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Abstract

Suppose that we are given an ideal oblivious transfer protocol (OT).
We wish to construct a larger OT by using the above OT as a blackbox.
Then how many instances of the given ideal OT should be invoked ?
For this problem, some lower bounds were derived using entropy. In
this paper, we show more tight lower bounds by using combinatorial
techniques. Roughly speaking, our lower bounds are two times larger
than the previous bounds.
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1 Introduction

1.1 Background

A two-party protocol called Oblivious Transfer (OT) is a fundamental prim-
itive in cryptography. Most notably, it is known that any secure multiparty
computation can be based on OT [11, 8, 9]. A typical form of oblivious
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transfer is an L-bit (1, N)-OT. In this protocol, Alice (who is a sender) has
N secret strings s0, s1, · · · , sN−1 ∈ {0, 1}L, and Bob (who is a receiver) has
a secret c ∈ {0, 1, · · · , N − 1}. At the end of the protocol, Bob receives
sc (completeness). But he has no information on the other Alice’s secret
{s0, s1, · · · , sN−1}\{sc} (sender’s privacy). On the other hand, Alice has no
information on Bob’s secret c (receiver’s privacy).

Several researchers showed how to construct an L-bit (1, N)-OT by using
an `-bit (1, n)-OT as a blackbox in the information theoretic sense (that is,
without any computational assumptions) [2, 1, 4], where L ≥ ` and N ≥ n

usually. Such a realization is called information-theoretic OT-reduction.
OT-reduction must be efficient because even the implementation of small OT
may be expensive to run. Then how many instances of `-bit (1, n)-OT must
be invoked so as to obtain L-bit (1, N)-OT ? Dodis and Micali considered
this problem and showed the first lower bound for this problem [7]. Such a
lower bound is called a lower bound for information-theoretic OT-reduction.
Wolf and Wullschleger presented another lower bound [10]. All these bounds
were derived by using entropy.

Recently, Crépeau and Savvides showed a very efficient reduction of a
string (1, 2)-OT to a bit (1, 2)-OT [6]. However, a small error probability is
allowed in their model [6, Theorem 2,4].

1.2 Our Contribution

In this paper, we study lower bounds on information-theoretic OT-reduction
by using combinatorial techniques. (That is, we study lower bounds on
the number of instances of `-bit (1, n)-OT which must be invoked so as to
obtain L-bit (1, N)-OT.) We first derive more tight lower bounds than the
previous bounds by using a simple counting argument. Roughly speaking,
the proposed bounds are two times larger than the previous bounds. We
next improve these bounds by using orthogonal arrays for large L.

Please note that our lower bounds do not contradict with the recent
reduction of Crépeau and Savvides [6] because a small error probability is
allowed in their model [6, Theorem 2,4].
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2 Oblivious Transfer (OT)

As an `-bit (1, n)-Oblivious Transfer, imagine an ideal world as follows. Alice
has n secret strings of ` bits s0, s1, · · · , sn−1 ∈ {0, 1}`, and Bob has a secret
c ∈ {0, 1, · · · , n− 1}.

1. First, Alice sends s0, s1, · · · , sn−1 to a trusted third party (TTP), and
Bob sends c to TTP.

2. Next TTP sends sc to Bob.

We say that the above three party protocol (Alice, Bob, TTP) is the ideal
`-bit (1, n)-Oblivious Transfer.

By using the above ideal `-bit (1, n)-Oblivious Transfer as a building
block, we are interested in to construct a two-party L-bit (1, N)-Oblivious
Transfer protocol (Alice, Bob) which satisfies the following three conditions,
where L ≥ ` and N ≥ n.

Completeness. If Alice and Bob follow the protocol, then Bob receives sc.

Receiver’s privacy. For any infinitely powerful Ã, Ã learns no information
on c when (Ã, B) is executed.

Sender’s privacy. For any infinitely powerful B̃, B̃ learns no information
on s0, s1, · · · , sN−1 other than some sc when (A, B̃) is executed.

More formally, sender’s privacy is defined as follows. For i = 0, 1, · · · , N−
1, let Si denote the random variable induced by si ∈ {0, 1}L. For each i, we
assume that

Pr(Si = α) > 0

for any α ∈ {0, 1}L. We also assume that each Si is independent each other.
Let view denote the view of Bob (receiver) which consists of his random

coin tosses and the messages that he received from Alice. Let V iew denote
the random variable induced by view.

Definition 2.1 (Sender’s privacy) We say that sender’s privacy is satisfied
if for any infinitely powerful B̃ and his any possible view, there exists c ∈
{0, 1, · · · , N − 1} such that for any i 6= c,

Pr(Si = α | V iew = view) = Pr(Si = α) > 0
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for any α ∈ {0, 1}L.

For two strings R0 and R1, let R0||R1 denote the concatenation.

3 Previous Results

Suppose that we want to construct an L-bit (1, 2)-OT from t instances of
the ideal `-bit (1, 2)-OT. Brassard, Crépeau and Santha [2] showed a con-
struction such that t = κL, where κ > 3.5277 asymptotically [1]. For a
weaker notion of sender’s privacy, Brassard and Crépeau [1] showed a more
efficient construction such that t = 2L + s, where s is a security parameter.

On the other hand, Dodis and Micali showed the first lower bound on t

as follows [7].

Proposition 3.1 Suppose that there exists an L-bit (1, N)-OT which in-
vokes t instances of the ideal `-bit (1, n)-OT. Then we have

t ≥ L

`
× N − 1

n− 1
.

Wolf and Wullschleger presented another lower bound as follows [10].

Proposition 3.2 Suppose that there exists an L-bit (1, N)-OT which in-
vokes t instances of the ideal `-bit (1, n)-OT. Then we have

t ≥ log N/ log n, (1)

t ≥ L/`. (2)

In particular, for N = n = 2 and ` = 1, we have the following corollary
from Proposition 3.1 and Proposition 3.2. This is the most tight bound
known so far for N = n = 2 and ` = 1.

Corollary 3.1 Suppose that there exists an L-bit (1, 2)-OT which invokes
t instances of the ideal 1-bit (1, 2)-OT. Then we have t ≥ L.

Also, eq.(2) is the best known bound for L ≥ ` and N < 2n − 1. All the
above bounds were derived by using entropy.
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4 Our First Lower Bound

In this section, we derive our lower bounds by using a simple counting ar-
gument (while the previous bounds were derived by using entropy). We
consider the reduction of L-bit (1, 2)-OT to 1-bit (1, 2)-OT first, and then
the reduction of L-bit (1, n)-OT to `-bit (1, n)-OT. Our bounds are more
tight than the previous bounds. See Sec.2 for the definition of ideal OT.

4.1 Lower Bound for (1, 2)-OT

Theorem 4.1 Suppose that there exists an L-bit (1, 2)-OT which invokes t

instances of the ideal 1-bit (1, 2)-OT. Then we have

t ≥ 2L− 1.

(Proof) Suppose that there exists an L-bit (1, 2)-OT which invokes t in-
stances of the ideal 1-bit (1, 2)-OT. In the L-bit (1, 2)-OT protocol,

• Alice has two secret strings s0, s1 ∈ {0, 1}L and Bob has a choice bit
c.

• At the end, Bob receives sc.

We denote by Alice(RA; s0, s1) Alice who has RA as her random tape and
s0, s1 as her input, where s0, s1 ∈ {0, 1}L. We also denote by Bob(RB; c)
Bob who has RB as his random tape and c as his input, where c ∈ {0, 1}.
Let com(Alice(RA; s0, s1), Bob(RB; c)) denote the communication sequence
between Alice(RA; s0, s1) and Bob(RB; c) other than the t invocations of the
ideal 1-bit (1, 2)-OT.

Fix RA, s0 and s1 arbitrarily. For some R0 and c = 0, let

com0 = com(Alice(RA; s0, s1), Bob(R0; 0)). (3)

Since Alice learns no information on c, there exists R1 for c = 1 such that

com0 = com(Alice(RA; s0, s1), Bob(R1; 1)). (4)

Denote the ith invocations of the ideal 1-bit (1, 2)-OT in (Alice(RA; s0, s1), Bob(R0; 0))
by OT0(i) and the one in (Alice(RA; s0, s1), Bob(R1; 1)) by OT1(i). Sup-
pose that Alice(RA; s0, s1) has (xi, yi) as input in OT0(i) and (x′i, y

′
i) in
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OT1(i). Then xi = x′i and yi = y′i for i = 1, · · · , t because (RA; s0, s1)
is the same and com0 is the same in (Alice(RA; s0, s1), Bob(R0; 0)) and
(Alice(RA; s0, s1), Bob(R1; 1)). (That is, all the inputs to Alice are the
same.)

Next without loss of generality, suppose that Bob(R0; 0) receives xi in
OT0(i) for i = 1, · · · , t. For OT1(i), let

∆ = {i | Bob(R1; 1) receives xi in OT1(i)}

and let δ = |∆|.

(1) Suppose that δ = 0. In this case, Bob(R1; 1) receives yi in OT1(i) for
i = 1, · · · , t. First suppose that t = even.

Consider malicious B̃ who behaves in the same way as Bob(R0; 0) does
except for that it receives Z = (x1, · · · , xt/2, y(t/2)+1, · · · , yt) in the t in-
vocations of the ideal 1-bit (1, 2)-OT. B̃ also has R0||R1 as his random
tape, where || denotes concatenation. The view of B̃ is given by view′ =
(R0||R1, Z, com0). 1

It is helpful to note the following: Bob is an interactive Turing machine.
But there exists a (usual) algorithm (based on Bob) such that

• it outputs s0 on input (R0, (x1, · · · , xt), com0), and

• it outputs s1 on input (R1, (y1, · · · , yt), com0).

By using this algorithm (Bob), B̃ can compute

• s0 on input (R0||R1, (x1, · · · , xt), com0), and

• s1 on input (R0||R1, (y1, · · · , yt), com0).

Now fix the above view′, and do not fix RA, s0 and s1 any more. Then
B̃ has no information on either s0 or s1 from Sender’s privacy. Without loss
of generality, suppose that B̃ has no information on s0. This means that for
any L-bit string α ∈ {0, 1}L,

Pr(S0 = α | V iew = view′) = Pr(S0 = α) > 0.

1Alternatively, we can say that B̃ behaves in the same way as Bob(R1; 1) does except

for that it receives Z = (x1, · · · , xt/2, y(t/2)+1, · · · , yt) in the t invocations of the ideal 1-bit

(1, 2)-OT. This is possible because B̃ has R0||R1 as his random tape, and com0 is the

same in the two simulations of Bob.
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On the other hand, (xt/2+1, · · · , xt) are not fixed in view′. This means that
(xt/2+1, · · · , xt) ∈ {0, 1}t/2 uniquely determine s0 ∈ {0, 1}L. In other words,
there exists an onto mapping F : {0, 1}t/2 → {0, 1}L. This implies that
t/2 ≥ L. Hence

t ≥ 2L. (5)

Next suppose that t = odd. Let t0 = bt/2c and t1 = dt/2e. Consider
malicious B̃ who receives (x1, · · · , xt0 , yt1 , · · · , yt) in the t invocations of the
ideal (1, 2)-OT. Then by using the same argument as above, we obtain that
t0 ≥ L or t1 ≥ L. Hence t1 ≥ L. This means that t0 = t1 − 1 ≥ L − 1.
Therefore,

t = t0 + t1 ≥ L + (L− 1) = 2L− 1. (6)

From eq.(5) and eq.(6), we obtain that t ≥ 2L− 1.

(2) Finally, suppose that δ > 0. Then by applying the same argument to
{1, · · · , t} \∆, we obtain that t− δ ≥ 2L− 1. This means that t ≥ 2L− 1.

Q.E.D.

4.2 Generalization to (1, n)-OT

Theorem 4.2 Suppose that there exists an L-bit (1, n)-OT which invokes t

instances of the ideal `-bit (1, n)-OT. Then we have

t ≥ 2dL/`e − 1.

(Proof) Suppose that there exists an L-bit (1, n)-OT which invokes t in-
stances of the ideal `-bit (1, n)-OT. In the L-bit (1, n)-OT protocol,

• Alice has n secret strings s0, · · · , sn−1 ∈ {0, 1}L and Bob has a secret
c ∈ {0, · · · , n− 1}.

• At the end, Bob receives sc.

We use the same notation and the same argument as shown in the proof
of Theorem 4.1. Although c ∈ {0, · · · , n − 1}, we consider Bob(R0; 0) for
c = 0 and Bob(R1; 1) for c = 1.

First suppose that t = even. Then similarly to the proof of Theorem
4.1, there exists an onto mapping F : {0, 1}`t/2 → {0, 1}L. This implies that
`t/2 ≥ L. Hence we have

t ≥ d2L/`e. (7)

7



Next suppose that t = odd. Then similarly to the proof of Theorem 4.1,
we have

t = t0 + t1 ≥ dL/`e − 1 + dL/`e = 2dL/`e − 1. (8)

From eq.(7) and eq.(8), we obtain that t ≥ 2dL/`e − 1. Q.E.D.

5 Improved Bounds

In this section, we improve our lower bounds by using orthogonal arrays for
large L.

5.1 Orthogonal Array

We define orthogonal arrays as follows.

Definition 5.1 An orthogonal array OA(m, k, d) is a k × md matrix of m

symbols such that in any d rows, every one of the possible md tuples of
symbols appears exactly once.

Then Bush bound is known as follows [3, 5].

Proposition 5.1 (Bush bound) An orthogonal array OA(m, k, d) with d >

1 exists only if

k ≤


m + d− 1 if m even and d ≤ m,

m + d− 2 if m odd and 3 ≤ d ≤ m,

d + 1 if d ≥ m.

5.2 Improvement of Theorems 4.1 and 4.2

By using Bush bound, we can improve Theorems 4.1 and 4.2 as shown below.

Theorem 5.1 For L ≥ 3, suppose that there exists an L-bit (1, 2)-OT which
invokes t instances of the ideal 1-bit (1, 2)-OT. Then we have

t ≥ 2L.

Theorem 5.2 Let L/` be an integer such that L/` ≥ 2` + 1. Suppose that
there exists an L-bit (1, n)-OT which invokes t instances of the ideal `-bit
(1, n)-OT. Then we have

t ≥ 2L/`.
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5.3 Proof of Theorem 5.1

From Theorem 4.1, it holds that t ≥ 2L−1. Suppose that t = 2L−1. We use
the same notation as in the proof of Theorem 4.1. Fix R0, R1, com0,view′

as shown in the proof of Theorem 4.1.
Let Y0 be the set of all (y1, · · · , yt) such that

Pr( Bob receives s1 = 0L ) > 0.

Let P be a t × |Y0| matrix which consists of all (y1, · · · , yt)T ∈ Y0. We will
show that P is an OA(2, t, L− 1).

Similarly to the proof of Theorem 4.1, consider malicious B̃ who receives

Z = (x1, · · · , xL, yL+1, · · · , y2L−1)

in the t instances of the ideal 1-bit (1, 2)-OT. It must be that B̃ has no
information on either s0 or s1. Suppose that B̃ has no information on s0.
Then similarly to deriving eq.(5), we obtain that L − 1 ≥ L. However, this
is a contradiction.

Therefore, B̃ has no information on s1. In this case, there must exist
an onto mapping F : {(y1, · · · , yL)} → {s1}. This means that there exists
a bijection between {(y1, · · · , yL)} and the set of s1 because {s1} = {0, 1}L.
Hence for any γ ∈ {0, 1}L,

Pr((y1, · · · , yL) = γ) > 0.

In particular, we have

Pr((y1, · · · , yL−1) = 0L−1) > 0.

Now for (y1, · · · , yL−1) = 0L−1, we can see that there exists a bijection be-
tween {(yL, · · · , y2L−1)} and the set of s1 such that (y1, · · · , yL−1, yL, · · · , y2L−1) =
(0L−1, β) determines s1 uniquely.

In particular, there exists a unique β ∈ {0, 1}L such that (y1, · · · , y2L−1) =
(0L−1, β) determines s1 = 0L. This means that (0L−1, β)T is a column of
P and 0L−1 appears exactly once in the first L − 1 rows. By the same
argument, in the first L−1 rows, each L−1 bit string appears exactly once.

The above observation holds in any L−1 rows. Hence P is an OA(2, t, L−
1). Then from Bush bound, it must be that

t ≤ (L− 1) + 1 = L
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because L ≥ 3 > 2. However, this is impossible because t = 2L− 1.
Hence it must be that t ≥ 2L.

5.4 Proof of Theorem 5.2

From our assumption, η = L/` is an integer. From Theorem 4.2, it holds
that t ≥ 2L/` − 1 = 2η − 1. Suppose that t = 2η − 1. We use the same
notation as in the proof of Theorem 4.2. For c ∈ {0, · · · , n− 1}, we consider
Bob(R0; 0) for c = 0 and Bob(R1; 1) for c = 1 as in the proof of Theorem
4.2. Note that Alice(RA; s0, s1) has (xi, yi) as input in both OT0(i) and
OT1(i) where xi, yi ∈ {0, 1, . . . , 2` − 1}. Fix R0, R1, com0,view′ as shown
in the proof of Theorem 4.1.

Let Y0 be the set of all (y1, · · · , yt) such that

Pr( Bob receives s1 = 0L ) > 0.

Let P be a t × |Y0| matrix which consists of all (y1, · · · , yt)T ∈ Y0. We will
show that P is an OA(2`, t, η − 1).

Similarly to the proof of Theorem 4.1, consider malicious B̃ who receives

Z = (x1, · · · , xη, yη+1, · · · , y2η−1)

in the t (= 2η − 1) instances of the ideal `-bit (1, n)-OT. It must be that B̃

has no information on either s0 or s1. Suppose that B̃ has no information
on s0. Then similarly to deriving eq.(7), we obtain that `(η− 1) ≥ L. Since
`η = L, it implies L− ` ≥ L. However, this is a contradiction.

Therefore, B̃ has no information on s1. In this case, there must exist
an onto mapping F : {(y1, · · · , yη)} → {s1}. This means that there exists a
bijection between {(y1, · · · , yη)} and the set of s1 because |{(y1, · · · , yη)}| =
|{0, 1, . . . , 2` − 1}η| = 2`η = 2L and |{s1}| = |{0, 1}L| = 2L. Hence for any
γ ∈ {0, 1, . . . , 2` − 1}η,

Pr((y1, · · · , yη) = γ) > 0.

In particular, we have

Pr((y1, · · · , yη−1) = 0η−1) > 0.
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Now for (y1, · · · , yη−1) = 0η−1, we can see that there exists a bijection be-
tween {(yη, · · · , y2η−1)} and the set of s1 such that (y1, · · · , yη−1, yη, · · · , y2η−1) =
(0η−1, β) determines s1 uniquely.

In particular, there exists a unique β ∈ {0, 1, . . . , 2` − 1}η such that
(y1, · · · , y2η−1) = (0η−1, β) determines s1 = 0L. This means that (0η−1, β)T

is a column of P and 0η−1 appears exactly once in the first η − 1 rows. By
the same argument, in the first η − 1 rows, each β ∈ {0, 1, . . . , 2` − 1}η−1

appears exactly once.
The above observation holds in any η−1 rows. Hence P is an OA(2`, t, η−

1). Then from Bush bound, it must be that

t ≤ (η − 1) + 1 = η

because η−1 ≥ 2` from our assumption. However, this is impossible because
t = 2η − 1.

Hence it must be that t ≥ 2η.

6 Discussion

The following table shows a comparison of our bounds with the best known
bounds. It is clear that our bounds are more tight.

Reduction L-bit (1, 2)-OT to L-bit (1, n)-OT to
1-bit (1, 2)-OT `-bit (1, n)-OT

Previous t ≥ L t ≥ L/`

(Corollary 3.1) (eq.(2))
This paper (1) t ≥ 2L− 1 t ≥ 2dL/`e − 1

(Theorem 4.1) (Theorem 4.2)
This paper (2) t ≥ 2L t ≥ 2L/`

if L ≥ 3 if η = L/` is an integer and η ≥ 2` + 1
(Theorem 5.1) (Theorem 5.2)

Brassard, Crépeau and Santha [2] showed L-bit (1, 2)-OT which runs
n = κL instances of 1-bit (1, 2)-OT, where κ > 3.5277 asymptotically [1].
Hence our bound of Theorem 5.1 has approached to the optimum.
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We derived our bounds by using our combinatorial techniques while the
previous bounds [7, 10] were derived by using entropy. We believe that our
approach gives a new insight to the intuitive and essential understanding of
oblivious transfer.
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