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Abstract. Canetti-Halevi-Katz (CHK) introduced the idea of generically converting a CPA-secure
identity based encryption (IBE) protocol into a CCA-secure public key encryption (PKE) protocol.
The efficiency of the CHK construction was improved by Boneh-Katz (BK) by using a MAC algorithm
to replace one-time signatures. In this paper, we present two new constructions for obtaining a hybrid
PKE from an IBE. The first construction is obtained by redrawing the abstraction boundary of the
BK construction to obtain an explicit hybrid protocol. This allows us to use a (possibly single-pass)
authenticated encryption (AE) protocol to instantiate the symmetric component. In the second proto-
col, we show that the MAC component in the BK construction can be removed. Instead, the message is
authenticated differently through the process of deriving the identity of the underlying identity based
key encapsulation mechanism (IBKEM). The second protocol requires the identity based component
to be secure in the full model as opposed to the first protocol which is required to be secure only
in the selective-ID model. As an additional contribution, we also show how to use AE in the direct
construction of hybrid PKE due to Kurosawa-Desmedt (KD).
Keywords: identity based encryption, public key encryption.

1 Introduction

Public key encryption protocols are of central importance in modern cryptography. A major ongoing
theme of research is to obtain and to understand efficient methods for building new PKE protocols.
Given the importance of PKE in modern cryptography and the amount of time (three decades)
for which the concept has been around, a surprisingly few actual constructions are known. This is
perhaps due to the inherent difficulty of constructing such schemes.

An important early PKE which has a proof of security is the RSA-OAEP [4, 11]. However, the
proof of this construction requires the random oracle assumption. The only known direct construc-
tion of PKE without using the random oracle heuristic is the Cramer-Shoup (CS) [10] construction
and its variants. From an application point of view, it is important to construct hybrid PKE pro-
tocols, i.e., protocols, which use the public key component to encapsulate a secret key and the
main “bulk” message is encrypted using a symmetric encryption algorithm using the secret key.
Kurosawa-Desmedt [14] described a more efficient variant of hybrid CS protocol.

One of the most important topics of current research is that of identity based encryption
(IBE) [18, 5]. This is public key encryption scheme where the public key can be any string. Perhaps
surprisingly, it was shown by Canetti-Halevi-Katz [8] and later by Boneh-Katz [6] that a weakly
secure IBE can be used to generically build a PKE which is secure in the strongest sense. Later
work by Boyen-Mei-Waters [7] have shown how to improve the efficiency of such constructions for
particular IBE schemes. The constructions of BMW are non-generic.



Our Contributions: In this paper, we revisit the problem of generic construction of PKE from IBE.
As mentioned earlier, the first such construction is the CHK construction, which was based on the
use of one-time signatures. This makes the conversion quite inefficient. Efficiency improvements
were made by the BK construction which used a message authentication code (MAC) algorithm to
replace the one-time signature. The BK construction is based on an abstraction of a special kind
of commitment scheme which can be instantiated by a universal one-way hash function (UOWHF)
and a family of pairwise independent hash functions.

We “unfold” and rewrite the BK construction, i.e., we do away with the abstraction of the
special commitment scheme and write the entire protocol in terms of the constituent primitives.
This allows us to better understand how and why the protocol works. Based on this understanding
we suggest two new protocols, P1 and P2, for generically converting an IBE to a PKE. Both the
protocols are hybrid constructions.

In the first protocol, P1, we make explicit use of an identity based key encapsulation mechanism
(IBKEM). This enables a clearer identification of the roles of the symmetric components in the
protocol. We find that two of these – encryption and authentication – can be combined using a
single known primitive called authenticated encryption (AE). In the process, we realized that it is
also easy to use AE in the hybrid KD protocol and we have described the KD protocol using AE.
We note that the use of AE in the context of stateful hybrid PKE has been earlier mentioned in [3].

One advantage of using AE is that there are known single pass AE protocols [17, 13, 12, 9], i.e.,
both encryption and authentication can be performed in a single-pass over the message. This leads
to efficiency improvement in the symmetric component by a factor of two. Further, the ability for
performing single-pass AE allows for on-line encryption of the message, which can be useful when
secure buffer size is limited.

Returning to our first protocol, we also do away with the pairwise independent hash family. In
the BK protocol, this was used to obtain the secret key for the MAC algorithm. Instead we use
a computationally secure KDF to derive the secret key for the AE algorithm from the secret key
produced by the IBKEM protocol. A computationally secure KDF will be more efficient than a
pairwise independent hash family.

In the BK protocol, the identity to be used with the IBKEM protocol is derived by applying
a UOWHF from a random string x. In our first protocol we retain this feature. But we realized
that if M is a message it is possible to apply a hash function Hs to the string M ◦ x to derive the
identity y. Applied in such a manner, the string y could also potentially play the role of a tag, by
authenticating the message and the random string x. For this, we need to relax the requirement on
Hs from a UOWHF to a partial UOWHF (but not quite a collision resistant hash function).

In any case, using y as a tag means that we can do away with the explicit MAC generation
algorithm of the BK protocol (or the authentication property of our first protocol). One advantage
of doing away with the MAC algorithm is that the ciphertext overhead reduces which could be
useful for some applications.

Another consequence is that we need the IBKEM to satisfy the notion of security in the full
model where the challenge identity can be chosen adaptively based on earlier key extraction queries
and their responses. On the other hand, the CHK, BK as well as protocol P1 require only selective-
ID security, where the adversary for the IBKEM protocol has to commit to the challenge identity
even before the protocol is set-up. The selective-ID model is weaker than the full model. Using the
full model allows us to remove one component from the resulting PKE protocol. This aspect has
perhaps not been noticed earlier.



From a more practical point of view, the net effect of our constructions is to improve the
efficiency of the BK construction – in one case by improving the efficiency of the symmetric com-
ponents by a factor of two and in the other case by reducing ciphertext expansion. In our opinion,
equally important is the fact that our constructions lead to a better understanding of the interplay
of different components and their security requirements.

Another aspect is that of the security proof. The proof given in [6] is quite complex and even
though we can understand parts of it, the entire proof is very difficult to grasp. On the other hand,
we provide game sequence style proofs for our protocols. Needless to say, some of the ideas in the
proofs are borrowed from the Boneh-Katz paper though we have put them together according to our
understanding. One central point highlighted in [6] is an apparent circularity in the construction
which complicates the proof. A circularity is also identified by [2] in their PKE protocol and a
technique of deferred analysis in the game sequence style of proofs is used to tackle the situation.
In our proof, we have also used this deferred analysis to overcome the apparent circularity in our
construction.

Recent Related Work. A recent work [1] also revisits the problem of constructing a PKE from an
IBE. The approach in [1] is different from ours and we briefly describe the differences below.

Two constructions are presented in [1]. The first construction considers a partitioned IBKEM,
a notion which is also introduced in [1]. Informally, a partitioned IBKEM is one where the encapsu-
lation procedure can be divided into two parts – the first part produces c1 and does not depend on
the identity. The second part depends on the identity. Given a partitioned IBKEM and a chameleon
hash function, [1] shows how to construct a tag-KEM, which is a variant of KEM introduced in [2].
Though conceptually interesting, the use of a chameleon hash function leads to an additional cost
of one multi-exponentiation per encapsulation and decapsulation.

The second construction requires a partitioned IBKEM which is secure in the full model (i.e.,
where the adversary can adaptively choose the challenge identity) with an additional security
requirement. During the challenge stage, the adversary is given the first part c1 of the partitioned
IBKEM as well as the session key Kb before it produces the challenge identity. Given such an
IBKEM, [1] shows how to obtain a tag-KEM where there is no overhead in ciphertext expansion
over and above the underlying IBKEM.

Both the constructions in [1] are based on a different approach to the problem. As such, it is
difficult to compare the constructions to the ones we obtain. We feel that the constructions in [1]
as well as the constructions in this paper are interesting and of independent interest.

2 Components

We need several components to build a PKE protocol. Most of these are standard and due to lack
of space we describe them along with their security requirement in Appendix A. In our second PKE
protocol, we require an assumption on a hash function which is perhaps not well known. So, we
describe the hash function assumptions here.

2.1 Hash Functions

We will require hash functions with certain security properties in our constructions. These are
defined below.



Universal One-Way Hash Functions (UOWHF). A keyed family Hs∈S (for all s, Hs has the
same domain and range) of functions is said to be a UOWHF if the following task is computationally
infeasible for an adversary: The adversary outputs an x from the domain, is given a random key
s and then has to output x′ 6= x such that Hs(x) = Hs(x′). We say that Hs is an (ε, t)-secure
UOWHF if the maximum advantage of any adversary running in time t in winning the above game
is ε.

Partial UOWHF (PUOWHF). In this case, the security requirement is the following. The
adversary commits to a string x and is then given a randomly chosen s and has to find M,M ′, x′

such that M ◦ x 6= M ′ ◦ x′ but Hs(M ◦ x) = Hs(M ′ ◦ x′).
In a UOWHF, the adversary has to commit one input before learning the hash function for which

it has to find a collision. On the other extreme, in a collision resistant hash function (CRHF), the
adversary gets to know the hash function first and then has to find the colliding inputs. In a
PUOWHF, the adversary commits to a portion of one input before knowing the hash function
for which it has to find a collision. Thus, the security requirement of a PUOWHF is somewhere
between that of a UOWHF and a CRHF. This notion was introduced by Mironov [15] and to the
best of our knowledge has not been earlier used for building any other cryptographic protocol.

We will be using the above security notions in our proofs. However, we would like to point out
that the security proofs can be obtained with much weaker assumptions on the hash functions.
These will be described in the full version of the paper.

3 New Constructions

The Boneh-Katz construction is described in terms of a special commitment scheme which is then
instantiated with a UOWHF Hs and a hash function h from a pairwise independent hash family.
In Figure 1, we describe the “unfolded” BK construction, i.e., the BK construction written directly
in terms of Hs and h. We feel that this helps to obtain a clearer understanding of how the identity
is obtained and bound to the ciphertext.

3.1 Protocol P1

Our first protocol (Figure 2) is obtained from the unfolded BK protocol by redrawing the abstraction
boundary. The BK protocol can use hybrid encryption, in which case the underlying IBE protocol
has to be a hybrid protocol. We separate out this IBE protocol into an IBKEM protocol along with
a symmetric encryption protocol.

By making this explicit separation, we can consider the requirements on the symmetric compo-
nents more carefully. These requirements are twofold – to perform encryption and also to authen-
ticate. Both these requirements can be combined into a single primitive – that of authenticated
encryption. The ability to isolate this primitive is important, since an AE protocol can poten-
tially be almost two times more efficient [17, 13, 12, 9] than separate applications of encryption and
authentication algorithms.

The other aspect of this separation is that we can now generate the key-IV pair for the AE
protocol by applying a computationally secure KDF on the secret key returned by the encapsulation
algorithm of the IBKEM protocol. This allows us to do away with the family of pairwise independent
hash functions.

Theorem 1. The PKE protocol described in Figure 2 is secure against adaptive chosen ciphertext
attacks.



Fig. 1. The “unfolded” Boneh-Katz construction.

PKE.SetUp

1. Run IBE.SetUp to obtain (PP,msk).
2. Randomly choose h from a family of pairwise independent hash functions.
3. Randomly choose Hs from a UOWHF.
Public Key: PP, h, Hs.
Secret Key: msk.

PKE.Encrypt input: message M .

1. Generate random x.
2. com = Hs(x), dec = x.
3. C = IBE.Encrypt(PP, com, M ◦ dec).
4. r = h(x).
5. tag = MAC.Genr(C).
6. Output (com, C, tag).

PKE.Decrypt input: (com, C, tag).

1. sk = IBE.KeyGen(PP, com, msk).
2. M ◦ dec = IBE.Decrypt(PP, com, sk, C).

(This may abort and return ⊥.)
3. r = h(dec).
4. If Hs(x) 6= com return ⊥.
5. If MAC.Verifyr(C, tag) is false,

then return ⊥.
6. Return M .

Fig. 2. From IBKEM to PKE: Protocol P1

PKE.SetUp

1. Run IBKEM.SetUp to obtain (PP,msk).
2. Randomly choose Hs from a UOWHF.
Public Key: PP, Hs.
Secret Key: msk.

PKE.Encrypt input: message M .

1. Generate random x.
2. y = Hs(x).
3. (K, k) = IBKEM.Encap(PP, y).
4. (IV, l) = KDF(k).
5. (C, tag) = AE.Encryptl(IV, M ◦ x).
6. Output (y, K, C, tag).

PKE.Decrypt input: (y, K, C, tag).

1. sk = IBKEM.KeyGen(PP, y, msk).
2. k = IBKEM.Decap(PP, y, sk, K).

(This may abort and return ⊥.)
3. (IV, l) = KDF(k).
4. M ◦ x = AE.Decryptl(IV, C, tag)

(This may abort and return ⊥.)
5. If Hs(x) 6= y return ⊥.
6. Output M .

Fig. 3. From IBKEM to PKE: Protocol P2

PKE.SetUp

1. Run IBKEM.SetUp to obtain (PP,msk).
2. Randomly choose Hs from a UOWHF.
Public Key: PP, Hs.
Secret Key: msk.

PKE.Encrypt input: message M .

1. Generate random x.
2. y = Hs(M ◦ x).
3. (K, k) = IBKEM.Encap(PP, y).
4. (IV, l) = KDF(k).
5. (C, tag) = Sym.Encryptl(IV, M ◦ x).
6. Output (y, K, C).

PKE.Decrypt input: (y, K, C).

1. sk = IBKEM.KeyGen(PP, y, msk).
2. k = IBKEM.Decap(PP, y, sk, K).

(This may abort and return ⊥.)
3. (IV, l) = KDF(k).
4. M ◦ x = Sym.Decryptl(IV, C).

(This may abort and return ⊥.)
5. If Hs(M ◦ x) 6= y return ⊥.
6. Output M .



Proof: The proof is using a game sequence.

Game 0: This is the usual adversarial game for PKE. In this game, the PKE is set-up according
to the protocol and the adversary A is given the PP. Decryption queries are answered using the
secret key. Suppose that Mβ is encrypted in the challenge stage, where β is a random bit. Also, let
(y∗,K∗, C∗, tag∗) be the challenge ciphertext. All quantities related to the challenge ciphertext will
be denoted by a super-script ∗ (such as x∗). Since x∗, y∗,K∗ does not depend on the adversary’s
input, we will assume that these are chosen during the set-up stage. By the rules of the game,
for any adversarial query (y, K,C, tag), we must have (y, K,C, tag) 6= (y∗,K∗, C∗, tag∗). In the
following, we will be assuming this condition without mention.

At the end of the game, the adversary outputs the guess β′. Let X0 be the event β = β′. In the
following, we will be defining further games and Xi will be the event that β = β′ in Game i. We
assume that the adversary playing Game 0 maximizes the advantage among all adversaries with
similar resources. Thus, we have

εpke =
∣∣∣∣Prob[X0]−

1
2

∣∣∣∣ .
Game 1: In this game, we make the following modification. If the adversary ever makes a decryp-
tion query (y, K,C, tag) with Hs(x) = y = y∗ = Hs(x∗) and x 6= x∗, then this query is rejected.
Note that since we are assuming that the simulator knows the secret key, it can decrypt (C, tag) to
obtain x.

Let E1 be the above event. If E1 does not occur, then Games 0 and 1 are the same. If E1 occurs,
then the adversary has effectively broken the UOWHF property of Hs. To see this, consider the
following adversary B which attacks the UOWHF property of Hs. B first chooses a random x∗ and
then is given the key s for Hs. Since s and x∗ are independent random quantities, the order in which
they are chosen does not matter. B now sets up the PKE, provides PP to A and answers decryption
queries using msk. If at some point of time, A makes a query for which the corresponding x is not
equal to x∗ but Hs(x) = Hs(x∗), then B aborts and outputs x, x∗. If no such query is made by A,
at the end of the game B reports failure. This shows that if E1 occurs, then it is possible to break
the UOWHF property of Hs. Hence, we have

|Prob[X0]− Prob[X1]| ≤ Prob[E1] ≤ εuowhf .

Game 2: Let E2 be the event that the adversary makes a query (y, K,C, tag) such that y = y∗,
x = x∗ and K = K∗. All such queries are rejected. If E2 does not occur, then Games 1 and 2 are
the same and we have

|Prob[X1]− Prob[X2]| ≤ Prob[E2].

Game 3: Let E3 be the event that the adversary makes a query (y, K,C, tag) such that y = y∗,
x = x∗ and K 6= K∗. All such queries are rejected. If E3 does not occur, then Games 2 and 3 are
the same and we have

|Prob[X2]− Prob[X3]| ≤ Prob[E3].

At this point we will not upper bound Prob[E2] or Prob[E3]. Instead, we will use the technique
of “deferred analysis” from [2] and upper bound these two quantities later. Deferred analysis was
used in [2] to tackle an apparent circularity in argument. It turns out that it is also applicable in
the present context where there is a circular dependence among x∗ and k∗.



Game 4: Note that by this game, we have introduced conditions such that any query with y = y∗

is rejected. Now we are in a position to attack the CPA-security of the IBKEM protocol. We make
the following modification. During the challenge stage, the IBKEM protocol returns (K∗, k∗). We
replace k∗ by a random value from the same domain.

Claim: |Prob[X3]− Prob[X4]| ≤ εibkem.

Proof: (Of claim.) From the adversary A attacking the CCA-security of the PKE protocol we can
build an adversary B attacking the CPA-security of the IBKEM protocol in the following manner.

B invokes the set-up of the IBKEM protocol. Note that the IBKEM protocol is required to
be secure in the selective-ID model. For this, the adversary (in this case B) has to commit to the
challenge identity before the protocol is set-up. To fulfill this requirement B first chooses a UOWHF
Hs and a random x∗ and computes y∗ = Hs(x∗). B commits to this y∗ as the challenge identity.
The simulator for the IBKEM protocol provides B with the PP and B passes these on to A along
with the UOWHF Hs.

A now makes decryption queries of the type (y, K,C, tag). We can assume that none of the y’s
is equal to y∗. Hence, for any such query B can invoke the key extraction oracle of the IBKEM
on y and obtain the corresponding key sk. Using sk, B can decrypt the query and return a proper
answer to A. Thus, all decryption queries are properly answered.

In the challenge stage, B is given two equal length messages M0 and M1 by A. B invokes the
challenge stage for the simulator of the IBKEM protocol and receives (K∗, k∗) corresponding to the
already committed challenge identity y∗. B now chooses a random bit β and completes the rest of
the computation and gives the challenge ciphertext (y∗,K∗, C∗, tag∗). Finally B outputs whatever
A outputs.

If the k∗ provided to B is proper, then A’s view is that of Game 3. On the other hand, if k∗ is
random, then A’s view is that of Game 4. This proves the claim. ut

Game 5: In this game, we replace (IV∗, l∗) obtained by applying KDF with a random pair (IV∗, l∗)
from the respective domains. Thus,

|Prob[X4]− Prob[X5]| ≤ εkdf .

Note that IV∗ and l∗ are now random. The only use of these quantities is to encrypt Mβ. If the
adversary is able to guess β correctly, then it has broken the (one-time) CPA-security of the AE
protocol. Thus, ∣∣∣∣Prob[X5]−

1
2

∣∣∣∣ ≤ εenc.

We now take a more detailed look at Game 5 and bound the probability of the events E2 and
E3.

Case of E2: In this case, the adversary submits a query with y = y∗, x = x∗ and K = K∗.
The condition K = K∗ implies that k = k∗ and (IV, l) = (IV∗, l∗). On the other hand, since
(y, K,C, tag) 6= (y∗,K∗, C∗, tag∗) and (y, K) = (y∗,K∗) we must have (C, tag) 6= (C∗, tag∗). If
AE.Decryptl(IV, C, tag) does not return ⊥, then the adversary has been able to produce a valid
(C, tag) pair after seeing one encryption (C∗, tag∗) under a random (IV∗, l∗) = (IV, l). This breaks
the authorization security of the AE protocol. Hence,

Prob[E2] ≤ εauth.



Case of E3: In this case, the adversary submits a query with y = y∗, x = x∗ and K 6= K∗. Let us
informally consider what is happening in this case. First note that the adversary is given x∗ only as
part of C∗ which is the encryption of Mβ ◦ x∗ using a random (IV∗, l∗). Second, since K 6= K∗, the
pair (IV, l) will not be equal to (IV∗, l∗). Now x = x∗ means that the adversary after obtaining an
encryption of x∗ under a random (IV∗, l∗) is able to create a new encryption of x∗ under a different
(IV, l). Intuitively, the adversary should not be able to do this until it has broken the semantic
security of the AE protocol and obtained x∗ from C∗. Next we formalize this argument.

An adversary B attacking the CPA-security of AE is built in the following manner. It first sets
up the IBKEM protocol and chooses the UOWHF Hs in the usual manner. B retains the master
secret key and provides the PP and Hs to A, the adversary for attacking the PKE. Then B executes
Game 5. All decryption queries can be answered by B.

Note that decryption queries of the form y = y∗ and x = x∗ (with or without K = K∗) can be
made by A only in the second phase. This is because A gets to see the encryption of x∗ only as
part of the challenge ciphertext. Previous to this it has no information on x∗ and hence in the first
phase the probability that x = x∗ is 1/2|x

∗| which is negligible and is ignored.
During the challenge phase, A outputs two equal length messages M0 and M1. B chooses a bit

β randomly and submits M ′
0 = Mβ ◦ x∗ and M ′

1 = Mβ ◦ 0|x
∗| to the encryption oracle of the AE

protocol which is instantiated by a random and unknown (to B) (IV∗, l∗) pair. In return it receives
(C∗, tag∗) which is an encryption of M ′

γ where γ is a random bit. B passes (C∗, tag∗) to A along
with y∗ and K∗.

In the second phase, if A makes a query with y = y∗, x = x∗ and K 6= K∗ (which is event E2),
then B outputs 0 and aborts the game. If no such query is made by A, then at the end of the game
B outputs a random bit. Let γ′ be the output of B. Then

Prob[γ = γ′] = Prob[(γ = γ′) ∧ (E2 ∨ E2)]
= Prob[(γ = γ′)|E2]Prob[E2] + Prob[(γ = γ′)|E2](1− Prob[E2])

= Prob[E2] +
1
2
(1− Prob[E2])

=
1
2

+
1
2
Prob[E2].

Thus,

Prob[E2] = 2
(

Prob[γ = γ′]− 1
2

)
≤ 2εenc.

Putting all these together, we get

εpke =
∣∣∣∣Prob[X0]−

1
2

∣∣∣∣
≤ εuowhf + εibkem + εkdf + εauth + 3εenc.

This completes the proof. ut

3.2 Protocol P2

The description of the second protocol for converting an IBE to PKE is given in Figure 3. In the
BK protocol as well as protocol P1, the “identity” is generated by applying Hs to a random string
x. In the second protocol, we derive the “identity” y by applying Hs to M ◦ x, where M is the
message. The y can then serve a dual role of authenticating the message M as well as being the



identity for the IBKEM protocol. Since y serves the purpose of a tag, we can do away with the
explicit MAC algorithm.

Allowing the identity y to depend on the message M has a different consequence. If we consider
the challenge identity y∗, then this is defined to be y∗ = Hs(Mβ ◦x∗), where Mβ is one of M0 or M1

provided by the adversary during the challenge stage of the PKE adversarial game. Since y∗ now
depends on Mβ it is not possible to compute y∗ before the IBKEM protocol is set-up. Consequently,
we cannot use the selective-ID model of security for the IBKEM. Instead, we have to use the full
model security, where the challenge identity can be chosen adaptively by the adversary. Viewed
differently, use of the full model allows us to remove the MAC algorithm which is required if we use
the selective-ID model. We consider this to be an interesting feature which has perhaps not been
noticed earlier.

Theorem 2. The protocol described in Figure 3 is secure against adaptive chosen ciphertext at-
tacks.

Proof: The proof is again using a game sequence. The sequence of games is similar to the sequence
given in the proof of Theorem 1. Several modifications are required, which we describe below.

Game 0: This game is similar to Game 0 played by an adversary A in the proof of Theorem 1.

Game 1: This game is obtained by modifying Game 0 in the following manner. If the adversary
ever submits a decryption query (y, K,C), such that Hs(M ◦ x) = y = y∗ = Hs(Mβ ◦ x∗) and
M ◦ x 6= Mβ ◦ x∗, then the query is rejected. This means that the adversary has broken the partial
UOWHF property of Hs. To see this consider the following adversary B attacking the partial
UOWHF property of Hs.

B chooses a random x∗ (which does not depend on A’s queries) and is then given a random
key s for the function Hs. Since x∗ and s are independent random quantities, the order in which
they are chosen does not matter. B then sets up the PKE, gives PP to A and keeps msk to itself.
It answers decryption queries using msk. During the challenge stage, A provides M0 and M1 and
B generates β randomly and gives A a proper encryption of Mβ ◦ x∗. At this point, y∗ is set to be
equal to Hs(Mβ ◦ x∗). If during the game, the adversary outputs M,x such that M ◦ x 6= Mβ ◦ x∗

but Hs(M ◦ x) = Hs(Mβ ◦ x∗), then B outputs Mβ ,M, x. If the adversary does not make any such
query, then at the end of the game B reports failure. Clearly, if the adversary makes such a query,
B is able to break the partial-UOWHF property of Hs. Hence, we have

|Prob[X0]− Prob[X1]| ≤ εpuowhf .

Game 2: This game is obtained by modifying Game 1 in the following manner. Let E be the event
that the adversary submits a query with y = y∗, M ◦ x = Mβ ◦ x∗ and K 6= K∗. If E occurs, then
the query is rejected. If E does not occur, then the Games 1 and 2 are same and hence,

|Prob[X1]− Prob[X2]| ≤ Prob[E].

Up to this point, decryption queries with y = y∗ are rejected if either (a) M ◦ x 6= Mβ ◦ x∗ or
(b) M ◦ x = Mβ ◦ x∗ and K 6= K∗. We now argue that if y = y∗ and M ◦ x = Mβ ◦ x∗, then K
cannot be equal to K∗. If indeed K = K∗, then k = k∗ which implies (IV, l) = (IV∗, l∗). This along
with M ◦ x = Mβ ◦ x∗ implies C = C∗. But then (y, K,C) = (y∗,K∗, C∗) which means that the
challenge ciphertext is queried to the decryption oracle. This is not allowed. Hence, we must have
K 6= K∗.



Recall that in the proof of Theorem 1, the condition K = K∗ was possible. Tackling this case led
to an attack on the authorization property of the underlying AE protocol. In the present protocol,
since the authorization is taken care of by Hs itself, the case K = K∗ is naturally excluded.

The important aspect of Game 2 is that in this game all queries with y = y∗ are rejected.

Game 3: In this game we change k∗ to be a random quantity from the appropriate domain. This
change is the same as the change from Game 3 to Game 4 in the proof of Theorem 1.

As before, from A we can construct an adversary B attacking the IBKEM protocol. The differ-
ence is that in this case we do not require B to commit to the challenge identity for the IBKEM
before the protocol is set-up. During the challenge stage, A submits two equal length messages M0

and M1. A random bit β is chosen and y∗ is set to be equal to Hs(Mβ ◦ x∗). The challenge stage
for IBKEM is invoked with y∗ as the challenge identity and B receives in return (K∗, k∗). The rest
of the game proceeds in a standard manner. If k∗ is proper, then B is playing Game 2 and if k∗ is
random, then B is playing Game 3. Hence, we have

|Prob[X2]− Prob[X3]| ≤ εibkem.

Game 4: This tackles the security of the KDF protocol in the standard manner (i.e., choosing
random values for (IV∗, l∗)) giving us

|Prob[X3]− Prob[X4]| ≤ εkdf .

In this game, the adversary is given an encryption of Mβ ◦ x∗ under a random (IV∗, l∗), which is
not used for any other purpose. Hence, if the adversary wins this game then it also breaks the
(one-time) semantic security of the symmetric encryption scheme. This shows∣∣∣∣Prob[X4]−

1
2

∣∣∣∣ ≤ εenc.

Now we turn to bound Prob[E]. Exactly as in the case of event E3 in the proof of Theorem 1,
it can be shown that

Prob[E] ≤ 2εenc.

Combining the above inequalities, we obtain

εpke ≤ εpuowhf + εibkem + εkdf + 3εenc.

This completes the proof. ut

4 Using Authenticated Encryption in PKE

Kurosawa-Desmedt [14] presented a variant of the Cramer-Shoup protocol for hybrid PKE which
reduces the number of exponentiations by one. In this section, we briefly show how to use an AE
protocol in the KD construction. The potential advantage of doing this is that one can then use a
single pass AE protocol [17, 13, 12, 9] which can improve the efficiency of the symmetric components
by a factor of two. The algorithm is shown in Figure 4. Note that the public key part of the algorithm
is the same as that of the KD protocol. A sketch of the security proof is given in Section B.



Fig. 4. Hybrid PKE using an AE protocol.

PKE.SetUp

1. g1, g2 are random generators of G.
2. Choose x1, x2, y1, y2 randomly from ZZq.
3. Set c = gx1

1 gx2
2 and d = gy1

1 gy2
2 .

Public Key: g1, g2, c, d.
Secret Key: x1, x2, y1, y2.

PKE.Encrypt input: message M .

1. Generate random r in ZZq.
2. u1 = gr

1 , u2 = gr
2 .

3. α = Hs(u1, u2).
4. v = crdrα.
5. (IV, k) = KDF(v).
6. (C, tag) = AE.Encryptk(IV, M).
7. Output (u1, u2, C, tag).

PKE.Decrypt input: (u1, u2, C, tag).

1. α = Hs(u1, u2).

2. v = ux1+αy1
1 ux2+αy2

2 .
3. (IV, k) = KDF(v).
4. M = AE.Decryptk(IV, C, tag).

(This may abort and return ⊥.)
5. Output M .

4.1 Discussion

The recent work [3] introduces the interesting notion of stateful public key encryption. A variant of
the KD algorithm is used to instantiate this primitive. The important point about this instantiation
is that the hybrid encryption requires only one exponentiation. A consequence is that there is no
randomness in the public key part. The entire randomness comes from the symmetric encryption
algorithm. The security requirement on the symmetric component is strictly stronger than CCA-
security and it has been mentioned in [3] that this security notion can be obtained using a encrypt-
then-MAC construction. The possibility of using a (single-pass) AE protocol in the construction of
stateful public key encryption has also been mentioned in [3].

We consider the difference in the possible use of an AE in a stateful PKE as opposed to a
usual (stateless) PKE. To be used with a stateful PKE, the AE must be a probabilistic algorithm.
Usual constructions of AE algorithms are deterministic. A conceivable way of converting a usual AE
algorithm into one suitable for use with a stateful PKE is to choose the IV randomly. The security
proofs for usual AE assumes that IVs are nonces, i.e., they will not be repeated. Choosing the IVs
randomly adds an additive quadratic security degradation to the security bound. This, however, is
not really significant. The main issue is that the randomly chosen IV has to be transmitted to the
decryption end resulting in an overhead in ciphertext expansion which has been mentioned in [3].

In contrast, for usual hybrid PKE protocols, the randomness comes from the public key portion.
This allows the symmetric component to be deterministic. In our description of the KD protocol
using AE, we have derived the IV (and the secret key) of the AE protocol from the session key
using a KDF. Consequently, the IV does not need to be transmitted to the decryption end.

To summarize, we would first like to mention that the basic idea of using AE in hybrid PKE was
already observed in [3]. This was done in the context of stateful PKE. Using AE in usual stateless KD
can be done more directly as has been described earlier. Since KD and AE are important protocols
in their respective categories, we feel that the explicit description of the KD+AE protocol given in
this paper can be useful to actual practitioners.



5 Conclusion

In this paper we have presented two new constructions for generically transforming a weakly secure
IBE into a strongly secure PKE. Compared to the previous work due to Boneh-Katz this leads to
efficiency improvements. We have also pointed out the application of AE in the hybrid PKE due
to Kurosawa-Desmedt.
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Appendix



A Components

The protocols described in this paper are built from several kinds of cryptographic primitives. In
this section, we briefly describe these as well as public key encryption and identity based encryption.

A.1 Public Key Encryption

This consists of three probabilistic algorithms SetUp, Encrypt and Decrypt. The runtime of these
algorithms is upper bounded by some polynomial function of a security parameter.

Algorithm SetUp returns the public key (or public parameter) and the secret key of the system.
Algorithm Encrypt takes as input a message and the public key and returns a ciphertext whereas
algorithm Decrypt takes as input a ciphertext, the public parameters and the secret key and returns
either the corresponding message or ⊥ (indicating that the ciphertext is not valid).

Security of a PKE against adaptive chosen ciphertext attack (CCA-security) is defined through
the following game. An instance of the PKE protocol is setup and the adversary is given the
public key. The adversary provides ciphertexts and is given either the corresponding messages or
⊥ as the case maybe. This is considered to be the adversary’s interaction with a decryption oracle
instantiated by the secret key corresponding to the public key given to the adversary. At some
stage, the adversary outputs two equal length messages M0 and M1. A bit β is chosen at random
and the adversary is given an encryption C∗ of Mβ . The adversary continues its interaction with
the decryption oracle subject to the restriction that it cannot query the decryption oracle on C∗. At
the end the adversary outputs a bit β′. The adversary’s advantage in breaking the PKE is defined
to be ∣∣∣∣Prob[β = β′]− 1

2

∣∣∣∣ .
We say that a PKE is (ε, t)-secure if the maximum advantage of any adversary running in time t
in the above game is ε.

A.2 Identity Based Encryption

An IBE consists of four probabilistic algorithms – SetUp, KeyGen, Encrypt and Decrypt. The SetUp
algorithm generates the public parameters PP for the PKG and the master secret key msk. KeyGen
takes as input PP, msk and an identity y and produces as output a secret key dy corresponding
to this identity. Algorithm Encrypt takes as input PP, an identity and a message M and produces
a ciphertext as output. Decrypt takes as input a ciphertext, PP, identity y and a secret key dy

corresponding to y and produces as output either the corresponding message or ⊥ (indicating
invalid ciphertext).

An identity based key encapsulation mechanism (IBKEM) is similar to the above. Instead
of Encrypt and Decrypt an IBKEM has an encapsulation algorithm Encap and a decapsulation
algorithm Decap. The Encap algorithm takes as input PP, an identity y and returns (K, k), where
k is a secret key and K is an encapsulation of the secret key. The Decap algorithm takes as input
PP, identity y, the secret key dy corresponding to y and an encapsulation K and returns as output
either the corresponding secret k or ⊥ (indicating invalid encapsulation).

The security models for IBE and IBKEM are similar with small differences. Here we describe
the security model for IBKEM, since we will base our constructions on IBKEM rather than KEM.
Further, we describe security against adaptive chosen plaintext attacks (CPA-security) since this
is what we will need. The challenge identity can itself be either chosen adaptively (full model) or
has to be specified before the protocol is set-up (selective-ID model).



An adversary A attacking an IBKEM protocol in the selective-ID model outputs an identity
y∗ even before the protocol is setup. Based on y∗, the simulator sets up the protocol and provides
the PP to the adversary. While doing this the simulator has to ensure that the PP is distributed
randomly as specified in the protocol.

A is given access to a key extraction oracle instantiated by the msk corresponding to the PP. A
can ask for the secret key of any identity y 6= y∗. At some stage, A decides to move to the challenge
stage. In this stage, a pair (K∗, k0) is generated for the identity y∗, where k0 is a secret key and K∗

is an encapsulation of k0. Also, a random quantity k1 is chosen from the domain of k0. A random
bit β is chosen and A is given (K∗, kβ). A continues making key extraction queries subject to the
previous restriction. At some point, A outputs a bit β′. The advantage of A is given by∣∣∣∣Prob[β = β′]− 1

2

∣∣∣∣ .
We say that an IBKEM is (ε, t) CPA-secure in the selective-ID model if the maximum advantage
of any adversary running in time at most t in the above game is ε.

In the full model, A does not have to commit to the challenge identity before protocol set-up.
Instead, A can choose the challenge identity based on its key extraction queries and their responses.
There is a natural restriction that A should not query the key extraction oracle on the challenge
identity.

A.3 Authenticated Encryption

An AE protocol consists of two deterministic algorithms – Encrypt and Decrypt. Both of these use
a common secret key k. The Encryptk algorithm takes as input a nonce IV and a message M and
returns (C, tag), where C is the ciphertext corresponding to M (and is usually of the same length
as M). The Decryptk algorithm takes as input IV and a pair (C, tag) and returns either the message
M or ⊥ (indicating invalid ciphertext).

An AE algorithm possesses two security properties – privacy and authenticity. For privacy, the
adversarial game is the following. The adversary A is given access to an oracle which is either the
encryption oracle instantiated with a random key k or is an oracle which simply returns random
strings of length equal to its input. After interacting with the oracle the adversary ultimately
outputs a bit. The advantage of A is defined to be

|Prob[A = 1|real oracle]− Prob[A = 1|random oracle]|.

In the above game, the adversary is assumed to be nonce-respecting, in that it does not repeat
a nonce. The requirement that IV is a nonce can be replaced the requirement that IV is chosen
randomly. This leads to an additive quadratic degradation in the advantage.

The security notion defined above is that of pseudorandom permutation. This implies the notion
of CPA-security. In particular, it implies the following notion of (one-time) CPA-security. The
adversary submits two equal length messages M0 and M1. A random (IV∗, k∗) pair is chosen and a
random bit β is chosen. The adversary is given (C∗, tag∗) which is the encryption of Mβ using IV∗

and k∗. The adversary then outputs β′ and its advantage is∣∣∣∣Prob[β = β′]− 1
2

∣∣∣∣ .
We say that an AE protocol satisfies (ε, t) one-time CPA-security if the maximum advantage of any
adversary running in time t in the above game is ε.



The authenticity property of an AE protocol is defined through the following game. A nonce
respecting adversary A is given access to an encryption oracle instantiated by a secret key k. It
submits messages to the oracle and receives as output ciphertext-tag pairs. Finally, it outputs a
“new” ciphertext-tag pair and a nonce, which can be equal to a previous nonce. The advantage
of A in this game is the probability that the forgery is valid, i.e., it will be accepted as a valid
ciphertext.

As before, we can replace the requirement that IV be a nonce by the requirement that IV is
random without significant loss of security. By an (ε, t)-secure authentication of an AE protocol we
mean that the maximum advantage of any adversary running in time t in the above game is ε.

Symmetric Encryption. We will also use a symmetric encryption scheme which consists of two
algorithms – an Encrypt and a Decrypt algorithm both of which use a common secret key k. The
Encryptk algorithm takes as input a random IV and a message M and returns as output a ciphertext
C which is of the same length as M . The Decryptk algorithm takes as input a random IV and a
ciphertext C and returns as output a message M . We require such a symmetric encryption scheme
to satisfy the notion of (one-time) CPA-security described above.

A.4 Key Derivation Function

A KDF takes an input x and produces an output y. A KDF may be a keyed function, in which case
the key will be public. The security requirement on KDF is the following. Given a random x as
input, it should be computationally infeasible to distinguish the output of the KDF from a random
string. By an (ε, t)-secure KDF we mean that the maximum advantage of an adversary running in
time t in breaking the security of the KDF is at most ε.

B A Sketch of the Proof of Security for the Protocol in Figure 4

The proof is almost the same as the proof given in [2]. The changes are due to the way a message is
authenticated. This is done using a MAC algorithm in [14, 2], whereas here we use an AE algorithm.
We describe the idea behind the required modifications.

Let (u∗
1, u

∗
2, C

∗, tag∗) be the challenge ciphertext. Once the DDH problem and the KDF is taken
care of we can assume k∗ to be random. Also, using a “plug-and-pray” technique, let i be such that
the i-th query is (u(i)

1 , u
(i)
2 , C(i), tag(i)) with logg1

(u1) 6= logg2
(u2). Then using simple linear algebra

(and after taking care of KDF) it can be shown that k(i) is random. See [2] for details. There are
two places where MAC is used in the game sequence in [2].

If the adversary ever submits a decryption query (u1, u2, C, tag), with (u1, u2) = (u∗
1, u

∗
2) and

the MAC algorithm verifies the message, the adversary has effectively broken MAC after seeing one
digest using a random key k∗. In the context of AE, if the adversary can provide a valid (C, tag) for
the key k∗ after seeing only (C∗, tag∗) obtained using k∗, then the adversary has effectively broken
the authorization aspect of the AE protocol.

In case of the i-th query (u(i)
1 , u

(i)
2 , C(i), tag(i)), the key k(i) is random. Hence, in this case,

the adversary is able to break the authentication aspect of the AE protocol by providing a forgery
(C(i), tag(i)) on the unknown secret key k(i) without seeing any previous ciphertext-tag pair obtained
using k(i). This is more difficult for the adversary and hence his advantage in doing this can be
lower.



The other aspect is the symmetric encryption component. In [14, 2], it is assumed that the
symmetric encryption is (one-time) CPA-secure. Since, we assume that the AE protocol is a pseudo-
random permutation this implies the required (one-time) CPA-security.

The entire game sequence from [2] can be rewritten in a routine manner using the modifications
described above. ut


