Algebraic Lower Bounds for Computing on Encrypted
Data

Rafail Ostrovsky William E. Skeith I11

Abstract

In cryptography, there has been tremendous success in building primitives out of homo-
morphic semantically-secure encryption schemes, using homomorphic properties in a black-
box way. A few notable examples of such primitives include items like private information
retrieval schemes and collision-resistant hash functions (e.g. [14, 6, 13]). In this paper, we
illustrate a general methodology for determining what types of protocols can be implemented
in this way and which cannot. This is accomplished by analyzing the computational power of
various algebraic structures which are preserved by existing cryptosystems. More precisely,
we demonstrate lower bounds for algebraically generating generalized characteristic vectors
over certain algebraic structures, and subsequently we show how to directly apply this abstract
algebraic results to put lower bounds on algebraic constructions of a number of cryptographic
protocols, including PIR-writing and private keyword search protocols. We hope that this work
will provide a simple “litmus test” of feasibility for use by other cryptographic researchers at-
tempting to develop new protocols that require computation on encrypted data. Additionally,
a precise mathematical language for reasoning about such problems is developed in this work,
which may be of independent interest.

1 Introduction

One of the central problems in cryptography is that of finding a public key encryption scheme that
would allow “computation on encrypted data”. In its full generality the problem could be simply
stated as follows: to find a public key encryption scheme such that given encryptions of arbitrary
plaintexts€ (z1), ..., E(z,) it is possiblewithout the decryption ke computeS (f(xy,...,x,))

for any polynomial-time computable functigh Naturally, if one can find a public-key cryptosys-

tem that is “fully homomorphic”, i.e. allows operations on ciphertext that preserve the structure
of a ring, and hence allows computation of the ubiquittd8ND” operation on the underlying
plaintext, it would give a general solution to the above problem. Indeed, the reason this is such a
central problem is that it would allow for incredible ability to arbitrarily manipulate encrypted data
without sacrificing privacy. This problem was posed nearly 30 years ago by Rivest, Adelman and
Dertouzos [21]. We do not know if such an encryption scheme exists in its full generality, though
various partial answers are known: One partial answer is single-homomorphic encryption: given

*Department of Computer Science and Department of Mathematics, UCLA, E-mail: rafail@cs.ucla.edu
TDepartment of Mathematics, University of California, Los Angeles. E-mail: wskeith@math.ucla.edu,
wskeith@ucla.edu.

E(z) and&(y), wherex andy come from some abelian group, there exist cryptosystems that can
computef (z xy), wherex is the group operation. Examples include EIGamal [9], where the group
operation is multiplication, Goldwasser and Micali [10] where the operation is addition modulo 2,
and Pallier [20] where the group operation is addition modulo a large composite. Recent progress
by Boneh, Goh and Nissim [3] showed that more is possible: they designed a cryptosystem that
allows an arbitrary number of additions and a single multiplication (of the underlying plaintext) by
manipulating ciphertexts only. Another approach at building fully-homomorphic encryptions was
considered by Sander, Young, and Yung [23], but only applied to Boolean operations and doubled
the ciphertext size at every step. As a result, one could only perform a few Boolean operations
before the ciphertext size became impractical. A partial negative result was given by Boneh and
Lipton [4].

Many useful protocols and primitives have been derived from such homomorphic schemes in
a “black box” way, essentially just manipulating the homomorphic properties to construct vari-
ous systems. Prominent examples include single-database private information retrieval (PIR) and
collision-resistant hashing (see [14, 6, 13]). In this work, we show a variety of natural tasks that
cannotbe accomplished in this way. More accurately we’ll illustrate a single basic task that cannot
be algebraically accomplished (with small communication) with various types of algebra (e.g., that
of any abelian group). This result will give us a nice criterion or “litmus test” for determining the
feasibility of constructing communication-efficient protocols in general, and a very strong result
for constructing protocols based on the black box use of homomorphic encryption. Along the way,
we’ll also develop a mathematical language and technique for reasoning about such questions,
which may be of independent interest.

1.1 Our Results

A central element of this paper, from which we will derive a number of results, is an algebraic lower
bound for a certain task. The task in question is that of specifying “characteristic vectors” over a
group. For a groupy, we call avectofuvy, ..., v,) € G™ “characteristic” forase$ C [n]if v; # 0g

ifand only ifi € S. We’'ll show that it is impossible to “algebraically” specify characteristic vectors
of singleton subsets of| overany abelian groupvith communication complexity less th&@h(n).

A formal statement of this idea appears as Theorem 2.3.

This statement holds fall abelian groups. For intuition, one may consider the case of linear

algebra, in which the grou@' is of prime order, and has a field structure which could be put upon
it. Itis a relatively simple exercise to prove this very special case of the theorem, just arguing about
the degree of vector spaces. However, this technique does not get very far. As the reader will see
from Example 2.2, these ideas don’t apply to general abelian gi@upgen when they are cyclic.
In fact, there is not even a well-defined notion of degree in this setting. A “degree-based” argument
could be carried out via free-module analysis, but it will greatly complicate and obfuscate matters,
and furthermore it will yield a weaker version of the theorem. Our more abstract approach and
more general result will be of utility later on, when we generalize to other structures.

Additionally, we prove a smooth trade-off in communication complexity as the size(tife
number of non-identity elements in the characteristic vectors) increases, and as mentioned, we
also generalize to other algebraic structures, which contain virtually all such that are preserved by
known homomaorphic encryption schemes. In particular, we prove resuljoabelian grouas
well as results for arbitrary rings, in a setting restricted to polynomials of total deg(ete that
the cryptosystem of Boneh, Goh, and Nissim [3] gives an example of such an algebraic structure

for the special case af = 2, where polynomials of total degree 2 are the most general items
that one has the ability to compute on encrypted data.) Finally, we’ll show a number of natural
cryptographic protocols that would imply the functionality of generating characteristic vectors, and
hence derive algebraic lower bounds for the communication involved in these protocols as well.

As one will see after an examination of our algebraic results, they are in fact quite general.
Since the results for abelian groups apply to all affine maps, this rules out many possibilities which
do not necessarily come from group formulas. (For example, arbitrary endomorphisms may now
be included in the class of “formulas” even though there is no way to compute all endomorphisms
via an abelian group formula.) In particular, even if one changes their representation of data to
be not just one group element, but many, and furthermore manipulates each of these elements
independently, our results will still apply (this is a simple consequence of Corollary 2.11).

We also note that a general language for formally discussing these ideas is presented here, using
category-theoretic ideas. This helps unify our discussion, and make formal definitions possible at
the right level of abstraction (since as mentioned, a number of different algebraic structures are
addressed here). As a final note, using this language we demonstrate that with anynsimple
abeliangroup structure oneancompute all finite functions via group formulas (thus, the existence
of any cryptosystem homomorphic over a simple non-abelian group implies a fully-homomorphic
encryption). This work can be found in the later sections, and somewhat generalizes that of [1]
and [17], however it is essentially a different, and constructive version of [25] and may be of
independent interest.

1.2 Related Work

The lower bounds that we consider are most closely related to computational lower bounds on
number theoretic problems when algorithms are restricted only to underlying group operations. For
example, Boneh and Lipton [4] examine the computational difficulty breaking any algebraically
homomorphic (over a field) cryptosystem. In contrast, our lower bounds are on communication
complexity and apply to a wide variety of algebraic structures. Other related works are that of
Shoup [24] and Maurer and Wolf [16], which consider computational difficulty of the discrete
logarithm problem, and other number-theoretic problems in cyclic groups, provided that the algo-
rithms do not exploit any specific properties of the representation of group elements.

Our lower bounds are geared towards communication complexity and program size, rather
than computational complexity, but similar to these works, we focus only on algorithms that utilize
nothing other than the underlying algebraic structures. However, we consider a far greater variety
of structures in our work (including arbitrary abelian groups and bounded degree polynomials over
rings).

1.3 Overview, Motivation and Intuition

Often times, novel cryptographic protocols are developed using homomorphic encryption as build-
ing block (and often it is the only necessary ingredient). Many basic protocols can be constructed
in this way, for example, private information retrieval, oblivious transfer, and collision-resistant
hashing, to name a few. Indeed, such methods have accomplished much in the past, and continue
to prove themselves as fruitful techniques. However, the types of algebraic structures available in
homomorphic encryption are quite limited. Not much beyond the structure of an abelian group can

be preserved under an encryption scheme. Quite clearly, abelian groups have limited computing
power. If one simply examines the number of distinctvariable “formulas” in a finite abelian
groupG of orderk in comparison to the number 6f-valued functions (as set maps) that depend
onm variables, one can’t help but notice a great discrepancy in cardinality (the fraction is in fact
negligible as the number of variables increases). So indeed, there is much that cannot be computed
using only abelian group formulas. But what are these functions? Furthermore, in what sense can
they not be computed?

As mentioned before, there have been many protocols of great utility derived from homomor-
phic encryption over abelian groups (e.g. [14, 6, 13]). However, as the authors believe, for every
such useful protocol in the literature, there are many dead ends, lying at the bottom of stacks of
paper upon researchers’ desks. But until now, there has not been much formal proof that these
dead ends are actually just that. This work provides some basic proofs of lower bounds for a few
very straightforward protocols, based on these algebraic assumptions. But more importantly, it
develops techniques and methods for reasoning about such tasks, which hopefully will be of use to
many other researchers, in the context of many other protocols.

1.4 Summary and Techniques

To summarize, we present here a formal study of what can be computed solely using the operations
of various algebraic structures (although certain results hold under weaker assumptions). The
structures primarily studied are a superset of the structures that (to date) can be preserved with a
homomorphic encryption scheme. Hence, in terms of generic algebraic methods, the lower bounds
shown here serve as practical lower bounds for such techniques. We prove results for the entirety
of abelian groups, and also for rings, in a setting that uses polynomials of some bounded total
degree as formulas. (See the cryptosystem of [3] for motivation of this idea.)

Given the large cardinality discrepancy mentioned above with respect to abelian group alge-
braic formulas, it is not surprising that various protocols cannot be algebraically implemented in
such a way. However, it may be quite surprising that such simple and natural protocols cannot be
implemented, and also that the techniques used to prove such statements are in fact rather elemen-
tary. Basically, what is shown is that all “formulas” over abelian groups correspond to “affine”
group maps, which as we will show have a fair amount of structure. These “affine” group maps are
then analyzed over general modules over a finite fingnd a basic result regarding characteristic
vectors over a group follows from the analysis. This result is quite strong from an algebraic point
of view, since it was proved for arbitrary affine maps, not all of which come from formulas over a
group. However, every (abelian) group formula does come from an affine map. With this abstract
formulation and proof, it will then be relatively easy to extend the result to other more general
structures, such as polynomials of bounded total degree over a ring.

To even begin a mathematical discussion on this subject, a formulation of the idea of “algebraic
formula” is needed, and accordingly, we have provided a thorough formalization in this work
using the language of category theory. This study is actually somewhat extensive, with numerous
examples provided, and as such has been placed near the final sections of the paper. This material
may be interesting in its own right, but it is not the focus of this work. It is merely a tool for
understanding, formalizing, and for properly stating the definitions we use here. Formalizations of
the idea of computing with algebra are given there as well.

2 Preliminaries and Basic Results

2.1 Notations

For a brief index of mathematical notations we use, see Section 5. Most notations are standard,
and most algebraic notations are consistent with [12].

2.2 Generating Encryptions of Characteristic Vectors: Motivation

This example provides a simple description of a protocol that can’t be non-trivially implemented
with abelian group algebra. Later, we’ll show a variety of problems (usually related to PIR or PIR-
writing) which would imply a protocol like this. Hence, these too cannot be implemented with
abelian group algebra.

We could, at this point, formalize a cryptographic protocol about generating characteristic-type
vectors over a group, but it may be convenient to postpone such a definition and instead get right
to the main point, which is algebra. So, we will explain in simple terms the algebraic task we are
trying to accomplish. Consider the following problem:

Letn,m € Z*, and letG be an abelian group. Define the following elements G™:
Uy = (0G7 SaS) 0G7 Ty, 0G7 SaS) OG>

wherex; # 0 appears in the-th position! Let {m;}?, ¢ G™ and letf be an arbitrary affine

group map inm variables fromG™ — G", i.e., f = f,. + ¢ wheref,, : G — G" is linear

andc € G". Note that these affine maps can express all possible abelian group formulas on a set
of variables (see Definition 4.2). The question is

Question 2.1 (Informal) If f(m;) = v; forall i € [n], what can be said abol&z™|? In particular,
how small can it be?

We will soon answer this question in a variety of contexts, but first we’ll give an example to
help motivate the non-triviality of the question and our lower bound. The phrasing used regarding
the size estimation was deliberate: we don't isolate or bouradone, because we cannot bound
m in a non-trivial way. It is in fact possible to accomplish the above result witk 1, even for a
cyclic group. However, as we’ll show in our lower bound, this comes at the cost of increasing the
size ofG.

Example 2.2 Letn € Z*, and letN =][, p;, wherep; is thei-th prime number. Define
G = Zy. Define integerg z; }_, as follows:

Zi = Hpj
J#i
Then, since all the primes were distinct, it is easy to verify that
(zizj #0 mod N) <= (i =j)

So, we could define a linear functigh= (fi, ..., f,) fromG — G™ by f;(z) = z; - =, and we
would havef(z;) = v;, for some elements € G™ which fit the above description of a complete
set of characteristic vectors.

We givex an indexi simply to show that it need not be uniform across all vectors.

5

However, in the preceding example, notice thalifferent primes had to divide the order of
G. Hence,|G| > 2™ is of exponential size im. We will show that even using affine maps, this
is always the case: to generateorthogonal-type characteristic vectors withgroup elements
always requires a grou@ such thatG™ has exponential size in, although the statement we
prove has a more abstract setting.

2.3 A Basic Algebraic Result

Here, we will make precise the relationship regardingnd the size of an abelian group that can
algebraically generate a complete set.aharacteristic vectors over an abelian gréup

Theorem 2.3 Letn € Z* and letG, A be abelian groups. LeV = {v;}?;, C G™ be any
collection of elements so that theth position ofv; is Og if and only ifi £ 5. ThenifFF = f + ¢
is an affine map fromA — G™ such thatV C F(A) then we havéog(|A|) € Q(n). More
specifically, ifA C G™, we have that

n
m—+1

log(|G) =

We’'ll break the majority of the proof into a lemma and a few simple observations. To begin,
we’ll prove the following lemma which will help us analyze affine maps and translated character-
istic vectors.

Lemma 2.4 Let R be a finite ring with identity, and let/ be a (unitary) R-module. Let) =
{w;}*_, C M be a finite collection of elements. L®t = {(w; + ¢)}r_, for some fixed element
c € M. Then(fY), the module generated Iy, increases in size by at most a factor|&f over
the size of(2). l.e.,

()]

()]

Proof: Recall that for any submodules B of a module there is always a surjectidip B —
A+ B sinceA @ B is a coproduct and! + B is generated byl U B. Hence|(Q2) + Rc| <
() & Re| < |[(Q)||R|. Since clearly(QY") C (Q) + Rc as M is unitary overR, this in fact
completes the proofl

< |R|

In light of Lemma 2.4, we need only to analyze “un-translated” characteristic-type vectors. If
they generate a large module, then so will the translated vectors. It is quite clear any such module
generated by elements like thoselinwill be exponential in size, however to be complete, we
provide a formal proof.

Observation 2.5 Let G be a finite abelian group. Let € Z*. Define elements; € G" by
v;; = 0; - o; for someoy; # 0 € G, andd;; € Z with §;; = 1 for all : andd;; = 0 for i # j. Let
H = ({v;}}-,), the subgroup of:™ generated by the;. Then|H| > 2".

Proof: Note thatd ~ @, (v;) since clearly(v;) N (v;) = {0} for all i # j, and since by
definition H is generated by the. Also, for all: € [n] we have that(v;)| > 2 sincea; # 0 which
completes the proofll

We’'ll also make use of a few very elementary observations from group theory.

6

Observation 2.6 Let G be an abelian group and let b € G with 2 = ord(a),y = ord(b). Then
ord(ab) | lem(z,y).

Observation 2.7 Let G, H be groups, and lef : G — H be a homomorphism. Then for all
g € G, we have thabrd(f(g)) | ord(g).

Observation 2.8 LetG be agroup, and lefa, b) € GxG. Thenord((a, b)) = lem(ord(a), ord(b)).

Observation 2.9 Let G be an abelian group, and suppose that there exiéts Z* such that
N - g = 0 for all g € G, where- denotesZ-module action. Then is aZy-module, where the
action is inherited from that of.

We are now ready to complete the proof of Theorem 2.3.

Proof: (Theorem 2.3)Recall thatF" = f + ¢ was an affine map. By assumption, we have that
V C F(A), and so, by Observation 2.5 we have tR@t(A))| > |(V)| > 2".

Next, consider the elementss G™ and they; € G". Note that(v; —c¢) € f(A) by assumption.
Now let’s examine the order of these elements. Defihe- {v; — c},c,. By Observation 2.7, we
know that all of thev; — ¢ have order that dividesi|, since they are images of elementsfofinder
a homomorphism. But then, by Observation 2.8, we can see that ifcy, ..., ¢,,), then all of the
¢; must have order that dividesl| as well, or else the order of at least one of the— ¢) would
have order not dividingA|. Hencec has order dividingA|. Now, by Observation 2.6, we have
that thev; also have order dividingd|. Therefore by Observation 2.9/) is in fact aZ 4-module,
as of course igV”) since it is in fact the image of some submoduledofpossibly all of A) under
a homomorphism. Then, by Lemma 2.4 (wifli U V') playing the role ofM, if you'd like) we
have that o

(V)]

<|Zya| = [A]

and hence
2" <[(VI)[|A] < |AP

so that|A| > 2"/2, andlog(|A|) € Q(n) as desired.
More specifically, ifA ¢ G™, then all objects involved ai#;-modules, and hence
2n

a s (A <1G™

So that|G|™*' > 2" and hencéog(|G|) > 5. B

2.4 Functions that Change Multiple Values

We can also generalize this algebraic result to include other types of vectors,M{hejehas the-

th component non-identity, but possibly some other number of positions are non-identity elements
as well. If the functionF' has the ability to change arbitrary subsets efements for a constant

then our original results clearly apply, as you could re-orga@fzas a productz© x - - - x G¢ with

n/c components. (Without loss of generality, we assutine) However, the bounds still apply

for less powerful classes of functions. We will show thay function that produces vectors with

c(n) or fewer non-identity positions at a time has communication complé&xity/ c(n)), provided

7

only that it is complete- i.e., for every position, it has the ability to produce a vector that is non-
identity in that position. Here;(n) is any positive function of., and note also that the number of
non-identity positions pem; need not be uniform- we only ask that it is bounded-by). We’'ll

prove this by showing that we can always re-orgartizeinto a product of larger components
(of sizec(n)) so that the original functiort” produces orthogonal characteristic-type vectors in
the original sense, only ové6<(™)"/<(") Then, the proof follows immediately from the original
result. Consider the following lemma.

Lemma 2.10 Letc € Z*. Let{S;}rer be a collection of sets such th&t C [n], |Sk| < ¢ for
all k € [n] and such that thg S} form a cover ofjn], i.e.,|J, . Sx = [n]. Then there exists
X C [n] and a sub-collection of se{sSy, }1,eacr such thatS,, N Skj/ N X = @ wheneverj # j
yetSy, N X # @ for at least[n/c| of the setsSy,.

Proof: Suppose{Si }rer is such a cover ofn]. In this finite case, it is clear that every cover
has a minimal sub-cover, i.e., a collectipfy, }' | that still covergn| such that for any other sub-
cover{Sy };’;’1 we have thain < m'. ? Let {Sy,}’, be a minimal sub-cover. For this sub-cover,
define for every € [n]

Note thatV; > 0 for all i since the{.S,; } form a cover ofn]. DefineX C [n] as follows:
X = \{i| N;>1}

Now clearly, X has the property thaff;, N Sk, NX =0 wheneverj # 5, but it is also true that
Sk, N X # @ for everyj € [m]. To see this, suppose that for sogne [m] we haveS,, N X = &,
i.e., thatSy, C [n] \ X. This statement says that every elemen$gfis also in at least one other
set in the sub-cover. Hence,

Sk]. C U Skj/

Ji'#i

and thus{Sj , },+; is also a subcover of all df] that is smaller than our original, contradicting
the minimality that we assumed. So, we have thatn X # @ for every;j € [m]. To complete
our proof, we simply note that sin¢s| < ¢ for everyk, any sub-cover must have at le@sy/ c|
sets, just by countingll

Corollary 2.11 Letn € Z* and letG, A be abelian groups. Let () be a positive valued function
and letV = {v;}., C G™ be any collection of elements so that thil position ofv; is not equal
to O¢, and at mostu(n) total positions ofv; are non-identity for all € [n]. ThenifF = f + cis
an affine map fromd — G™ such thatl’ C F(A) then we havéog(|A|) € Q(n/w(n)).

Proof sketch: This is an easy consequence of the lemma. In the language of the lemma, set the
Sy to be the set of indexes im] corresponding to all the positions with non-identity elements in

vi. By the lemma, we can find a subset of the indeXeand a subset of the sefs of size at least
n/w(n) so that theS;, are disjoint onX. We can then re-organize the prodd¢t according to

thev,; and where they differ from the identity. Then, transfofm- c into a map on this restricted

2Clearlym < oo sinceP([n]) is finite, so there is no loss of generality.

product ofG’s, just using the component functions (i.e., the compositions with the projections
from G — (). So, we have some product like:

G5k L G Rnwm)

Then pad=**s) with extra products of? and redefine the maps accordingly (set those components
of the new constantto 0., and the new components fto the trivial map. You now have exactly
the original situation from Theorem 2.3, only with a new valuexpivhich happens to be/c(n).

So, we can concludeg(|A|) € Q(n/w(n)). W

2.5 Polynomials of Bounded Total Degree

Recently, new cryptosystems have been developed with additional homomorphic properties (see
[3]), which provide the ability to compute on ciphertext, polynomials of total degree at 2Znost
Here, we will generalize our original algebraic result to apply to algebraic functions of the form
of any polynomial of total degreg over a ringR. Although the following result will apply to the

ring of polynomials over any ring (it need not have an identity or be commutative), this result
has the most meaning in the case of commutative rings with identity, since in this case the ring
of multivariate polynomials coincides precisely with our notion of “algebraic formula”, which is
formalized in a category theoretic sense in Section 4.1. (For a non-commutative ring, there’s a
more general structure that serves as the set of all formulas.)

Corollary 2.12 Letn € Z* and letR be any ring. Let/ = {v;}?;, C R" be any collection of
elements so that thgth position ofv; is not equal ta0r precisely whery = i, for all i, 5 € [n].
ThenifF’ : R™ — R™is such that" = (F, ..., F},) with eachF; € R[X, ..., X,,,] of total degree
less than or equal té (a constant) and hat C F(R™) then we have

(/10 (IRD)) m € Q(v/n)
In particular, if | R| is independent af, thenm € Q(y/n).

Proof: Letf € R[X;,..., X,,] be of total degree. We do not assume th&t is commutative, so
there could be a total oF,_, m" = O(m') terms. Note that we can simulatevith a polynomial
f € RIY4, ..., Yo(un) of total degred. le., if N =", _ mF and

Then of course

The point being that any function whichcomputes, we can compute with But now observe
that f — r, € Homgz((R, +)™, (R, +)). Componentwise applying this t6 = (Fi,..., F,) as
given above, we have a functidn: (R, +)™ — (R, +)" which is an affine map, and which can
simulate the functionality of’. Hence, it will of course have the property thatc F((R, +)™).
Now we can directly apply Theorem 2.3 to this situation sifi€e+) is of course an abelian group.
Therefore,

log(|R|™) € Q(n)

and hencéog(|R|)m' € Q(n) so that
(v/10g(IRD)) m € Q(v/n)

as desired.l

3 Applications of Algebraic Results

We will discuss here a number of protocols which are both easy to state, and would provide desir-
able functionalities, yet under algebraic assumptions, they cannot be very well implemented with
existing technology.

3.1 Private Database Modification (PIR Writing)

As seen in [5], the ability to privately modify an encrypted database in a communication efficient
way could provide a valuable tool for private computation. One very natural approach to such
a problem, is to proceed in a manner analogous to many PIR protocols, and use homomorphic
encryption as a building block.

The protocol would then communicate encrypted values which encode the modification to take
place, and then the database owner would execute some algebraic operations on the encrypted
database and the modification description to update the database contents. Then, since all of the
communication consisted only of encrypted values, CPA-type security comes easily. Unfortu-
nately, we have very limited structures available to homomorphic encryption schemes. Almost
always, what is preserved is the operation of an abelian group. At best, the ability to evaluate
polynomials of total degree 2 is provided (see [3]). It will follow from our preliminary algebraic
results, that these type of algebraic protocols cannot be very well implemented with existing en-
cryption schemes. We'll often speak of “algebraic” maps, which will usually mean functions that
are obtainable from some type of formula involving only the operations of the algebraic structure.
A precise, formal, and detailed exposition of this idea is given in Section 4, especially Section 4.1.

We've placed some of the formal protocol-type definitions in the appendix to improve the
readability, since there isn’t much surprising about them, and most readers of this paper could
likely re-invent them in a few minutes. We’'ll instead give an informal description of the protocol
here. For precise statements, see Definitions 5.1, 5.2 and 5.3, as well as Definition 5.4 which are
discussed at length in the appendix.

Let U be a user that wishes to update the database, and deroB bye database owner. We'll
summarize a protocol for algebraic database modification betieand DB via the following
steps, in which we assume th@tis an abelian group. Below, we’ll just describe the algebra
involved. In an actual protocol, everything will be computed on ciphertext in some homomorphic
encryption scheme ovér.

10

1. U selectan; = (g4, ..., gm) to modify position; and sendsy; to DB.

2. DB computes an algebraic functidf(X, m;, H) of the databas& € G", the modification
descriptionm;, and other inputs of his owrl{ € G°.

3. DB replacesX by X' = F(X,m;, H)

Clearly the algebra involved in this protocol implies the ability to algebraically generate com-
plete sets of characteristic vectors:

Claim 3.1 An algebraic protocol for database modification over an abelian group implies an al-
gebraic function (affine map) with a complete set of characteristic vectors in the image.

Proof sketch: Define a databas& = {0}/ ,, which is the identity in all positions. Apply
DB'’s function to obtainX’ = F'(X, m;, H) wherem; describes a modification for positionThen
clearly X' = v;, a characteristic vector i&™, non-identity at positior. B

Therefore, by Theorem 2.3, if we build such a protocol based on a homomorphic cryptosystem
overanyabelian group, it will necessarily have linear communication complexity. Note the strong
sense in which this is true: abelian group formulas always correspond to affine maps, but certainly
not every affine map comes from such a formukurthermore, Theorem 2.3 did not even assume
that the groups were the same. So, even if the database elements are encrypted in some other
cryptosystem and over some other group than the descriptions, and even if we were provided the
ability to compute all algebraic maps from one to the other on ciphertext, we still couldn’t produce
a non-trivial protocol over abelian groups.

We'll summarize these ideas as

Corollary 3.2 There are no non-trivial Algebraic Oblivious Database Modifiers over an abelian
group. l.e., any oblivious database modifier based on the operations of an abelian group has
communication complexity(n).

3.2 Algebraic and Homomorphic Protocols for PIR

As a second corollary, we consider “algebraic”, or “homomorphic” protocols for private informa-
tion retrieval. One may have observed, as the authors have, that the query results for PIR protocols
usually fall into one of two categories: either (a) they have no (or very limited) algebraic*value

or homomorphic properties, or (b) the server side communication is non-constant, i.e., the results
of a query return many items, not just an encryption of one value in the datal#apeotocol for

private information retrieval that returns encryptions of single values which retain algebraic and

3For a simple example, considér = Z, x Z, andy € HomZ(G, G) by (a,b) — (b,a). So, we've shown that
even if we allowDB to somehow compute arbitrary affine maps on the ciphertext values, it still does not suffice to
accomplish this task.

4See the work of [7] for an example of such a PIR protocol having limited algebraic value.

5See [14] for such an example, but virtually every PIR based on homomorphic encryption (over an abelian group)
has this property.

11

homomorphic properties could be a very useful tool in private compufatempecially in non-
interactive settings. In what follows, we present evidence that the absence of such protocols is not
just a random coincidence.

We'll try to establish a basic definition that captures the properties that we desire, and encap-
sulates most existing work possessing these properties. Suppose that the values in a database have
some algebraic structure. For now, say that of an abelian group. We will denote the return value of
a PIR query for the-th position of a database BIR(:), which consists of one or more encrypted
database elements. L&t = {s;}_, denote the set of values from the database that are returned
by a PIR query for position

Suppose for a moment that the domain from which PIR query returns reside has the algebraic
structure of a group, sayG’, x). To name just a few, we have the PIR protocols of [14], [6],

[7] as examples of such systems. Suppose also that the database elements themselves also come
from a domain having the algebraic structure of a group,(64y).” Then we make the following
definition:

Definition 3.3 Using the notation established above, we say that a PIR prototarisomorphic
if for a given databasél € G", we have thaD(PIR (i) xPIR(j)) = S;-.S; whereD is the function
from the PIR protocol that decrypts the query results.

Note also that for such a PIR protocol to be of much utility as a subroutine in some private
computation, it is almost essential to ha\#| = 1, or at least bounded by a small constant. If
not, then the party which is to perform a computation on the return values of a homomorphic PIR
qguery will likely not have any information about where the relevant element is in the query results.
Hence, if such a party wishes to perform a computation weriables obtained via homomorphic
PIR queries, it would in general require repeatedly performing the computation|sti‘gliossible
sequences to ensure that the right variables were involved at least once. Furthermore, it may not
be possible for any party to distinguish which of the resulting outputs in fact corresponds to the
desired computation, even after decryption.

Finally note that from the definition of homomorphic PIR, we see that the results of queries are
in fact encryptions of elements in some homomorphic cryptosystem. To create such a PIR proto-
col, a very natural approach is to manipulate the algebraic structure of some such homomorphic
cryptosystem. This motivates the following definition.

Definition 3.4 We say that a PIR protocol egebraicif the following hold:

1. A query consists of an ordered sequence of ciphertexts in some cryptosystem where the plain-
text setA has some algebraic structure.

2. To process a query, the database owner computes on ciphertext some algebraic function of
the query’s array, this function being determined by the contents of the database to obtain
an array of ciphertext which will be the results of the query.

SFor example, in the keyword search of [18], the dictionary size could be reduced.

"There is no assumption that the group representing the query returns are the same as the database elements, or
even that they are encryptions of database elements, exactly. It could be the case that as a part of the encryption, the
group that the database elements come from is first homomorphically transformed, and then transformed back as a
part of decryption. The general way that we've stated our algebraic results allows us to reason about such a general
definition.

12

For precise definitions regarding “algebraic function”, please see Section 4, specifically Defi-
nition 4.2. For abelian groups, we’ll again have affine maps as our model of algebraic functions.

Corollary 3.5 Consider an abelian group algebraic PIR protocol with sender-side communication
complexityg(n) and server-side communication compleXity.). Theng(n)h(n) = Q(n). More
specifically, ifk(n) is any positive integer-valued function and if the server’s response consists of
k(n) encrypted values, then the sender-side communication compleity i&(n)).

Proof: We will show in a straight-forward way that the algebra involved for any such PIR

protocol will imply the ability for algebraically generating a complete set of characteristic vectors,

and hence, cannot be done with with small communication using the algebra of an abelian group.
Leté;; € {0,1} defined by),; =1 <= i = j. Define databasesX (i)}, by the formula

X(i); = d;;a wherea # 0g € G. Each one of these databases has an associated fuigtion

G™te — G*, a homomorphism of groups. Again, theariables provided by the database owner

are independent of the variables that comprise the query. (If not, the function can of course be

re-written to make it so)Now define mapy; € Homz (G, G) by f,(z) = 37, Fi(x); (i.e.,

we just compose; with the map from the sum t& that is guaranteed to exist by the universal

mapping property of coproducts). Next, defife= (fi, ..., f,) so thatF' € Homg(G™" ¢, G™).

Note that in terms of the: variables corresponding to the querieé= f+cis an affine map from

G™ — G™, again, since thevariables from the database are independent. Now by construction,

this affine map has a complete set of characteristic vectors in the image. However, each vector

hask non-identity entries. So, by Lemma 2.10 and Corollary 2.11, we see that this protocol for

oblivious database modification has communication compléXity k). However, this is precisely

the sender-side complexity of the PIR protocol as well. So, since the protocol clearly has server-

side complexity€2(k) (with a tight bound if the group size is a constant) then we see that the

product of the complexities is of cours¥n). W

Using Corollary 2.12, we can generalize this result to cryptosystems that may have additional
homomorphic properties (see [3]), showifig\/n) bounds if total degree polynomials over a
ring R can be computed on ciphertext.

For example, if given a cryptosystem that allows polynomials of fixed total degtede
computed on ciphertext over some rilgwe can easily construct an algebraic PIR protocol with
sender-side communicatioi(\/n) and server-side complexit®(1) (see [3], or section 5 for
details of a simple example). However, this is in fact meets a lower bound: In general, if such a
protocol has sender-side complexity) and server-side complexify(n), then we can show that
g(n)h(n) = Q(/n), which is a simple consequence of Corollary 2.12.

3.3 Private Keyword Searching [18]

As another relatively simple corollary, we resolve (under our algebraic assumptions) an open

problem posed by Ostrovsky and Skeith [18] regarding extending the query semantics for pri-

vate searching on streaming data. We show that without new homomorphic encryption schemes
with additional properties, their methods cannot be extended to perform conjunctive queries.

8Also, note again that this contains all possible algebraic formulas of the inputs, as well as potentially a large
number of maps that are not necessarily obtainable from such formulas.

13

Corollary 3.6 The problem of private keyword search on streaming data as proposed in Ostrovsky
and Skeith [18], has no non-trivial algebraic solution for a conjunctive query of two or more terms
if the underlying cryptosystem is only group homomorphic over an abelian group.

Remark: We will assume the same basic framework as developed in [18] for a solution and show
that there is no such solution that performs conjunctive queries. Specifically, we assume that a
dictionary with an associated array of ciphertexts is used to conditionally encrypt documents as in
[18].

Proof: First note that the protocol inherently gives rise to an algebraic method for generating
complete sets of characteristic vectors: Suppose that the dictiéhhas sizen. Each word has

its role in the query encoded via an encrypted group element, say in some(@rdignk at the
encoded dictionary (un-encrypted) as the(s&t Suppose we have a protocol as described in [18]

for some query that involveis variables. Running this protocol en* documents which run over

all uniquek-tuples from the dictionary gives us a set of characteristic vectors insi@é€of. So,

we can think of this as an algebraic map fr6fft — G(™"), which (unless the query is somewhat
trivial) contains a complete set of characteristic vectors in the image. But, now the question is how
many positions are non-identity in each vector? This of course depends on the query. Suppose that
the query is a disjunction of terms. Each vecto€it") will have at leasin* 'k positions that are
non-identity, sincé — 1 entries could be arbitrary as long as one contains a keyword. So, the ratio
of total positions to non-identity positions is less tharand our algebraic lower bounds give no
contradiction (which of course should be the case since [18] gives such a construction). But now
consider a conjunctive query, just of two terms. In the same way as described above, this gives rise
to an algebraic function for characteristic vectors fréfh — G(™*), however this time we have

O(1) positions of each vector are non-identity. So, applying Corollary 2.11, we see that no such
protocol can exist based on an abelian group. More generally, from Corollary 2.12, we see that if
given the ability to compute total degré@olynomials, we can construct a protocol that executes

a conjunction ofit mostt terms. W

We believe that this example illustrates particularly well a situation in which the bounds proved
in this work are especially useful. The entire method of [18] critically depends on the ability to
generate these types of characteristic vectors so that the final representation is an encryption in
a homomorphic scheme. This is the case since the functionality of characteristic vectors is used
as a subroutine for the larger procedure, and so to continue the computation (i.e., writing to the
buffer, etc.) it is necessary that the output have algebraic value. So, since we have proven that
this subroutine is impossible to implement in the critically important manner desired, it seems that
improving the work of [18] would require either a completely new approach, or new designs of
homomorphic encryption schemes, such as fully-homomorphic encryption.

It is this type of information that we hope will save researchers time and effort in the future.
Applying these bounds may not give an absolute impossibility, but it can quickly eliminate a very
large space of what might otherwise seem to be feasible approaches to the problem.

14

4 Formalizations Regarding Computation by Algebra

4.1 Unification of Algebraic Formulas

We speak often of the idea of an “algebraic formula” over some algebraic structure, and it will be
very convenient to make definitions at such a level of abstraction. Clearly, we need an abstract
definition of “algebraic formula” before we can continue. We hope to establish an appropriate
definition in this section that applies to a wide variety of categories of algebraic structures.

To begin, we’ll examine rings of polynomials in an abstract setting, and see if we can’t extract
the ideas about it that characterized it as the set of “algebraic formulas’z beta commutative
ring with identity. This is one of the most natural structures to our intuition, and we will use it to
extend our intuition to other possibly less natural structures. What plays the role of an arbitrary
algebraic formula im variables oveR? We can add and multiply, but there isn’t much else we can
compute from just the operations &f This leads us towards the rifgjz,, ..., z,,] serving as the
set of all generic algebraic formulas over Next note that in this situation, the rirmgfz1, ..., z,,]
satisfies an interesting universal mapping property: we always hageadumation maghat takes
an assignment of elements to variables and gives us a homomorphisnkfram.., z,,] — R
that “evaluates” each polynomial using that assignment of variables. This evaluation map is exactly
what we are after when talking about a general algebraic formula. More formally, and a bit more
abstractly, consider the following claim (see [12] for details) which we state here without proof:

Claim 4.1 Let R, S be commutative rings with identity. Let: R — S be a homomorphism
and leta : X = {x;}, — S be a set map. Then there exists a unique homomorpfism
Rlzy, ..., x,] — S such that

1. 9], =a,and
2.9, =9

Here, we identified the set of variables, and the ringR as subsets of the ring of polynomials
R[X]. More generally, we'll have canonical injectiong : X — R[X] and.z : R — R[X].
Then the conditions o becomen = ¥ o tx andy = P o 1g, rather than the restrictions being
equal.

As it turns out this mapping property is exactly what we need to characterize algebraic formulas
in general. We'll see in a moment that any such object is in fact unique up to isomorphism. We
begin with the following definition.

Definition 4.2 Let ¢ be a concrete category. Let be an object ing, and letX be a set. We
define the object afi-algebraic formulas ovek to be an object'4[X] in € together with maps
tx : X — Fa[X]anduy : A — F4[X] such that for any objedB in €, morphismp : A — B
and set mapy : X — B, there exists a unique morphispn: F4[X| — B such that

1. a=powLy and
2. p=pouly

The following uniqueness theorem justifies our giving a specific name to such an object as
above.

15

Theorem 4.3 Let A be an object in a concrete catego#; Suppose thatF, X,.x,t4) and
(F', X', /.,) are both objects ofA-algebraic formulas overX, X’ respectively, and suppose
that there exists a bijectiofi : X —» X'. ThenF', F’ are equivalent objects i@.

Proof: We need to show that there are morphismEdémn (F, ') andHom(F”, F') such that the
composition is the identity morphism. Consider the mapX — F’ defined byn = 1. o 5 and
definep = /4. SinceF’ is a set ofA-algebraic formulas ovek, this gives us a unique morphism
p: FF— F’ such that

e i1xyo3=po.xand
o/, =0y
And symmetrically, we have amap : F” — F such that
e 1xof ' =0 oux and
e 1y=F ol

But now, consider the map’ o ¥ € Hom(F,F'). Note thatp’ o potx = @ o1y o § and
(Poix)ofB=1x08oB=1x =1x08 o =1x. Verysimilarly,p’oGois =@ oty = 1a.
So, composing’op with ¢ x, 1 4 gives us backy, ¢ 4, respectively. However, applying the universal
property of " to itself, using.x in the place ofx and., in the place ofp, we see that there is a
unigue map with the properties we've just demonstrated to have. But, note of course that
the identity morphisml -, is also such a map, and therefafe> 7 = 1. Similarly, we can show
thatp o ¢’ = 1, and hence is an equivalence of objects & |.e., up to isomorphism, the set of
A-algebraic formulas (on bijective sets of variables) is unigiie.

4.1.1 Examples

Here we'll give a short list of examples to illustrate the definition, and to (hopefully) see that it very
well matches our intuition about what algebraic formulas should be. Many of the incarnations of
these objects will involve free objects, a somewhat related idea, and as such, we’ll begin with a
brief account of free objects before stating the specific examples.

Recall that dree objecin a concrete categoy (one in which the objects can be thought of as
sets) is an objeckt’ with a setX and a map : X — F' such that for any other object of ¢ and
for any set map : X — A, there is a unique morphism &f ¢ : ¥ — A such thatpo . = ¢. In
this case we say thdt is free on the sek.

It is sometimes convenient to identify the sétwith its image.(X) in F', and then the mapping
property becomes| = ¢.

Perhaps the most commonly known example is that of a vector spaser a fieldF. In this
language, we have that is a free object in the category of &tmodules (it is free on any basis).
Another simple example is th&" is a free object in the category of abelian groups. It is easy to
verify that it is free on the set of vectof$1, 0, ..., 0), ..., (0, ..., 0, 1) }, for example.

Now, let's move on to some concrete examples.

Example 4.4 (Commutative Rings.) Ik is a commutative ring with identity, we have that the set
of all R algebraic formulas on variablegr;}! , is simplyR[z1, ..., z,,].

16

It is quite straightforward to construct the needed maps. As mentioned, the “evaluation” map
is what does the trick. All that is needed is a proper formalization, which can be found in{12].

This seems to match our intuition very well regarding algebraic formulas. However, what about
afield[F? This is of course a commutative ring with identity, but it seems like we could accomplish
more with division, and perhaps rational functions would correspond better to algebraic formulas.
But notice a critical difference in this case: if the denominator has rools then we cannot
freely assign variables to values and evaluate such a function on that assignment. This could have
serious implications in cryptographic computation as well- in this scenario, it may be the case that
attempting such an evaluation which leads to “division by zero” will produce some distinguishable
behavior in a method that shouldn’t disclose any information about the underlying values.

Note that in non-commutative rings, the set of formulas is more complex thaRjust..., z,,,]
since coefficients and variables cannot always be written so concisely. We’'ll see this in more detail
later on.

Example 4.5 (Groups.) For a group, the set of alkG-algebraic formulas on a set of variables
X is the free product of the free group dawith G, i.e., F(X) x G.

A general formula seems to correspond to a word in a free group, only mixed in with elements
of GG, which lines up exactly withF'(X) « G. Using the universal mapping property of free objects
and that of the free product of groups (which is a coproduct in groups), it is easy to verify the
mapping property for7-algebraic formulas. From the free objectX), we have that any map
a: X — Afor some groupd leads to a unique map froi(X) — A that agrees witlv. Then
sinceF'(X) = G is a coproduct, we have that given a map of the two componemsthere is a
unique map from the free product tbthat agrees with all previous maps. Putting these together,
we see that it suffices to give a map froth— A and a map frond&; — A to uniquely determine
a map from the free product t, which implies that'(X') « G is the set of7-algebraic formulas.

v

Example 4.6 (Abelian Groups.) For an abelian grou@, the set of7-algebraic formulas oven
variables is simplyZ" & G.

This follows exactly as in the preceding example sifi¢eis a free object in the category of
abelian groups, and sineeis a coproduct in abelian groups.

Recall that in our applications, we modeled abelian group algebraic formulas by affine maps,
and of course, every element & & G corresponds to an affine map. So, we've validated our
initial intuition and model for this situation: Indeed, (a subset of) affine maps play the very same
role for abelian groups as polynomials do for commutative rings. Of course, not every affine map
comes from such a formula, so in algebraic terms, the model we analyzed is actually stronger.

Example 4.7 (R-Modules.) More generally than abelian groups, we h&+enodules. In a very
analogous way, we see that for &amodule)M, the set of\/-algebraic formulas over variables
iSR"® M.

As a final example, we’ll take a moment to illustrate what is meant by evaluating such a for-
mula, which will let us speak of classes of functions say frath — A which correspond to
formulas inF4[{x1, ..., z,, }] (Which we’ll often write asF4[x1, ..., ,,], Or just asF4[X] when it
is clear how many variables are involved, and when it is unnecessary to explicitly name them).

17

Example 4.8 Every formulas € Fy4[z4, ..., x,,] can be associated with a functigh : A™ — A
as follows. Letp = 14, the identity morphism oA, and lety = (y1, ..., ym) € A™. Leta: X —

A be the map that sends — y; for all i € [m]. Then the pairy, o) determines a unique map
®, : Falz1, ..., 7] — A, asin Definition 4.2. We define

fo(y) = @,(0)
It will in fact be useful to give a name to such functions that arise from sormeF 4 [X].

Definition 4.9 Let A be an object in a concrete catego€ywhere F4[X] exists for all finite sets
X. Afunctionf : A™ — A is said to beA-algebraidf f = f, for someo € Fy[zy,...,x,,] @s
described above. We will denote the set offalilgebraic functions with variables i by F'4[X].

Note: we may also refer to a functigh: A™ — A™ asA-algebraic, in which case it is meant
that for each ¢ [nﬁhere exist; efA[xl, ..y Zpy) such thatf = (fs,, ..., f»,,). These functions
will be denoted byF;[X], or simply F'4[X] if the context is clear.

4.2 Towards Other Unifying Formalizations

We've now established what seems to be a very good idea of “algebraic formula”. However, this
is just a statement about functions from one algebraic set to another. The basic functionalities
investigated in this work were not algebraic: they were just functions involving general sets. So,
how do we model an arbitrary function from one set to another via some algebraic function? There
are quite a few possible ways to formalize this idea, and a number of them actually turn out to be
meaningful. Some quite plausible ideas however, turn out to be completely void of meaning. We
will explore these ideas in some detail now, which will hopefully give us a pleasant and precise
vocabulary to talk about such ideas.

In what follows,S will be a set, and! will be some algebraic structure from a concrete category
¢, e.g., groups, rings, modules, etc. We'll assume @ | exists in¢ for any finite setX’, which
as we've seen in the examples above, is usually the case for the algebraic objects we study. We
would like to formalize the idea that a function on the Satan be somehow computed using an
algebraic structure. To begin, we offer the following definition.

Definition 4.10 Let f : S™ — S™. We say thaf is Algebraically Representabtever A, some
algebraic structure, if we have the following:

o {ir: 5 — A},
[{pJA%S};L:l
o fi A — A"

such that

wheref € Fi[zy, ...,).

18

Note that ifm = n = 1, then this definition becomes completely meaningless. If this were
the case, then all of the information éfcan be encoded intoor p (or both) and have absolutely
nothing to do with the algebra of. However, withm andn greater than one, it is a very useful
definition that in fact captures a great many situations.

However, if in fact such a representatidoeshave meaning at the level et = n = 1, then
we have something very special. In this case, all information apdsitepresented irf in a very
strong and complete way, which gives us great flexibility. Consider the following definition.

Definition 4.11 We say that a functiorf : S™ — S™ is Composably Representatiger A for
an algebraic structured, if there exist the following:

e :S—=UCA
ep:U—»S
o [A" — A"
Such that
1. f e Fr[X]with f(U™) c U™
2. 10p = 1g (extending, i to the sum, as usual)
3. f=pofoi

4. la]p = [d], = [f(a)]p = [f(a/)]p’ wherela], = {y € U™ | p(y) = a} represents the
equivalence class af € U™ under the relation defined by the fibersaextended to sums).

With this definition, it is easy to see that the behaviorfas found completely inside of the
behavior off, just re-labeling elements, and grouping them together with the fibers iéfone
believes the axiom of choice, then this definition is equivalent to the following condition (but in
any case the above condition implies the one below):

Claim 4.12 Suppos¢ : S™ — S™ is composably representable ovérvia a functionp : U C
A — S and an algebraic functiorf : U™ — U". ThenJjfor anyi : S — U withpoi =15 we
have that

f=pofoi

Proof: Leti : S < U be any function such thato p = 14. By definition, there exists: S —
U C Aandf suchthatf = po foi. Lets € S. Then by definition[i(s)], = [i'(s)],, and then
by the definition of composably representable, we have[thats))], = [f(i(s))], = [f(7(s))],
so thatindeedp o f o 7')(s) = f(s) as desired.H

As mentioned above, the condition of the claim is easily seen to be equivalent to the definition
of composably representable, but in the infinite case, this requires the axiom of choice to construct
functions: by selecting an element from each fibepof

The following claim shows the motivation for our choice of nomenclature.

19

Claim4.13 If f : S™ — S™ is composably representable ovérby (p,i,f), then for any
k € Z*, f*is composably representable ouéby (p, i, f*). In particular, foranyi : S — U C A
such thatp o i = 15 we have

fk:pofkoi

Proof: Suppose that = 1. Then this is trivially true from the definition. Now, suppose that the
theorem is true for all integers less than or equal.t8o, we have thdt)], = o], = [f*(a)], =
[%(a’)],. Next, notice that by the definition, and by our inductive hypothedi&i(s))], =
[i(f"(s))], for all r € [k] and hence

LNy = () = A D = G D = G 6))],

Therefore,
fk+1 :pokarl Oi

which completes the proofll

For simplicity, we consider the case pf: S™ — S™, but in fact in the general case, if any
function f is composably representable Jpythen any composition of’s which makes sense can
be computed by the analogous compositiori’sf For example, if we couldomposablyepresent
f:40,1}? — {0,1} wheref = NAND(a,), usingf, then we could also composably represent

OR(a,b) by f(f(a,a), f(b,b)).

In what follows, we provide a few simple examples.

Example 4.14 Let G be a group andH < G such that|G : H| = 2. Then the function
f :{0,1}> — {0,1} defined by(z,y) — z + y mod 2 = x XORy is alwayscomposably
representable ove@ as follows: leti(0) = e,i(1) = g € G\ H, and letp(H) = {0} and
p(G\ H) = {1}, and finally, letf(x, y) = = - y where- is the operation of the grou@. It is easy
to verify the equality)

flxy)=x+y=pofoi
is satisfied, no matter what representatives are chosen from the fibgrsin€e subgroups if index
2 are always normal (right cosets must coincide with left cosets).

Example 4.15Let X € G™ and define the equality functiofy : G™ — {0, 1} by

1 fX=Y
fx(Y) = { 0 otherwise

This function is not algebraically representable over any abelian group of|&lzée.g.,G
itself).

Question: forf : {0,1}" — {0,1}, what is the minimum size (as a function af) of an
abelian groug- that can algebraically represeff?

Example 4.16 For primesp, ¢ with ¢ { p — 1, we havgCR(Z,) = CR(Z,)] <= p = q. (Here
CR(G) denotes the set of composably representable functions over an algebraic sti@gture

20

Example 4.17 Let G be a group. Any functiorf : {0,1}" — {0,1}" is composably repre-
sentable ove6 if a functionA : G x G — G suchthatd(g,h) = 1¢ <= (9 =1gorh=1¢)
can be algebraically computed @.

Example 4.18 Any functionf : {0,1}™ — {0,1}" is composably representable over where
R is any domain. Why: You already have a group (abelian in fact) and now the multiplication of
R is exactly the functiom from the previous example.

Example 4.19 (Private Information Retrieval.)

For a PIR protocol, one can define the underlying functions for query processfirg: & —
S", indexed byX = S™ such that there exist a collectidid); };_, C S7 where fx(Qi)nu) = Xi
where@); € S?represents the user’s queiy,c S™ represents the database, &rid some function
that determines which part of the response is the desired databaseXyalliee original work of
[14] on computational PIR (at the basic level) gives an explicit algebraic representation of such a
set of functiong| fx } overZy where eaclyy is represented with the same functidpsi) but of
course with differentfx. The work presented in Section 3 shows thagrif< n, then no such set
of functions can be algebraically represented over any abelian group (with urfioifh v

In the following subsection, we’ll devote a little extra attention to an interesting example.

4.3 Finite Non-Abelian Simple Groups and Composable Representability

We will prove a few elementary lemmas, and then the main result (which again, uses only basic
techniques from algebra). We begin, however, with some famous results that will be essential to
our result. Recall that a group is referred to asimpleif it has no proper normal subgroups.

Theorem 4.20 (Feit-Thompson) Every non-abelian simple group has even order.

The proof of this theorem is on the order of 250 pages. For that, among other reasons, we will
state this theorem without proof.

Theorem 4.21 (Cauchy) Let: be a finite group, and let be a prime integer such that|G|. Then
G contains an element of order

Proof of this theorem can be found in virtually any undergraduate or graduate text on algebra.
(See [11] or [12] for a nice proof by J.H. McKay.) Combining the above results, we see that

Fact 4.22 Every non-abelian simple group of finite order has an element of order 2.

This fact is the only dependence of this work on previous results.

Recall that a groug- is calledperfectif its commutator subgroup|G, G]) is in fact all of
G. Since the commutator subgroup is always normal (it is in fact fully invariant), and since the
commutator subgroup of a non-abelian graks also always non-trivial, we see that every non-
abelian simple group is perfect. In general, for any subiels C G, we will denote by.X, Y]
the set of all commutators i, Y, i.e.,[X,Y] = {zyz~ly~! | 2 € X,y € Y}. We will need a
similar, but stronger condition than perfect, which we can derive from the property of being simple.
Note that these results do not apply to all perfect groups. For example, the perfect@rdEp)
cannot be shown to have the ability of performing all computation by the means given here.

21

Lemma 4.23 Let G be a finite group and suppose thdt C G is conjugation invariant (i.e.,
Vs € S,g € Gwe havegsg~! € S). Then(S) < G.

Proof: Letxz € (S). Thenx = s1s9- - - s, for somek € Z. Letg € G be an arbitrary element.

Observe that

grg " = g(s152-- - sk)g”"

= gs1(g " 9)s2(97"9) -+ sk—1(9 " 9)skg™
= (95197 ")(gs2g™") -+ (gskg™")
= 518y s), € (5)

1

since alls; € S by our assumption. ThereforgS) < G as desired.ll
Now, let us consider for a moment conjugacy classes. For an elemen, we will denote
the conjugacy class Wyl (z). l.e.,

Clg(z) = {y € G | y = grg~ ' someg € G}

Recall that we can define a natural actionobn Clg(z) for anyx € G: for all s € Clg(x),
simply defineg - s = gsg~ 1.

Now, let G be a non-abelian simple group of finite order. From Cauchy’s theorem, we know
that there exists € G such thatr has order 2. Considérl;(z). Let |Clg(z)| = k. It must be
the case that > 1. If not, then every element af conjugates: to itself, and hence we have
x € Z(G), the center of7. But of course this is impossible since the center of a group is always
normal and we assumed th@tis simple. So, the conjugacy classohas at least two elements.
Recall next, that whenever a group acts on aSset sizek, there is an induced homomorphism,

p: G — Sk

Since the action ofs on Clg(x) is obviously transitive, and since the sizef the class of: is
greater thari, we see thap cannot be the trivial homomorphism which sends all elements to the
identity, and hencéer(p) # G. But, sinceG is simple, we in fact know thater(¢) must be
the trivial subgroup{e}, since the kernel is always normarherefore, every element 6f acts
non-trivially on the seClg ().

We will extract exactly the useful information into the following lemma which we have just
now proved.

Lemma 4.24 Let G be a finite, non-abelian simple group, andle& G be an element of ordex.
Then there exists an element Cls () such thatyzy ! # x, and hence, such that, y] # e.

Using these facts, we can now state and prove the following:

Theorem 4.25 Let GG be a finite non-abelian simple group. Then any functfon {0, 1} —
{0, 1}™ is composably representable ov@r

Proof: We will simply show that the functioNAND(a, b) is computable in this way, which
suffices to prove the theorem since any such funcfiar{0, 1}"* — {0, 1}" can be written in
terms of compositions dNAND alone. More precisely, we will show that for an elemendf

22

order2, the set{e, z} can be identified witH0, 1} respectively, and the operatiddAND can be
computed solely in terms of the group operatiorf:of

So, to begin, letx € G be of order2, which as we discussed exists by Cauchy’s theorem.
DefineC' = Clg(x). As discussedC| > 1. ConsiderS = [C, (], the set oftommutators irC.
Note that the subsét is conjugation invariant since it is generated®y= Cl;(z), which is quite
clearly conjugation-invariant. Hence by Lemma 4.23, the subgroup generatieds specific
commutatorsis a normal subgroup:

(5) =(C.Cl) <G

However, by Lemma 4.24, we know that| > 1, as there are at least 2 non-commuting elements.
But, we assumed tha&t was simple. Therefore, we have in fact t§d) = G. So, in particular,
there exists some product,ss - - - s, of commutators irC' such that

SlSQ“'Sk:x

So, eachs; = [r;,t;] wherer; andt; are both conjugate to. Therefore we have sequences of
group elementsg; }*_, and{h;}*_, such that

lgizg; ", hizh; '] = s
We are now ready to define oBAND(a, b). First, define the functioAND(a, b) as follows:

k
AND(a, b) = H[giagi_l, hibh; ']

=1

It is now easy to observe that it performs the appropriate function on our inputs{from>.
Whenevera or b is set to the identity, every commutator will of course be the identity since all
elements commute with. However, if botha andb are set to the group element the by our
design, we will haveAND(z, z) = x, exactly as desired. Now, sineehas ordee, we can simply
defineNAND(a, b) = AND(a, b)x. This completes the proofll

Corollary 4.26 Constructing a fully homomorphic encryption scheme over a ring with identity is
equivalent to constructing a group homomorphic encryption @rerfinite non-abelian simple
group. In particular, it is equivalent to constructing a homomorphic encryption scheme4gyer
the smallest such group.

To better illustrate the proof, we will provide an explicit construction for the grdypwhich
is of course the smallest non-abelian simple group.

Example 4.27 A5 can computéNAND.

First, we need an element of ord&r As we've seen, any such element will suffice. For
example, let = (1,2)(3,4). We know that commutators of conjugateszofvill generate all of
As, In particular,z itself. But to simplify things a bit, we’ll first construct standard generators
of A5 out of such commutators, and then write dowin terms of the standard generators. For
generators, we'll usel; = ({X,Y'}) with X = (1,2,3,4,5) andY = (3,4, 5). Let’s begin. Note
that

(3,5,4)(1,2)(3,4)(3,4,5) = (1,2)(3,5)

23

(2,4,3)(1,2)(3,4)(2,3,4) = (1,4)(2,3)

and that
[(1,2)(3,5), (1,4)(2,3)] = ((1,2)(3,5)(1,4)(2,3))* = (1,2,3,4,5)

So, we'll setg; = (3,5,4) andh; = (2,4, 3). Next, note that
(3,4,5)(1,2)(3,4)(3,5,4) = (1,2)(4,5)

and that
[(1,2)(4,5),(1,2)(3,4)] = ((1,2)(4,5)(1,2)(3,4))* = (3,4,5)
So, we'llletg, = (3,4,5) andhy = e. Next we'll writez = (1,2)(3,4) in terms of our generators:
(1,2)(3,4) = X 'y 'xlytx?

Finally, using the simple observations thaty] ! = [y, z|, and that ifa, b have order two then
they are their own inverses, we can write down an explicit expressiaiAd¥D(a, b) in terms of
the group operation alone, whergh € {e, x}:

hibhi*giagy 'habhit gragy tbgaags tbgaagy T hibhy gragy thibhi gragy

NAND(a,b) = _ _ - _ _ l : L - -
(,0) bgaagy ‘bgaags tgragy habhyt gragy bl gragy thabhy giagy thabhy e

v

References

[1] D. Barrington. Bounded-Width Polynomial-Size Branching Programs Recognize Exactly
Those Languages in NC. STOC 1986: 1-5

[2] D. Boneh, G. Crescenzo, R. Ostrovsky, G. Persiano. Public Key Encryption with Keyword
Search. EUROCRYPT 2004: 506-522

[3] D. Boneh, E. Goh, K. Nissim. Evaluating 2-DNF Formulas on Ciphertexts. TCC 2005:
325-341

[4] D. Boneh, R. Lipton. Searching for Elements in Black Box Fields and Applications. In
Advances in Cryptology-Crypto’96, LNCS1109, pp. 283-297, Springer-Verlag, 1996.

[5] D. Boneh, E. Kushilevitz, R. Ostrovsky, W. Skeith. Public Key Encryption that Allows PIR
Queries. Manuscript, 2005.

[6] Y. C. Chang. Single Database Private Information Retrieval with Logarithmic Communica-
tion. ACISP 2004

[7] C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval with
polylogarithmic communication. In J. Stern, editAdvances in Cryptology - EUROCRYPT
'99, volume 1592 ot.ecture Notes in Computer Scienpages 402—-414. Springer, 1999.

[8] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrievaPrag.
of the 36th Annu. IEEE Symp. on Foundations of Computer Sqigages 41-51, 1995.
Journal versiond. of the ACM 45:965-981, 1998.

24

[9] T. ElIGamal. A Public-Key Cryptosystem and a Signature Scheme Based on Discrete Log-
arithms. |EEE Transactions on Information Theory, v. IT-31, n. 4, 1985, pp469472 or
CRYPTO 84, pp1018, Springer-Verlag.

[10] S. Goldwasser and S. Micali. Probabilistic encryption. In J. Comp. Sys. Sci, 28(1):270-299,
1984.

[11] I. N. Herstein. Abstract Algebra. Prentice-Hall, 1986, 1990, 1996.
[12] T. W. Hungerford. Algebra. Springer-Verlag, Berlin, 1984.

[13] Y. Ishai, E. Kushilevitz, R. Ostrovsky. Sufficient Conditions for Collision-Resistant Hash-
ing. In Proceedings of the Second Theory of Cryptography Conference (TCC-2005)Springer-
Verlag Lecture Notes in Computer Science, 2005.

[14] E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval. Froc. of the 38th Annu. IEEE Symp. on
Foundations of Computer Sciengages 364-373, 1997.

[15] H. Lipmaa. An Oblivious Transfer Protocol with Log-Squared Communication. IACR ePrint
Cryptology Archive 2004/063

[16] U. Maurer and S. Wolf. Lower bounds on generic algorithms in groups. In Advances in
Cryptology — EUROCRYPT '98, number 1403 in Lecture Notes in Computer Science, pages
72-84.

[17] W. Maurer and J. Rhodes. A property of finite non-Abelian simple groups. In proc. Am.
Math. Soc., vol. 16, pages 522-554 (1965).

[18] R. Ostrovsky and W. Skeith. Private Searching on Streaming Dafalvances in Cryptology
— CRYPTO 2005

[19] R. Ostrovsky and W. Skeith Computational Private Information Retrieval: A Survey.
Manuscript, 2006.

[20] P. Paillier. Public Key Cryptosystems based on CompositeDegree Residue Classes. Advances
in Cryptology - EUROCRYPT 99, LNCS volume 1592, pp. 223-238. Springer Verlag, 1999.

[21] R. L. Rivest, L. Adleman and M. L. Dertouzos, On data banks and privacy homomorphisms,
In Foundations of Secure Computation, eds. R. A. DeMillo et al., Academic Press, 1978, pp.
169-179.

[22] R.L.Rivest, A. Shamir, and L. Adleman A method for obtaining digital signatures and public
key cryptosystems, Commun. ACM 21 (1978), 120126.

[23] T. Sander, A. Young, M.Yung. Non-Interactive CryptoComputing For NC1 FOCS 1999:
554-567

[24] V. Shoup. Lower Bounds for Discrete Logarithms and Related Problems. In Eurocrypt '97,
LNCS 1233, pages 256—266. Springer-Verlag, 1997.

[25] H. Werner. Finite simple non-Abelian groups are functionally complete. In Bull. Soc. Roy.
Sci. Liege, vol. 43, pp. 400, (1974)

25

5 Appendix

5.1 Notations

The natural numbers will be denotéd and the integers b¥.. Forn € Z, the symbolZ,, will
denote the rindgZ/nZ, or the group(Z/nZ,+). We will sometimes denote the set of integers
{1,2,...,n} by [n] for simplicity. If G is a group, thel®. or 1 will represent the identity element

of GG, depending on whether additive or multiplicative notation is being used for the operation of
G. The symbolx will be used to denote a direct product (in sets, groups, rings, modules, etc.),
and if X is a set (or group, ring, module...) thef* represents the direct product ofcopies

of X. Occasionally, ifA is a subset of a group (ring, module, etc.) the symbtl will denote

the subgroup (sub-ring, sub-module, etc.) that is generatetl bye., the intersection of all sub-
structures containingl. However, we adhere to standard notations in more specific situations. Let
R be aring and let/ be ank-module. IfA and B are sub-modules adf/, then we denote the sum

of AandB asA+ B. We will denote the external direct sum of any tWemodulesA, Bby A® B.

For anya € M, Ra will denote the submodule af/ defined byRa = {ra | r € R}, so that if

1 € RandM is unitary then({a}) = Ra. The set of allR-module homomorphisms from to B

will be denoted byHomg(A, B). For an abelian grou@, the ring of endomorphisnidomy (G, G)

will be denoted byEnd(G). For any setX, F'(X) will denote the free group generated Ky

5.2 Algebraic PIR from Degreet Polynomials

To see how to construct an algebraic PIR with constant server-side communication given a cryp-
tosystem that allows polynomials of total degree be computed on ciphertext, you can see the
work of [3]. For completeness however, we sketch such a protocol below. Proceed as follows.
First, organize a database of bits¢tnoordinate addresses. Now to produce a query for an address
(41,13, ..., 17), createt vectors of lengthy/n according to the formuléw,.); = d;;:. Encrypt these
vectors and send them to the server as a query. Label the encrypted vectqrs-as(v;) and

.....

X € {0,1}", define

n

Fx(Yigs o Yo gmts oo Yoo oo Yigm) = >
1,0t €[0,{/(n) 1]

11

k=1

which can of course be computed on ciphertext for &ng {0, 1}" since the exponents can
be computed via th&-module action and each term has degre8o, there exists’, efficiently
computable from public information such thatuf = £(v) thenD(F(w)) = F(v). So, the
database algorithm simply compu@$(w1)1, ..., (w) ym—1) as the response to the query, which
will clearly be an encryption of;: _;-. Under the assumption that the cryptosystem is CPA-secure,
security of this PIR protocol comes from a standard hybrid argument since the only information
exchanged was a few arrays of ciphertext.

26

5.3 Additional Definitions
5.3.1 Oblivious Modifiers

Let (IC,&,D) be a CPA-secure cryptosystem, with plaintext Ggtand ciphertext sefr,. We
consider the following setting: A us&¥ initially holds a databasér;} , and gives to a storage
providerS an arrayX = {c¢;}", of ciphertexts, where; = £(z;). Subsequently, any number of
users with the public key may wish to modify one of the underlyingn the database, and they
wish to do so without revealing any information§about the modification.

Definition 5.1 We define ai®blivious Database Modifierto be the following three algorithms:

1. Key-Gen(k). This algorithm takes a security parameterand generates all public and
private parameters for the system, including public and private keys for the underlying cryp-
tosystem.

2. GetModifier : {1,2,....,n} x N — 9. This takes an integer € {1,2,...,n} and some
integer randomness, and then outpuitsce 9t which describes the modification to be done
to the database.

3. Modify : G x 9t — G%. This takesX € G% andm; € 9t and outputsX’ € G4 such that
D(X;) # D(X]) < m,; € GetModifier({:} x N).

(2

The above algorithms describe a one round protocol for oblivious database modifiGetModifier
is executed by the various users which send the result to the database owner who &4edifies
on that input and the database.

Definition 5.2 (Correctness) If whenevérc {1,2,...,n}, m; € GetModifier({:} x N), X € G7,
and X’ =Modify(X, m;) it holds that

(D(X;) # D(Xj) = i=]j)

with overwhelming probability (over any randomness use@&Modifier and Modify) then the
Oblivious Database Modifier is said to loerrect.

For such a system, the goal is to conceal what database element is being modified. So, we
would like to have no information about the selected index to be efficiently computable from the
protocol’s execution with any noticeable probability. I.e., nothing abaiefficiently computable
from m,. Clearly, this will depend on the security of the underlying cryptosystem.

Definition 5.3 (Privacy) We define semantic security in terms of the following game between an
adversaryA and a challenge€. The game consists of the following steps:

1. C runs Key-Gen(k) and sends to4 all public parameters, including a description of the
underlying cryptosystem.

2. A can ask queries of the forine {1,2,...,n} andC responds wittGetModifier(:).

3. Aselectsiy,i; € {1,2,...,n} and sends both t6.

27

4. C randomly choosek € {0, 1} and send&etModifier(i;) to A.
5. A may send mor&etModifier queries taC, andC will respond properly.

6. A outputs a guess € {0, 1}.

We say thaid wins ifb’ = b and loses otherwise. Define the adversary’s advantage to be

1
Adv (k) = |Pr[t) = b] — 3
where the probability is taken over all internal randomnesglandC. We say that the Oblivious

Database Modifier i€PA-secureif Adv 4(k) is a negligible function irk.

5.3.2 Algebraic Oblivious Modifiers

Let (I, &, D) be a CPA-secure group homomorphic encryption scheme with plaintext gfoup
Suppose thaf is an abelian group. (We will consider other structures, e.g. rings and monoids
later on.) By homomorphic, we will mean that for allb € G

D(E(a)E()) = ab

Given the fact that CPA-secure ciphertexts contain no information that is computable by a user
or the database owner, what could an oblivious database modification protocol’s algorithm look
like? To preserve privacy, the computation performedd@gModifier must involve every cipher-
text in the database, and it logically must involve every underlying plaintext. Indeed, for virtually
all PIR protocols derived from an encryption scheme, the only operations on the underlying plain-
text are group operations. Here, we consider programs that are restricted to computing algebraic
formulas on the underlying plaintext. In order to discuss lower bounds for such a system in a
mathematical setting, we’ll use our formalization of “arbitrary algebraic formula” developed in the
preceding section. Recall that for any objelcin a concrete category, we used the nota#idnX |
to denote the set of all-algebraic formulas withX as the set of variables, and the corresponding
functions fromA™ — A" are denoted by;[X], or more simplyF 4[X].

Definition 5.4 We define ailgebraic Oblivious Database Modifierto be an Oblivious Database
Modifier with the following constraints:

1. The underlying cryptosystem is homomorphic, preserving the algebraic structure of the
plaintext set(7, (be it a group, ring, field, et cetera).

2. The modification description sé1, is simplyG?y', orderedm-tuples of ciphertexts.

3. TheModify protocol will computeyy € Fg,[X], an algebraic function to determine the
updated database contents. Here, the)setpresents variables for every database element
and for all elements din.

Clearly correctness and privacy will have the same definitions as a general modifier (see defini-
tions 5.2 and 5.3, respectively). And as we have formalized above, the phrase “algebraic formula”
now has precise meaning as wéll.

°If the encryption map were deterministic, so that a homomorphic encryption furitias actually a homomor-
phism of groups, we could make a slightly more appealing definition, in which we woulfl u6§ — G- to obtain
our evaluation map. This way, we could still phrase things in terms(éf-algebraic formula.

28

