Constructing new APN functions from known ones
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Abstract

We present a method for constructing new quadratic APN functions from known
ones. Applying this method to the Gold power functions we construct an APN func-
tion 23 +tr(x?) over Fan. It is proven that in general this function is CCZ-inequivalent
to the Gold functions (and therefore EA-inequivalent to power functions), to the in-
verse and Dobbertin mappings, and in the case n = 7 it is CCZ-inequivalent to all
power mappings.
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1 Introduction

A function F' : Fy — F% is called almost perfect nonlinear (APN) if, for every a # 0 and
every bin F3, the equation F'(z)+F(x+a) = b admits at most two solutions (it is also called
differentially 2-uniform). Vectorial Boolean functions used as S-boxes in block ciphers must
have low differential uniformity to allow high resistance to the differential cryptanalysis
(see [3, 31]). In this sense APN functions are optimal. The notion of APN function is
closely connected to the notion of almost bent (AB) function. A function F' : F} — F%
is called AB if the minimum Hamming distance between all the Boolean functions v - F,
v € F3\{0} (called the component functions of F'), and all affine Boolean functions on
F? is maximal. Here, “” denotes the usual inner product in Fj. Any other choice of an
inner product would lead to the same notion. For instance, the vector space 4 can be
identified to the field Fon and we can then take for inner product z -y = tr(zy) where tr
is the absolute trace function. The minimum Hamming distance between all component
functions of F' and all affine Boolean functions on F} is called the nonlinearity of F' and its
maximum equals 27! — 2" (see [16]). AB functions exist for n odd only and oppose an

*Department of Mathematics, University of Trento, I[-38050 Povo (Trento), ITALY; e-mail:
lilia.b@mail.ru

"Department of Mathematics, University of Paris 8; also a member of INRIA, Projet CODES, BP 105 -
78153, Le Chesnay Cedex, FRANCE; e-mail: claude.carlet@inria.fr

IGRIM, University of Toulon, BP 132, 83957 La Garde Cedex, FRANCE; e-mail: Gre-
gor.Leander@rub.de; supported by a DAAD postdoc fellowship



optimum resistance to the linear cryptanalysis (see [29, 16]). Besides, every AB function
is APN [16], and in the n odd case, any quadratic function is APN if and only if it is AB

[15].

The APN and AB properties are preserved by some transformations of functions [15, 31].
If F'is an APN function, A;, Ay are affine permutations and A is affine then the function
F'= Ay o FoAy+ Ais also APN (the functions F' and F’ are called extended affine
equivalent (FEA-equivalent)). Besides, the inverse of any APN permutation is APN too.
Until recently, the only known constructions of APN and AB functions were EA-equivalent
to power functions F(z) = 2 over finite fields (Fa» being identified with F%). Table 1 gives
all known values of exponents d (up to multiplication by a power of 2 modulo 2" — 1, and
up to taking the inverse when a function is a permutation) such that the power function
2% over Fyn is APN. For n odd the Gold, Kasami, Welch and Niho APN functions from

Table 1 are also AB (for the proofs of AB property see [12, 13, 24, 25, 27, 31]).

Table 1
Known APN power functions % on Fan.
Functions ‘ Exponents d ‘ Conditions | Proven in ‘
Gold 20 +1 ged(i,n) =1 | [24, 31]
Kasami 220 20 41 ged(i,n) =1 | [26, 27]
Welch 26+3 n=2t+1 [21]
Niho 20 +27 — 1, ¢ even n=2+1 [20]
2t + 2% — 1, t odd
Inverse 22t —1 n=2t+1 2, 31]
Dobbertin | 2% + 23 + 220 4 27 — | n =5t 22]
Table 2
Known APN functions EA-inequivalent to power functions on Fon.
Functions ‘ Conditions ‘ Alg. degree
n >4
22 (22 x4 tr(1) 4 1) tr(e2 T+ 2 tr(1)) ged(i,n) =1 3
n divisible by 6
(x b1, /5 (22D 42D (@) try, g5 (22 4 :622i(2i+1)))2 o ged(i,n) =1 4
n divisible by 3
(a:2_1+1 + trp,/3(z + xin)) ' ged(2i,n) =1 4
m#mn
22+ 4 tr/m (22 1) + 2% try/m (T) + 2 tr/m ()2 n odd
1
+ (trn/m (2)2'+1 4 trh /m (22 1) + tr /i (w)) T 4 trn/m(:v)y +1) | n divisible by m m+ 2

ot

+ (trn/m(I)QiJrl + trn/m(ITJrl) + trn/m(x)) e (.CC + trn/m(x))

ged(i,n) =1

In [15], Carlet, Charpin and Zinoviev introduced an equivalence relation of functions,
more recently called CCZ-equivalence, which corresponds to the affine equivalence of the
graphs of functions and preserves APN and AB properties. EA-equivalence is a particular




case of CCZ-equivalence and any permutation is CCZ-equivalent to its inverse [15]. In
9, 10], it is proven that CCZ-equivalence is more general, and applying CCZ-equivalence
to the Gold mappings classes of APN functions EA-inequivalent to power functions are
constructed in [5, 9, 10]. These classes are presented in Table 2. When n is odd, these
functions are also AB.

These new results on CCZ-equivalence have raised several interesting questions. One
of them is whether the known classes of APN power functions are CCZ-inequivalent.
Partly the answer is given in [7]: it is proven that in general the Gold functions are
CCZ-inequivalent to the Kasami and Welch functions, and that for different parameters
1 <i,j < 271 the Gold functions #** and 2% are CCZ-inequivalent. Another inter-
esting question is the existence of APN polynomials CCZ-inequivalent to power functions.
In [23] it is shown that one of the ways to construct such polynomials is to consider lin-
ear combinations of two different Gold power functions. Using this approach they have
introduced two quadratic APN binomials on Fyi0 and Fyi2 which are CCZ-inequivalent to
power maps. After that, two infinite classes of quadratic APN binomials CCZ-inequivalent
to power functions have been constructed in [6, 7, 8]. These classes are presented in Table 3
(this table gives all known classes of APN functions CCZ-inequivalent to power functions)
for the cases n divisible by 3 and 4. Another approach for constructing quadratic APN
polynomials CCZ-inequivalent to power functions is introduced in [18]: the idea is to
consider quadratic hexanomials of a certain type over Fq2n as good candidates for being
differentially 4-uniform. This approach gives new examples of quadratic APN functions
over Fos and Fys which are CCZ-inequivalent to power functions [18]. Similar approach
was used to construct new quadratic APN quadrinomials over Fos in [30]. Also it is proven
in [4] that for n <5 there exist no APN functions CCZ-inequivalent to power mappings.

Table 3
Known APN functions CCZ-inequivalent to power functions on Fon.
‘ ‘ Functions ‘ Conditions ‘ Proven in ‘
n = 3k, ged(k, 3) = ged(s, 3k) =1
The case n | 2" +1 4 g2 +2"" k>4,i=sk mod3,m=3—1 [7, 8]
divisible by 3 w has the order 2%% 4+ 2% 41
n = 4k, ged(k,2) = ged(s, 2k) =1
The case n | o T4 4+ w2 +2""" k>3,i=sk mod4, m=4—1 [6]
divisible by 4 w has the order 23% 4 22F 4 9k 4 1
n>"7
The new case 23 + tr(2?) n > 2p for the smallest possible p > 1 Corollary 1 of
such that p # 3, ged(p,n) =1 the present paper

All constructions of APN polynomials CCZ-inequivalent to power functions mentioned
above have not given new APN polynomials with coefficients in F,. A natural question is
whether all APN polynomials with coefficients in Fy are CCZ-equivalent to power functions.
In the present paper we show that the answer to this question is negative. We give a new
approach for constructing quadratic APN functions and using it we construct a class of
quadratic APN polynomials with coefficients in Fy. We prove that the function F(z) =
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23 +tr(2?) is APN over Fyn for any n, and that for almost all n > 7 it is CCZ-inequivalent
to the Gold functions (and therefore EA-inequivalent to power functions), to the inverse
and Dobbertin functions. Obviously, this function is AB for all odd n. We conjecture
that for n > 7 the function F' is CCZ-inequivalent to any power function. This conjecture
is confirmed for the case n = 7. Further we show that applying CCZ-equivalence to
quadratic APN functions, it is possible to construct classes of nonquadratic APN mappings
CCZ-inequivalent to power functions. Note that the existence of APN functions CCZ-
inequivalent to power functions and to quadratic functions is still an open problem.

2 Preliminaries

Let F be the n-dimensional vector space over the field Fy. Any function F' from Fj to
itself can be uniquely represented as a polynomial on n variables with coefficients in F3,
whose degree with respect to each coordinate is at most one:

F(ry,.rn) =Y cw)(]]z),  cw) e F;.

uely =1

This representation is called the algebraic normal form of F and its degree d°(F') the
algebraic degree of the function F.

Besides, the field Fon can be identified with F as a vector space. Then, viewed as a
function from this field to itself, F' has a unique representation as a univariate polynomial
over Fyn of degree smaller than 2":

2" —1

F(x) = Z ', ¢ € Fon.
=0

For any k, 0 < k£ < 2" — 1, the number wy(k) of the nonzero coefficients k, € {0,1} in
the binary expansion Z::_g 2%k, of k is called the 2-weight of k. The algebraic degree of
F is equal to the maximum 2-weight of the exponents i of the polynomial F'(x) such that
C; % 0, that iS, dO(F) = MaXp<i<n—1,¢;#0 w2(z) (see [15])

A function F : Fy — FJ is linear if and only if F'(x) is a linearized polynomial over

[Fon, that is,
n—1
2i
E cr®, ¢ € Fon.
i=0

The sum of a linear function and a constant is called an affine function.

Let I be a function from Fy. to itself and Ay, Ay : Fon — Fon be affine permutations.
The functions I’ and A;o0Fo A, are then called affine equivalent. Affine equivalent functions
have the same algebraic degree (i.e. the algebraic degree is affine invariant).

As recalled in the Introduction, we say that the functions F' and F’ are extended affine
equivalent if F' = Ajo0F o Ay+ A for some affine permutations A;, A, and an affine function
A. If F' is not affine, then F' and F’ have again the same algebraic degree.
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Two mappings F' and F’ from Fy. to itself are called Carlet-Charpin-Zinoviev equivalent
(CCZ-equivalent) if the graphs of F' and F’, that is, the subsets Gp = {(z, F'(z)) | © € Fan}
and Gp = {(z, F'(z)) | © € Fon} of Fan X Fgn, are affine equivalent. Hence, F' and F” are
CCZ-equivalent if and only if there exists an affine automorphism £ = (L, L) of Fon X Fan
such that

y = F(z) & La(z,y) = F'(Li(z,y)).

Note that since £ is a permutation then the function L (x, F'(x)) has to be a permutation
too (see [7]). As shown in [15], EA-equivalence is a particular case of CCZ-equivalence and
any permutation is CCZ-equivalent to its inverse.

For a function F': Fon — Fon and any elements a,b € Fon we denote
dp(a,b) = [{x € Fy : F(x +a) + F(x) = b}|.

F'is called a differentially J-uniform function if maxuers, ber,n dr(a,b) < §. Note that
0 > 2 for any function over Fon. Differentially 2-uniform mappings are called almost
perfect nonlinear.

For any function F' : Fon — Fan we denote

)\F(a, b) _ Z (_1)tr(bF(x)+a:c)’ a,b € Fon,

z€Fon

where tr(z) = z + 22 + 2% 4+ ... + 22" is the trace function from Fyn into F,. The set
Ap = {Ar(a,b) : a,b € Fan, b # 0} is called the Walsh spectrum of the function F' and the
multiset {|Ar(a,bd)| : a,b € Fon,b # 0} is called the extended Walsh spectrum of F. The

value .
n—1
NL(F)=2""— 3 GGFEE?E{]F;” |Ar(a,d)|
equals the nonlinearity of the function F. The nonlinearity of any function F' satisfies the
inequality
NL(F) <2t —2"

([16, 33]) and in case of equality F is called almost bent or mazimum nonlinear.

Obviously, AB functions exist only for n odd. It is proven in [16] that every AB function
is APN and its Walsh spectrum equals {0, iQnTH}. If n is odd, every APN mapping which
is quadratic (that is, whose algebraic degree equals 2) is AB [15], but this is not true for
nonquadratic cases: the Dobbertin and the inverse APN functions are not AB (see [13, 15]).
When n is even, the inverse function 22" =2 is a differentially 4-uniform permutation [31]
and has the best known nonlinearity [28], that is 2"~' — 22 (see [13, 19]). This function
has been chosen as the basic S-box, with n = 8, in the Advanced Encryption Standard
(AES), see [17]. A comprehensive survey on APN and AB functions can be found in [14].

It is shown in [15] that, if F' and G are CCZ-equivalent, then F' is APN (resp. AB)
if and only if G is APN (resp. AB). More generally, CCZ-equivalent functions have the
same differential uniformity and the same extended Walsh spectrum (see [9]). Further
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invariants for CCZ-equivalence are given in [23] (see also [18]) in terms of group algebras.
Let G = Fy[Fon x Fan] be the group algebra of Fon x Fon over Fo. It consists of the formal

sums
E agg

geG

where a, € Fy. If S is a subset of Fan X Fan then it can be identified with the element
Y scgs of G. For any APN mapping F' we denote

Ap ={(a,b) : F(xz)+ F(x 4+ a) = b has 2 solutions} C Fon x Fon .

The dimensions of the ideals of G generated by Ap and by the graph G g of F are called A-
and I-ranks, respectively. According to [23] (and also [18]), A- and I'-ranks of a function
are CCZ-invariant.

3 Construction of new quadratic APN functions

In the theorem below we give a general approach for constructing new quadratic APN
functions from known ones.

Theorem 1 Let F' be a quadratic APN function from F3 to itself, let f be a quadratic
Boolean function on Fy and

vp(r,a) = F(x)+ F(x 4+ a) + F(a) + F(0),

pr(x,a) = f(x) + f(x +a) + f(a) + f(0).

Then the function F(xz) + f(z) is APN if for every nonzero a € Fy there exists a linear
Boolean function ¢, satisfying the conditions

1) gof(:c,a) = €a<90F(x7a));
2) if pp(z,a) =1 for some x € Fy then {,(1) = 0.

Proof. Since the function F'(z) + f(x) is quadratic, it is APN if and only if, for every
nonzero a € I}, the equation pp(z,a) + ¢s(z,a) = 0 admits at most two solutions (see
e.g. [14]). According to the hypothesis on ¢,, a solution to this equation must be such that
¢f(r,a) = 0 and therefore such that ¢p(x,a) = 0. Then, F' being quadratic APN, this
equation admits at most two solutions. O

Remark 1 Note that, in the situation of Theorem 1, a linear function [, satisfying s (z, a) =
lo(pr(x,a)) always exists. This is due to the fact that, by the assumption F'is APN and
then the kernel of ¢p(z,a) equals {0,a}. This set is always a subset of the kernel of
¢¢(z,a), which is indeed the necessary and sufficient condition for the existence of [,,.
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A direct consequence of Theorem 1 is that, if F'is APN and if ¢ is a linear form such
that £(1) = 0, then the function F'(x)+ ¢(F(z)) is APN. But this function is affine equiva-
lent to F since it is equal to Lo F' where L(x) = x + {(x), and the condition that ¢(1) =0
is equivalent to saying that L is a permutation.

We give now an example where Theorem 1 leads to a function which is CCZ-inequivalent
to the original function F.

Corollary 1 Let n be any positive integer. Then the function x® + tr(z%) is APN on Fan.

Proof. We can apply Theorem 1 with F(x) = 23, pr(x,a) = a*z + ax?, f(z) = tr(2?),
or(z,a) = tr(az 4+ az®) and £,(y) = tr(a®y + a®y* + a ®y?). Indeed, we have then
lo(or(x,a)) = tr(a(a®z + az?) + a®(a*z?® + a*z*) + a3 (a®z* + a*2®)) = ¢y(x,a) and if
there exists x € Fj such that ¢p(x,a) =1 then £,(1) = tr (a™3) = tr (% + (£)2> =0. O

a

Remark 2 Note that the same principle as in Theorem 1 allows generating a large variety
of differentially 4-uniform functions from APN functions. For example, for any APN
function F' the following functions are differentially 4-uniform

o F(x)+ tr(G(z)) for any function G;

o FFoAand Ao F for any affine function A which is 2-to-1. O

4 CCZ-inequivalence of the new APN function to power
mappings

Theorem 2 The function of Corollary 1 is CCZ-inequivalent to any Gold function on Fan
if n > 7 and n > 2p where p is the smallest positive integer different from 1 and 3 and
coprime with n.

Proof. Let F(z) = 2 + tr(2%) and G(x) = z* ™' be APN functions on Fan, n > 7,
r<(n-—1)/2.

Suppose the functions F' and G are EA-equivalent. Then, there exist affine permuta-
tions Ly, Ly and an affine function L’ such that

Ly(2*) + Li(tr(a”)) = (La(2))* ' + L' ().

That is, t
Li(2%) + Li(1) tr(a®) = (La(2))2+! + L' (@).

Since the functions are quadratic, we can assume without loss of generality that L, and
Ly are linear: Ly(x) = 3, cp 1z bm@®, La(x) = 3 )z 2™ . Then we get

Z bn®?" + tr(z?) Z b = Z e, 22T 4 (), (1)

meZ/nl meZ/nl l,pEZ/nZ



On the left hand side of the identity (1) we have only items of the type 22", 292" with
some coefficients. Therefore this must be true also for the right hand side of the identity.

Let p be the smallest positive integer different from 1 and 3 such that ged(n,p) = 1
(for example, if n is odd then p = 2, if n is even and not divisible by 5 then p = 5). If
n > 2p then 2P + 1 is not in the same cyclotomic coset with 3 or 9. Therefore, the items
of the type 22"+ must cancel. That is, for any k

t t
Ckcz—ter = ChipChy (2)
Since n > 7 then 3 and 9 are in different cyclotomic cosets and we have for any k
Li(1) = Ckcit—tJrS + Ck+30it—t-
If Ly (1) # 0 then

Ckczt—t+3 # Ck+3czt—t- (3)
If ¢ # 0 for all k£ then from (2) and (3) we get

_2t o _2t
CkCLZy = ChapCrliyp (4)

Ckclzgi # Ck+30;31+3' (5)
Since ged(n,p) = 1 and from (4)
ckc,ﬁi = CmC;z2—tt
for any m. It contradicts (5). Thus, ¢, = 0 for some k. Then from (2) and (3) we get that
ck+p = 0. Repeating this step for cxip, Cri2p, ... We get cxips = 0 and since ged(n,p) = 1
then ¢, = 0 for all k. A contradiction. If L1(1) = 0 then the equation L(z) = 0 has at least
2 solutions 0, 1 and therefore L; is not a permutation. Thus, ' and G are EA-inequivalent.
Suppose that F(x) and G(x) are CCZ-equivalent, that is, there exists an affine auto-
morphism L = (L, Ly) of Fan X Fan such that y = F(x) < Lo(z,y) = G(Li(z,y)) and
Ly(z, F(x)) is a permutation. This implies then Lo(z, F(z)) = G(Ly(z, F(x))). Writing
Li(z,y) = L(z) + L'(y) and Ly(z,y) = L"(xz) + L"(y) gives

L'(z) + L"(F(x)) = G (L(z) + L'(F(z))) - (6)
We can write

L(z) = b+ Z bnz®"

meZ/nZ

L'(z) = b+ Z v ",
meZ/nZ

L//(x) — b//+ Z b;/nx}m7
meZ/nZ

Lm(l’) = ¥+ Z b%an’
meZ/nl

b+b = c



Then we get

r

G(L(x) + L'(F(x)) = (L(x)+ L'(z* + te(2%)) (L(z) + L'(z° + tr(2%))?

= [e+ Y b2+ D 027 42 Y0,

meZ/nl meZ/nZ meZ/nZ
Is m+r Is m+r Is
% C2 4 § b2 2 + § b/2 2 (2+1) 4 tI' E b/2
meZ/nZ meZ/nl meZ/nl
T m k+r k+r+1
— Q($) + [ § bmb;? 1'2 +2 +2
m,kE€Z/nZ
T m k+3 k T m+1 m k+r
4 L/(1)2 § bme +2 +2 4 § b;nbz ZL’2 +2™+2
m,k€Z/nZ m,k€Z/nZ
T m—+r k+3 k r m—+1 m k+r+1 k+r
4 I/(l) E b72n.f1f2 +2 +2 )] _'_[ § b/m,bg LU2 +2M 42 +2
m,k€Z/nZ m,k€Z/nZ
+ L,(1)2r Z b/ x2m+1+2m+2k+3+2k —I— L/(l) Z b,2'r x2m+r+1+2m+r+2k+3+2k]
m m Y
m,k€Z/nZ m,k€Z/nZ

where Q(z) is a quadratic polynomial. Obviously, all terms in the expression above whose
exponents have 2-weight strictly greater than 2 must cancel.

Since F' and G are EA-inequivalent then L’ is not a constant. Then there exists m € Z/nZ
such that b, # 0.

Let L'(1) # 0. Since the items with the exponet 2™+ +2m +2m+2 4. 9mF5 have to vanish

then we get L'(1)2'V, = L'(1)b/*" . and since L'(1) # 0,4, # 0 and r is coprime with n
then b, # 0 and bb) 2 = L'(1)}2" for all k. Now we can deduce that b = L' (D)0
for all k. Then, introducing p such that L'(1)'%" = p* !, we deduce that pbj_, = (,ub;)zr
for all k and then that b, = (ub})? (using that ged(r,n) = 1) and then ubj, = (ubj)*"
This means that uL'(z) = pb’ + tr(ubox). It implies that all nonquadratic items in the
last bracket vanish and L'(z) = d + tr(d'z) for some d,d'.
The function L is not 0 because L’ is not a permutation, then b,, # 0 for some m. Since
the items with the exponent 2™ 4 2™2 4+ 2™ have to vanish then L'(1)*'b,, = L'(1)b%_,
Like above we get L(z) = d + tr(d'x). Thus, Li(x, F(z)) = d’ + tr(F'(x)) for some d’ and
F'(x) and Ly(z, F(z)) is not a permutation. A contradiction.

Let L'(1) = 0 and r # 1. Then 2m%t 4 2m 4 2mFr+l 4 9m+7 hag 2-weight 4 and

since the items with this exponent should cancel then we get b2 ™' = b/ . 2" . Since
b, # 0 then b, .0}, . # 0 and b], b2 = b, b-%. Since ged(n,r) = 1 then b, # 0,

b, b;_z,f v b2 for all k and this 1mphes L'(x) = d + tr(d'z) for some d,d'. Since
Ly(z, F(x)) is a permutatlon then L # 0 and b,, # 0 for some m. The items with the

exponent 2™ + 2™*7 4 2™+ should vanish. Therefore, b,,b/2 =¥/, . b and b,b, %, =

b .02 As above it leads to the equality L(z) = d + tr(d’ ) which is in contradiction

m—4r-m

with Ll(:c, F(zx)) being a permutation.



Let L'(1) = 0 and » = 1. Since L'(1) = 0 and b/, # 0 then there exists ¢ such
that ¥),,, # 0. If t # —1,—2 then 2™*! 4 2m 4 2mH+2 4 9m+itl hag 2-weight 4 and
we get 0,02, = b, b2, and Vb % = b, ., b7, Therefore, L'(z) = d + tr(d'z)
for some d,d’. If t # 1,2 then 2m+t+l 4 om+t 4 gm+2 4 9m+l hag 2-weight 4 and we get
v, b =0, b2, and again L'(z) = d + tr(d'z) for some d,d’. Thus, L # 0 and then
b # 0 for some m. Since the items with the exponent 2™ + 2m+2 4 9m+3 cancel then
binb2 = b, ,b%_ and byb,2 | = b, ,b2). This implies L(z) = d + tr(d'z) and, thus,

Ly(z, F(z)) is not a permutation. Therefore, F' and G are not CCZ-equivalent. O

Corollary 2 The function of Corollary 1 is EA-inequivalent to any power function on Fon
if n > 7 and n > 2p, where p is the smallest positive integer different from 1 and 3 and
coprime with n.

Proof. The function F(z) = x3+tr(z?%) is quadratic and by Theorem 2 it is EA-inequivalent
to any quadratic power function. Since the algebraic degree is EA-invariant then F is EA-
inequivalent to any power mapping. O

Dobbertin and inverse APN functions have unique Walsh spectra (except the case n = 3
when the inverse function is EA-equivalent to 23) which are different from the Walsh spectra
of quadratic APN functions (see [12, 15, 32]). Since the extended Walsh spectrum of a
function is invariant under CCZ-equivalence then we can make the following conclusion.

Proposition 1 The function of Corollary 1 is CCZ-inequivalent to the inverse and Dob-
bertin APN functions for n > 7.

For n = 7 the A-rank of the function F'(z) = 2+ tr(z?) equals 212 and differs from the
A-ranks of the Kasami functions #'® and 2?* (which equal 338 and 436, respectively). Thus,
for n = 7 the function F' is CCZ-inequivalent to Kasami functions, and by Theorem 2 to
the Gold functions. Since in this field the Welch and Niho cases coincide with the Kasami
cases then F'is CCZ-inequivalent to all power maps on Fyr.

Corollary 3 The function F(z) = 2* + tr(2%) is CCZ-inequivalent to power functions
on Fg? .

Conjecture 1 The function F(z) = 23 +tr(z°) is CCZ-inequivalent to any power function
on Fon if n > 7 and n > 2p, where p is the smallest positive integer different from 1 and 3
and coprime with n.

Remark 3 Applying CCZ-equivalence to the quadratic APN function F(z) = 23+ tr(x?),
it is possible to construct classes of nonquadratic APN mappings which are CCZ-inequivalent
to power functions. For example,

o for n odd the function
2?4+ tr(2%) + (2% + 2) tr(2® + 29)
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and for n even the function
2 4 tr(2?) + (22 + 2 + 1) tr(a®)

are CCZ-equivalent to F' (using the affine permutation £(x,y) = (z + tr(y),y)) and
have the algebraic degree 3;

o for n divisible by 6 the function
[w4tr, 3 (20 +22) +tr (@) tr, sz (@ +2") P +tr([e+tr, s (20 +2"2) +tr(2) tr, 5 (2 +2'2)]°)

is CCZ-equivalent to F' (using the affine permutation £(z,y) = (z+tr,/3(y*+y*), v))
and have the algebraic degree 4.

The proof is the same as for the cases from [9, 10]. Note that for n even both functions
F'(x) = 23+ (2*+ 2+ 1) tr(23) and F'(z) + tr(z°) are APN like in the case of the functions
z3 and 23 + tr(2?). O

5 Further quadratic APN constructions?

There is a straightforward generalization of Theorem 1:

Theorem 3 Let F be a quadratic APN function from Fon to itself, let f be a quadratic
function from Fon to Fom where m is a divisor of n, and

or(z,a) = F(x) + F(x + a) + F(a) + F(0),

pi(x,a) = f(z) + f(z +a) + f(a) + f(0).

Then the function F(x)+ f(x) is APN if for every nonzero a € Fan there exists a linear
function £, from Fon to Fom which satisfies the conditions

1) QOf(ZL’, a) = EQ(QPF(:L’, CI,)),
2) for every u € Fh., if op(z,a) = u for some x € Fan then {,(u) # u.
We could find an application of Theorem 3:

Corollary 4 Let n = 2m where m is an even positive integer. Let us denote by try m
the trace function from Fon to Fom : tr,/,(z) = o + 22", The functions F(x) = 2% +
£ (227 F2) = 2% + 222 4 22" and F'(2) = 2% 4 (t1,/m(2))® are APN.

But unfortunately, these functions are not EA-inequivalent to power functions. Indeed, let
G(z) be the Gold function G(z) = 22" '*1. Let v be any element of F, \ Fy and Ly, L, be
the linear mappings L;(z) = 222" oy a2, Ly(z) = v2*" + 7%x. Then L = (L1, Ly) is

11



2
an isomorphism since the system { "

And since v*" =, v

$2m+1 +’y[l’,’2 =0
vz¥ + 4% =0
=~% and v+ 2 = 1, we have

clearly admits 0 as only solution.

om— 1

2, m+l 2\ 2 2 2m\ (2 om+l 2
GolL(x) = <75E +7:)3) = (yz++%z )<7x +7:)3)
— 3 2m 42 amtly] 2" 2 (.3 2m 42 amtlq]
= vz +z +x +y "+ +x
= Lyo F(x).
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