admits at most two solutions (see

e.g. [14]). According to the hypothesis on ℓa, a solution to this equation must be such that
ϕf(x, a) = 0 and therefore such that ϕF (x, a) = 0. Then, F being quadratic APN, this
equation admits at most two solutions. 2

Remark 1 Note that, in the situation of Theorem 1, a linear function la satisfying ϕf(x, a) =
ℓa(ϕF (x, a)) always exists. This is due to the fact that, by the assumption F is APN and
then the kernel of ϕF (x, a) equals {0, a}. This set is always a subset of the kernel of
ϕf(x, a), which is indeed the necessary and sufficient condition for the existence of la.
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A direct consequence of Theorem 1 is that, if F is APN and if ℓ is a linear form such
that ℓ(1) = 0, then the function F (x)+ ℓ(F (x)) is APN. But this function is affine equiva-
lent to F since it is equal to L ◦ F where L(x) = x + ℓ(x), and the condition that ℓ(1) = 0
is equivalent to saying that L is a permutation.

We give now an example where Theorem 1 leads to a function which is CCZ-inequivalent
to the original function F .

Corollary 1 Let n be any positive integer. Then the function x3 + tr(x9) is APN on F2n.

Proof. We can apply Theorem 1 with F (x) = x3, ϕF (x, a) = a2x + ax2, f(x) = tr(x9),
ϕf(x, a) = tr(a8x + ax8) and ℓa(y) = tr(a6y + a3y2 + a−3y4). Indeed, we have then
ℓa(ϕF (x, a)) = tr (a6(a2x + ax2) + a3(a4x2 + a2x4) + a−3(a8x4 + a4x8)) = ϕf(x, a) and if

there exists x ∈ F
n
2 such that ϕF (x, a) = 1 then ℓa(1) = tr (a−3) = tr

(

x
a

+
(

x
a

)2
)

= 0. 2

Remark 2 Note that the same principle as in Theorem 1 allows generating a large variety
of differentially 4-uniform functions from APN functions. For example, for any APN
function F the following functions are differentially 4-uniform

◦ F (x) + tr(G(x)) for any function G;

◦ F ◦ A and A ◦ F for any affine function A which is 2-to-1. 2

4 CCZ-inequivalence of the new APN function to power

mappings

Theorem 2 The function of Corollary 1 is CCZ-inequivalent to any Gold function on F2n

if n ≥ 7 and n > 2p where p is the smallest positive integer different from 1 and 3 and

coprime with n.

Proof. Let F (x) = x3 + tr(x9) and G(x) = x2r+1 be APN functions on F2n , n ≥ 7,
r ≤ (n − 1)/2.

Suppose the functions F and G are EA-equivalent. Then, there exist affine permuta-
tions L1, L2 and an affine function L′ such that

L1(x
3) + L1(tr(x

9)) = (L2(x))2t+1 + L′(x).

That is,
L1(x

3) + L1(1) tr(x9) = (L2(x))2t+1 + L′(x).

Since the functions are quadratic, we can assume without loss of generality that L1 and
L2 are linear: L1(x) =

∑

m∈Z/nZ
bmx2m

, L2(x) =
∑

p∈Z/nZ
cpx

2p

. Then we get

∑

m∈Z/nZ

bmx3·2m

+ tr(x9)
∑

m∈Z/nZ

bm =
∑

l,p∈Z/nZ

cpc
2t

l x2l+t+2p

+ L′(x). (1)
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On the left hand side of the identity (1) we have only items of the type x3·2m

, x9·2m

, with
some coefficients. Therefore this must be true also for the right hand side of the identity.

Let p be the smallest positive integer different from 1 and 3 such that gcd(n, p) = 1
(for example, if n is odd then p = 2, if n is even and not divisible by 5 then p = 5). If
n > 2p then 2p + 1 is not in the same cyclotomic coset with 3 or 9. Therefore, the items
of the type x2k(2p+1) must cancel. That is, for any k

ckc
2t

k−t+p = ck+pc
2t

k−t. (2)

Since n ≥ 7 then 3 and 9 are in different cyclotomic cosets and we have for any k

L1(1) = ckc
2t

k−t+3 + ck+3c
2t

k−t.

If L1(1) 6= 0 then
ckc

2t

k−t+3 6= ck+3c
2t

k−t. (3)

If ck 6= 0 for all k then from (2) and (3) we get

ckc
−2t

k−t = ck+pc
−2t

k−t+p, (4)

ckc
−2t

k−t 6= ck+3c
−2t

k−t+3. (5)

Since gcd(n, p) = 1 and from (4)

ckc
−2t

k−t = cmc−2t

m−t

for any m. It contradicts (5). Thus, ck = 0 for some k. Then from (2) and (3) we get that
ck+p = 0. Repeating this step for ck+p, ck+2p, ... we get ck+ps = 0 and since gcd(n, p) = 1
then ck = 0 for all k. A contradiction. If L1(1) = 0 then the equation L(x) = 0 has at least
2 solutions 0, 1 and therefore L1 is not a permutation. Thus, F and G are EA-inequivalent.

Suppose that F (x) and G(x) are CCZ-equivalent, that is, there exists an affine auto-
morphism L = (L1, L2) of F2n × F2n such that y = F (x) ⇔ L2(x, y) = G(L1(x, y)) and
L1(x, F (x)) is a permutation. This implies then L2(x, F (x)) = G(L1(x, F (x))). Writing
L1(x, y) = L(x) + L′(y) and L2(x, y) = L′′(x) + L′′′(y) gives

L′′(x) + L′′′(F (x)) = G (L(x) + L′(F (x))) . (6)

We can write

L(x) = b +
∑

m∈Z/nZ

bmx2m

,

L′(x) = b′ +
∑

m∈Z/nZ

b′mx2m

,

L′′(x) = b′′ +
∑

m∈Z/nZ

b′′mx2m

,

L′′′(x) = b′′′ +
∑

m∈Z/nZ

b′′′mx2m

,

b + b′ = c.
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Then we get

G(L(x) + L′(F (x))) =
(

L(x) + L′(x3 + tr(x9)
) (

L(x) + L′(x3 + tr(x9)
)2r

=



c +
∑

m∈Z/nZ

bmx2m

+
∑

m∈Z/nZ

b′mx2m(2+1) + tr(x9)
∑

m∈Z/nZ

b′m





×



c2r

+
∑

m∈Z/nZ

b2r

mx2m+r

+
∑

m∈Z/nZ

b′2
r

m x2m+r(2+1) + tr(x9)
∑

m∈Z/nZ

b′2
r

m





= Q(x) + [
∑

m,k∈Z/nZ

bmb′2
r

k x2m+2k+r+2k+r+1

+ L′(1)2r
∑

m,k∈Z/nZ

bmx2m+2k+3+2k

+
∑

m,k∈Z/nZ

b′mb2r

k x2m+1+2m+2k+r

+ L′(1)
∑

m,k∈Z/nZ

b2r

mx2m+r+2k+3+2k)] + [
∑

m,k∈Z/nZ

b′mb′2
r

k x2m+1+2m+2k+r+1+2k+r

+ L′(1)2r
∑

m,k∈Z/nZ

b′mx2m+1+2m+2k+3+2k

+ L′(1)
∑

m,k∈Z/nZ

b′2
r

m x2m+r+1+2m+r+2k+3+2k

],

where Q(x) is a quadratic polynomial. Obviously, all terms in the expression above whose
exponents have 2-weight strictly greater than 2 must cancel.
Since F and G are EA-inequivalent then L′ is not a constant. Then there exists m ∈ Z/nZ

such that b′m 6= 0.
Let L′(1) 6= 0. Since the items with the exponet 2m+1+2m+2m+2+2m+5 have to vanish

then we get L′(1)2r

b′m = L′(1)b′2
r

m−r and since L′(1) 6= 0, b′m 6= 0 and r is coprime with n
then b′k 6= 0 and b′kb

′−2r

k−r = L′(1)1−2r

for all k. Now we can deduce that b′k+r = L′(1)1−2r

b′2
r

k

for all k. Then, introducing µ such that L′(1)1−2r

= µ2r−1, we deduce that µb′k+r = (µb′k)
2r

for all k and then that µb′k+1 = (µb′k)
2 (using that gcd(r, n) = 1) and then µb′k = (µb′0)

2k

.
This means that µL′(x) = µb′ + tr(µb′0x). It implies that all nonquadratic items in the
last bracket vanish and L′(x) = d + tr(d′x) for some d, d′.
The function L is not 0 because L′ is not a permutation, then bm 6= 0 for some m. Since
the items with the exponent 2m + 2m+2 +2m+5 have to vanish then L′(1)2r

bm = L′(1)b2r

m−r.
Like above we get L(x) = d + tr(d′x). Thus, L1(x, F (x)) = d′′ + tr(F ′(x)) for some d′ and
F ′(x) and L1(x, F (x)) is not a permutation. A contradiction.

Let L′(1) = 0 and r 6= 1. Then 2m+1 + 2m + 2m+r+1 + 2m+r has 2-weight 4 and
since the items with this exponent should cancel then we get b′2

r+1
m = b′m+rb

′2r

m−r. Since
b′m 6= 0 then b′m+r, b

′
m−r 6= 0 and b′mb′−2r

m−r = b′m+rb
′−2r

m . Since gcd(n, r) = 1 then b′k 6= 0,
b′kb

′−2r

k−r = b′mb′−2r

m−r for all k and this implies L′(x) = d + tr(d′x) for some d, d′. Since
L1(x, F (x)) is a permutation then L 6= 0 and bm 6= 0 for some m. The items with the
exponent 2m + 2m+r + 2m+r+1 should vanish. Therefore, bmb′2

r

m = b′m+rb
2r

m−r and bmb−2r

m−r =
b′m+rb

′−2r

m . As above it leads to the equality L(x) = d + tr(d′x) which is in contradiction
with L1(x, F (x)) being a permutation.
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Let L′(1) = 0 and r = 1. Since L′(1) = 0 and b′m 6= 0 then there exists t such
that b′m+t 6= 0. If t 6= −1,−2 then 2m+1 + 2m + 2m+t+2 + 2m+t+1 has 2-weight 4 and
we get b′mb′2

r

m+t = b′m+t+1b
′2r

m−1 and b′mb′−2r

m−1 = b′m+t+1b
′−2r

m+t. Therefore, L′(x) = d + tr(d′x)
for some d, d′. If t 6= 1, 2 then 2m+t+1 + 2m+t + 2m+2 + 2m+1 has 2-weight 4 and we get
b′m+tb

′2r

m = b′m+1b
′2r

m+t−1 and again L′(x) = d + tr(d′x) for some d, d′. Thus, L 6= 0 and then
bm 6= 0 for some m. Since the items with the exponent 2m + 2m+2 + 2m+3 cancel then
bmb′2

r

m+1 = b′m+2b
2r

m−1 and bmb−2r

m−1 = b′m+2b
′−2r

m+1. This implies L(x) = d + tr(d′x) and, thus,
L1(x, F (x)) is not a permutation. Therefore, F and G are not CCZ-equivalent. 2

Corollary 2 The function of Corollary 1 is EA-inequivalent to any power function on F2n

if n ≥ 7 and n > 2p, where p is the smallest positive integer different from 1 and 3 and

coprime with n.

Proof. The function F (x) = x3+tr(x9) is quadratic and by Theorem 2 it is EA-inequivalent
to any quadratic power function. Since the algebraic degree is EA-invariant then F is EA-
inequivalent to any power mapping. 2

Dobbertin and inverse APN functions have unique Walsh spectra (except the case n = 3
when the inverse function is EA-equivalent to x3) which are different from the Walsh spectra
of quadratic APN functions (see [12, 15, 32]). Since the extended Walsh spectrum of a
function is invariant under CCZ-equivalence then we can make the following conclusion.

Proposition 1 The function of Corollary 1 is CCZ-inequivalent to the inverse and Dob-

bertin APN functions for n ≥ 7.

For n = 7 the ∆-rank of the function F (x) = x3 +tr(x9) equals 212 and differs from the
∆-ranks of the Kasami functions x13 and x23 (which equal 338 and 436, respectively). Thus,
for n = 7 the function F is CCZ-inequivalent to Kasami functions, and by Theorem 2 to
the Gold functions. Since in this field the Welch and Niho cases coincide with the Kasami
cases then F is CCZ-inequivalent to all power maps on F27 .

Corollary 3 The function F (x) = x3 + tr(x9) is CCZ-inequivalent to power functions

on F27.

Conjecture 1 The function F (x) = x3+tr(x9) is CCZ-inequivalent to any power function

on F2n if n ≥ 7 and n > 2p, where p is the smallest positive integer different from 1 and 3
and coprime with n.

Remark 3 Applying CCZ-equivalence to the quadratic APN function F (x) = x3 +tr(x9),
it is possible to construct classes of nonquadratic APN mappings which are CCZ-inequivalent
to power functions. For example,

◦ for n odd the function

x3 + tr(x9) + (x2 + x) tr(x3 + x9)
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and for n even the function

x3 + tr(x9) + (x2 + x + 1) tr(x3)

are CCZ-equivalent to F (using the affine permutation L(x, y) = (x + tr(y), y)) and
have the algebraic degree 3;

◦ for n divisible by 6 the function

[x+trn/3(x
6+x12)+tr(x) trn/3(x

3+x12)]3+tr([x+trn/3(x
6+x12)+tr(x) trn/3(x

3+x12)]9)

is CCZ-equivalent to F (using the affine permutation L(x, y) = (x+trn/3(y
2+y4), y))

and have the algebraic degree 4.

The proof is the same as for the cases from [9, 10]. Note that for n even both functions
F ′(x) = x3 +(x2 +x+1) tr(x3) and F ′(x)+tr(x9) are APN like in the case of the functions
x3 and x3 + tr(x9). 2

5 Further quadratic APN constructions?

There is a straightforward generalization of Theorem 1:

Theorem 3 Let F be a quadratic APN function from F2n to itself, let f be a quadratic

function from F2n to F2m where m is a divisor of n, and

ϕF (x, a) = F (x) + F (x + a) + F (a) + F (0),

ϕf(x, a) = f(x) + f(x + a) + f(a) + f(0).

Then the function F (x) + f(x) is APN if for every nonzero a ∈ F2n there exists a linear

function ℓa from F2n to F2m which satisfies the conditions

1) ϕf(x, a) = ℓa(ϕF (x, a)),

2) for every u ∈ F
∗
2m, if ϕF (x, a) = u for some x ∈ F2n then ℓa(u) 6= u.

We could find an application of Theorem 3:

Corollary 4 Let n = 2m where m is an even positive integer. Let us denote by trn/m

the trace function from F2n to F2m : trn/m(x) = x + x2m

. The functions F (x) = x3 +

trn/m(x2m+2) = x3 + x2m+2 + x2m+1+1 and F ′(x) = x3 + (trn/m(x))3 are APN.

But unfortunately, these functions are not EA-inequivalent to power functions. Indeed, let
G(x) be the Gold function G(x) = x2m−1+1. Let γ be any element of F4 \F2 and L1, L2 be
the linear mappings L1(x) = γ2x2m+1

+ γ x2, L2(x) = γ x2m

+ γ2x. Then L = (L1, L2) is

11



an isomorphism since the system

{

γ2x2m+1

+ γ x2 = 0
γ x2m

+ γ2x = 0
clearly admits 0 as only solution.

And since γ2m

= γ, γ2m−1

= γ2 and γ + γ2 = 1, we have

G ◦ L1(x) =
(

γ2x2m+1

+ γ x2
)2m−1+1

=
(

γ x + γ2x2m)

(

γ2x2m+1

+ γ x2
)

= γ
(

x3 + x2m+2 + x2m+1+1
)2m

+ γ2
(

x3 + x2m+2 + x2m+1+1
)

= L2 ◦ F (x).
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