
Nominative Signature: Application, Security Model and
Construction

Dennis Y. W. Liu1, Duncan S. Wong1, Xinyi Huang2, Guilin Wang3, Qiong
Huang1, Yi Mu2, and Willy Susilo2

1 Department of Computer Science
City University of Hong Kong

Hong Kong, China
{dliu,duncan,csqhuang}@cs.cityu.edu.hk
2 Centre for Information Security Research

School of Information Technology and Computer Science
University of Wollongong

Wollongong 2522, Australia
{xh068,ymu,wsusilo}@uow.edu.au
3 Infocommm Security Department

Institute for Infocomm Research (I2R)
Singapore

glwang@i2r.a-star.edu.sg

Abstract. Since the introduction of nominative signature in 1996, there have been
only a few schemes proposed and all of them have already been found flawed. In
addition, there is no formal security model defined. Even more problematic, there is
no convincing application proposed. Due to these problems, the research of nominative
signature has almost stalled and it is unknown if a secure nominative signature scheme
can be built or there exists an application for it. In this paper, we give positive
answers to these problems. First, we illustrate that nominative signature is a better
tool for building user certification systems which are originally believed to be best
implemented using a universal designated-verifier signature. Second, we propose a
formal definition and a rigorous set of adversarial models for nominative signature.
Third, we show that Chaum’s undeniable signature can be transformed efficiently to
a nominative signature and prove its security.

Keywords: Digital Signature, Nominative Signature, Undeniable Signature

1 Introduction

A nominative signature (NS) involves three parties: nominator A, nominee B and
verifier C. The nominator A arbitrarily chooses a message m and works jointly with
the nominee B to produce a signature σ called nominative signature. The validity
of σ can only be verified by B and if σ is valid, B can convince the verifier C
the validity of σ using a confirmation protocol ; otherwise, B can convince C the
invalidity of σ using a disavowal protocol. Below are the properties of a nominative
signature [14,12,18,10].



2 D. Liu, D. Wong, X. Huang, G. Wang, Q. Huang, Y. Mu and W. Susilo

1. (Joint Work of Nominator and Nominee) A or B alone is not able to produce
a valid σ;

2. (Only Nominee Can Determine the Validity of Signature) Only B can verify σ;
3. (Can Only be Verified with Nominee’s Consent) The validity of σ is only veri-

fiable with the aid of B, by running a confirmation/disavowal protocol with B;

4. (Nominee Cannot Repudiate) If σ is valid, B cannot mislead C to believe that
σ is invalid using the disavowal protocol. If σ is invalid, B cannot mislead C to
believe that σ is valid using the confirmation protocol;

5. (Nominator Chooses Message) Message m is chosen by A;
6. (Only Nominator Can Nominate) B is chosen/nominated by A.

Since the introduction of nominative signature (NS) [14], it has been considered as
a dual scheme of undeniable signature (US) [5,3,6]. For an undeniable signature,
its validity can only be verified with the aid of the signer, while for a nominative
signature, its validity can only be verified with the aid of the nominee, rather than
the nominator (albeit it is the nominator who chooses the message). Nominative
signature is also related to designated verifier signature (DVS) [13], designated con-
firmer signature (DCS) [4] and universal designated-verifier signature (UDVS) [16].
We illustrate their similarities and differences below.

Parties Creator(s) Playing the Role of Prover
Involved of Signature A B C

US A, C A
√

NA ×
DCS A, B, C A

√ √
×

DVS A, C A
√

NA ×
UDVS A, B, C A and B4 √ √

×
NS A, B, C A and B ×

√
×

Legend : A – Signer or Nominator (for NS); B – Confirmer (for DCS) or Signature Holder (for
UDVS) or Nominee (for NS); C – Verifier or Designated Verifier (for DCS or UDVS); NA – not
applicable.

As we can see, only NS has the ability of proving the validity of a signature been
dethroned from the nominator (or signer who chooses the message). None of the
other signature types has this property.

1.1 User Certification Systems

Since the introduction of NS in 1996 [14], there have been only a few schemes [14,12]
proposed and all of them have already been found flawed [18,10]. Even worse, there
is no convincing application ever proposed and NS still remains as of theoretical
interest only. In the following, we show that NS is actually a much better tool for
4 A first creates a standard publicly verifiable signature and sends it securely to B; B then generates

a UDVS signature based on the received standard signature.



Nominative Signature: Application, Security Model and Construction 3

building user certification systems than UDVS [16] which is originally believed to
be one of the most suitable ways of implementing this type of systems.

UDVS, introduced by Steinfeld et al. [16] in 2003, allows a signature holder B
to convince a designated verifier C that B holds a signer A’s signature s on some
message m, while C cannot further convince anybody of this fact. As illustrated
in [16], UDVS is useful for constructing user certification systems, which concern
about showing the validity of users’ birth certificates, driving licences and academic
transcripts, issued by an authority A. In such a system, a user B does not want a
designated verifier C to disseminate B’s certificate s (issued by A), while B needs
to convince C that the certificate s is authentic, that is, signed by A.

NS can also be used for this purpose, but in a more natural way. For UDVS, A
(the signer or the authority) should be trusted by B (the signature holder or the user
of a certificate) in a very strong sense. If A is malicious, there are two attacks which
will compromise B’s interest on protecting his certificates. First, A may maliciously
reveal the pair (s,m) to the public, and since s is a standard publicly verifiable
signature, once s becomes public, everyone can verify its validity. B cannot show
whether s is released by A because B himself can also make s public. Second, A can
generate a UDVS signature all by himself because the UDVS signature can readily
be generated from the public keys of A and C in addition to the pair (s,m). Hence,
A can impersonate B arbitrarily. In contrast, NS does not have these weaknesses.

For NS, A cannot confirm or disavow a nominative signature σ (which is a user
certificate in this type of applications) and σ is not publicly verifiable. Also, B does
not have a publicly verifiable signature issued by A. Note that A can still issue
standard signature on m or NS on m jointly with other nominees. But these events
will just show that A is dishonest.

1.2 Related Work

The notion and construction of nominative signature (NS) were first proposed by
Kim, Park and Won [14]. However, their construction was later found flawed [12] as
the nominator in their construction can always determine the validity of a nominative
signature, that is, violating Property 2 of NS described at the beginning of Sec. 1.
In [12], Huang and Wang proposed the notion of convertible nominative signature,
which allows the nominee to convert a nominative signature to a publicly verifiable
one. They also proposed a new scheme. However, in [18,10], it was found that the
nominator in their scheme can generate valid signatures on his own and show the
validity of the signature to anyone without the consent of the nominee. That is, their
scheme does not satisfy Properties 1 to 3.

In [12], a definition and some requirements for nominative signature were spec-
ified. However, their definition does not match with the scheme they proposed and
the set of security requirements is incomplete and does not seem to be formal enough
for provable security.



4 D. Liu, D. Wong, X. Huang, G. Wang, Q. Huang, Y. Mu and W. Susilo

Our Results. We propose a formal definition and a rigorous set of adversarial
models for nominative signature. We also propose a provably secure construction,
which is based on Chaum’s undeniable signature [3] and a strongly unforgeable
signature scheme.

Paper Organization. The definition of nominative signature and its security models
are specified in Sec. 2. The description and security analysis of our construction are
given in Sec. 3. The paper is concluded in Sec. 4.

2 Definitions and Security Models

A nominative signature (NS) consists of three algorithms (SystemSetup, KeyGen,
Vernominee) and three protocols (SigGen, Confirmation, Disavowal).

1. SystemSetup (System Setup): On input 1k where k ∈ N is a security parameter,
it generates a list of system parameters denoted by param.

2. KeyGen (User Key Generation): On input param, it generates a public/private
key pair (pk, sk).

3. Vernominee (Nominee-only Verification): On input a message m, a nominative
signature σ, a public key pkA and a private key skB, it returns valid or invalid.

An NS proceeds as follows. Given a security parameter k ∈ N, SystemSetup is invoked
and param is generated. KeyGen is then executed to initialize each party that is to
be involved in the subsequent part of the scheme. One party called nominator is
denoted by A. Let (pkA, skA) be the public/private key pair of A. Let B be the
nominee that A nominates, and (pkB, skB) be B’s public/private key pair. In the
rest of the paper, we assume that entities can be uniquely identified from their public
keys. To generate a nominative signature σ, A chooses a message m ∈ {0, 1}∗, and
carries out SigGen protocol with B. The protocol is defined as follows.

SigGen Protocol: Common inputs of A and B are param and m. A’s additional
input is pkB, indicating that A nominates B as the nominee; and B’s additional
input is pkA indicating that A is the nominator. At the end, either A or B
outputs σ. The party who outputs σ should be explicitly indicated in the actual
scheme specification.

Signature Space: A value σ is a nominative signature with respect to pkA and pkB

if it is in the signature space of the NS with respect to pkA and pkB. We emphasize
that the signature space has to be specified explicitly in each actual NS scheme.

The validity of a nominative signature σ on message m (with respect to pkA

and pkB) can be determined by B as Vernominee(m, σ, pkA, skB). To convince a third
party C on the validity or invalidity of (m,σ, pkA, pkB), B as a prover and C as a
verifier carry out the Confirmation or Disavowal protocol as follows.



Nominative Signature: Application, Security Model and Construction 5

Confirmation/Disavowal Protocol: On input (m,σ, pkA, pkB), B sets µ to 1 if
valid ← Vernominee(m,σ, pkA, skB); otherwise, µ is set to 0. B first sends µ to
C. If µ = 1, Confirmation protocol is carried out; otherwise, Disavowal protocol
is carried out. At the end of the protocol, C outputs either accept or reject while
B has no output.

Correctness. Suppose that all the algorithms and protocols of a nominative signa-
ture scheme are carried out accordingly by honest entities A, B and C, the scheme
is said to satisfy the correctness requirement if

1. valid← Vernominee(m,σ, pkA, skB); and
2. C outputs accept at the end of the Confirmation protocol.

Validity of a Nominative Signature. A nominative signature σ on message m
with respect to nominator A and nominee B is valid if Vernominee(m,σ, pkA, skB) =
valid. In this case, we say that quadruple (m, σ, pkA, pkB) is valid. Note that only B
can determine the validity of σ (Property 2).

In the following, we propose and formalize a set of security notions for nom-
inative signature. They are (1) unforgeability, (2) invisibility, (3) security against
impersonation, and (4) non-repudiation.

2.1 Unforgeability

According to Property 1, an adversary should not able to forge a valid message-
signature pair if the adversary does not know the private keys of both A and B. A
straightforward approach is to apply the notion of existential unforgeability against
chosen message attack [9] using signing oracle with the extension of allowing access
to confirmation/disavowal oracle based on passive attack or active/concurrent at-
tack introduced by Kurosawa and Heng [15] in the context of undeniable signature
to a game for nominative signature. However, a nominative signature scheme has
two additional properties which are related to unforgeability but cannot be captured
in this way. These are Properties 5 and 6 described in Sec. 1. To capture these prop-
erties, the adversary is also allowed to access an oracle called SignTranscript which
simulates various interactions between the adversary and other honest entities. In
addition, the adversary may collude with other parties or claim that some particular
party is his nominee without the party’s consent. Hence we also allow the adversary
to adaptively access CreateUser oracle and Corrupt oracle as defined below.

Game Unforgeability: Let S be the simulator and F be a forger.

1. (Initialization) Let k ∈ N be a security parameter. First, param← SystemSetup(1k)
is executed and key pairs (pkA, skA) and (pkB, skB) for nominator A and nomi-
nee B, respectively, are generated using KeyGen. Then F is invoked with inputs
1k, pkA and pkB.



6 D. Liu, D. Wong, X. Huang, G. Wang, Q. Huang, Y. Mu and W. Susilo

2. (Attacking Phase) F can make queries to the following oracles:
– CreateUser: On input an identity, say I, it generates a key pair (pkI , skI)

using KeyGen and returns pkI .
– Corrupt: On input a public key pk, if pk is generated by CreateUser or in
{pkA, pkB}, the corresponding private key is returned; otherwise, ⊥ is re-
turned. pk is said to be corrupted.

– SignTranscript: On input a message m, two distinct public keys, pk1 (the
nominator) and pk2 (the nominee) such that at least one of them is uncor-
rupted, and one parameter called role ∈ {nil, nominator, nominee},
• if role = nil, S simulates a run of SigGen and returns a valid quadruple

(m,σ, pk1, pk2) and transσ which is the transcript of the execution of
SigGen;
• if role = nominator, S (as nominee with public key pk2) simulates a run

of SigGen with F (as nominator with pk1);
• if role = nominee, S (as nominator with pk1) simulates a run of SigGen

with F (as nominee with public key pk2).
– Confirmation/disavowal: On input a message m, a nominative signature σ

and two public keys pk1 (the nominator), pk2 (the nominee), let sk2 be the
corresponding private key of pk2, the oracle responds based on whether a
passive attack or an active/concurrent attack is mounted.
• In a passive attack, the oracle runs Vernominee(m,σ, pk1, sk2). If the output

is valid (that is, quadruple (m, σ, pk1, pk2) is valid), the oracle returns a
bit µ = 1 and a transcript of the Confirmation protocol. Otherwise, µ = 0
and a transcript of the Disavowal protocol are returned.

• In an active/concurrent attack, the oracle checks if quadruple (m,σ, pk1, pk2)
is valid. If so, the oracle returns µ = 1 and then proceeds to execute the
Confirmation protocol with F (acting as a verifier). Otherwise, the oracle
returns µ = 0 and executes the Disavowal protocol with F . The difference
between active and concurrent attack is that F interacts serially with the
oracle in the active attack while F interacts with different instances of
the oracle concurrently in the concurrent attack.

3. (Output Phase) F outputs a pair (m∗, σ∗) as a forgery of A’s nominative signa-
ture on message m∗ with B as the nominee.

The forger F wins the game if quadruple (m∗, σ∗, pkA, pkB) is valid and (1) F does
not corrupt both skA and skB using oracle Corrupt; (2) (m∗, pkA, pkB, role) has never
been queried to SignTranscript for any valid value of role; (3) (m∗, σ′, pkA, pkB) has
never been queried to Confirmation/disavowal for any nominative signature σ′ with
respect to pkA and pkB (check Signature Space on page 4).

The forgery σ∗ on m∗ is valid if valid← Vernominee(m∗, σ∗, pkA, skB). F ’s advan-
tage in this game is defined to be the probability that F wins.

Definition 1. A nominative signature scheme is said to be unforgeable if no PPT
forger F has a non-negligible advantage in Game Unforgeability.



Nominative Signature: Application, Security Model and Construction 7

The second restriction above does not disallow F to query SignTranscript with
(m∗, pkA, pk′, role) provided that pk′ 6= pkB. This captures Property 6. Since F
can also query SignTranscript with (m′, pkA, pkB, role) for any m′ 6= m∗ with skB

corrupted, Property 5 is also captured.

2.2 Invisibility

This notion corresponds to Property 2, which requires that only nominee B can
determine whether a given quadruple (m,σ, pkA, pkB) is valid. This property also
excludes the nominator A from determining the validity of a given quadruple. We
adopt the formalization idea given by Galbraith and Mao [8]. The formalization is
indistinguishability based and is defined to distinguish between a valid signature σ
on message m or just some value chosen uniformly at random from the corresponding
signature space.

Game Invisibility: The initialization phase is the same as that of Game Unforgeability
and the distinguisher D is permitted to issue queries to all the oracles described in
the attacking phase of Game Unforgeability.

1. At some point in the attacking phase, D outputs a message m∗ and requests a
challenge nominative signature σ∗ on m∗. The challenge σ∗ is generated based
on the outcome of a hidden coin toss b.
– If b = 1, σ∗ is generated by running SigGen.
– If b = 0, σ∗ is chosen randomly from the signature space of the nominative

signature scheme with respect to pkA and pkB.
2. At the end of the game, D outputs a guess b′.

D wins the game if b′ = b and (1) D does not corrupt skB; (2) the quadruple
(m∗, pkA, pkB, role), for any valid value of role, has never been queried to SignTran-
script; (3) (m∗, σ∗, pkA, pkB) has never been queried to Confirmation/disavowal.
D’s advantage in this game is defined as |Pr[b′ = b]− 1

2 |.

Definition 2. A nominative signature scheme is said to have the property of invis-
ibility if no PPT distinguisher D has a non-negligible advantage in Game Invisibility.

2.3 Security Against Impersonation

The notion of impersonation was first proposed by Kurosawa and Heng [15] in the
context of undeniable signature. Instead of achieving zero-knowledgeness, it is no-
ticed that the actual security requirement is to prevent the proving capability of
the validity of a signature from being given away to any illegitimate party. This
requirement is also commonly referred to as non-transferability. In the context of
nominative signature, security against impersonation refers to Property 3 in the
Introduction section. We consider the following game against an impersonator I.



8 D. Liu, D. Wong, X. Huang, G. Wang, Q. Huang, Y. Mu and W. Susilo

Game Impersonation: The initialization phase is the same as that of Game Un-
forgeability. The game has two phases as follows.

– (Preparation Phase) Impersonator I is invoked on input 1k, pkA, pkB, skA.
In this phase, I may query any of the oracles defined in Game Unforgeability.
I prepares a triple (m∗, σ∗, µ) where m∗ is some message, σ∗ is a nominative
signature (i.e. σ∗ is in the signature space with respect to pkA and pkB) and µ
is a bit.

– (Impersonation Phase) If µ = 1, I (as nominee) executes Confirmation protocol
with the simulator (as a verifier) on common inputs (m∗, σ∗, pkA, pkB). If µ = 0,
I executes Disavowal protocol with the same set of inputs.

I wins if the simulator outputs accept at the Impersonation Phase while I has never
corrupted skB in the game. I’s advantage is defined to be the probability that I
wins.

Definition 3. A nominative signature scheme is said to be secure against imper-
sonation if no PPT impersonator I has a non-negligible advantage in Game Imper-
sonation.

2.4 Non-repudiation

Due to the property of invisibility, no one except the nominee can determine the
validity of a signature. In addition, even the nominator A and the nominee B jointly
generate a valid quadruple (m,σ, pkA, pkB), this only indicates that Vernominee(m,σ, pkA, skB)
outputs valid. It does not imply that nominee B cannot cheat by executing Disavowal
protocol successfully on (m,σ, pkA, pkB) with a verifier. Therefore, for ensuring that
B cannot repudiate, we require this security notion which corresponds to Property 4.
We consider the game below against a cheating nominee B.

Game Non-repudiation: The initialization phase is the same as that of Game Un-
forgeability and the cheating nominee B can query any of the oracles defined in Game
Unforgeability. skB is also given to B.

– (Preparation Phase) B prepares (m∗, σ∗, µ) where m∗ is some message and σ∗ is
a nominative signature. µ = 1 if Vernominee(m∗, σ∗, pkA, skB) = valid; otherwise,
µ = 0.

– (Repudiation Phase) If µ = 1, B executes Disavowal protocol with the simulator
(acting as a verifier) on (m∗, σ∗, pkA, pkB) but the first bit sent to the simulator
is 0. If µ = 0, B executes Confirmation protocol but the first bit sent to the
simulator is 1.

B wins the game if the simulator acting as the verifier outputs accept. B’s advantage
is defined to be the probability that B wins.



Nominative Signature: Application, Security Model and Construction 9

Definition 4. A nominative signature scheme is said to be secure against repudi-
ation by nominee if no PPT cheating nominee B has a non-negligible advantage in
Game Non-repudiation.

3 Our Construction

In this section, we propose an efficient and provably secure construction of nomina-
tive signature. Our construction is based on Chaum’s undeniable signature [3,15] and
a strongly unforgeable (standard) signature scheme [1,2,17]. One desirable property
of our construction is that one may generalize it to a generic scheme or instantiate
it with some other undeniable signature schemes. We leave this as our further in-
vestigation. In the following, let σundeni be an undeniable signature and σstandard a
strongly unforgeable standard signature. Also let k ∈ N be a system parameter.

SystemSetup: The algorithm generates a cyclic group G of prime order q ≥ 2k, a
generator g, and a hash function H : {0, 1}∗ → G. Let param = (k, G, q, g,H).
We say that (g, gu, gv, gw) is a DH-tuple [15] if w = uv mod q; otherwise, it is a
non-DH-tuple.

KeyGen: On input param, (pk, sk) is generated where sk = (x, Sig) for some random
x ∈R Zq and standard signature generation algorithm Sig, and pk = (y, V er)
for y = gx and standard signature verification algorithm V er. We use pkA =
(yA, V erA) and skA = (xA, SigA) to denote nominator A’s public and private
key, respectively. Similarly, let (pkB, skB) be nominee B’s public/private key
pair.

SigGen Protocol: Let m ∈ {0, 1}∗ be a message. On input param and m, and
specific input pkB for A and pkA for B, the protocol is carried out as follows.
1. B sends σundeni = H(m‖pkA)xB to A.
2. B then proves to A that (g, yB,H(m‖pkA), σundeni) is a DH-tuple using a

Witness Indistinguishable (WI) protocol [7,15]5.
3. If A accepts, A outputs σ = (σundeni, σstandard) where σstandard = SigA(σundeni)

which is A’s standard signature on σundeni.

We say that σ = (σ1, σ2) is a nominative signature (i.e. σ is in the signature space
with respect to pkA and pkB) if σ1 ∈ G and σ2 is in the set of A’s signature
on “message” σ1, that is, V erA(σ1, σ2) = 1 meaning that σ2 is a valid standard
signature of “message” σ1.

5 First observed by Kurosawa and Heng [15], Chaum’s undeniable signature (i.e. σundeni) can
be confirmed/disavowed if the prover knows one of the two witnesses, that is, xB or discrete
logarithm of H(m‖pkA). This allows us to use the WI protocol.



10 D. Liu, D. Wong, X. Huang, G. Wang, Q. Huang, Y. Mu and W. Susilo

Vernominee: On input (m,σ, pkA, skB), where σ = (σundeni, σstandard) is a nomina-
tive signature (i.e. σ is in the signature space defined as above), if σundeni =
H(m‖pkA)xB , output valid; otherwise, output invalid.

Confirmation/Disavowal Protocol: On input (m,σ, pkA, pkB) where σ is a nom-
inative signature, if Vernominee(m,σ, pkA, skB) = valid, B sends µ = 1 to C;
otherwise, µ = 0 is sent to C. B then proves/disproves to C the DH-tuple/non-
DH-tuple (g, yB,H(m‖pkA), σundeni) using WI protocols [7,15].

3.1 Discussions

Although each party’s public or private key has two components, for nominator, only
the component of standard signature (i.e. SigA, V erA) is used; while for nominee,
only the component of undeniable signature (i.e. xB, yB) is used. In practice, the
nominee of one message can be the nominator of another message. So we make
the description above general enough for this practical scenario. Also, and more
important, it abides by the definition (Sec. 2). In some settings, the two components
of each key can be combined. For example, if both A and B are using discrete-log
based keys for generating standard signatures, then one private key x is enough
for each of them. Namely, each user can use the same private key for generating
both standard signatures (e.g. Schnorr’s signature scheme) and Chaum’s undeniable
signatures.

The standard signature σstandard generated by A only authenticates the “mes-
sage” σundeni rather than the actual message m. There is still no proof on whether
(σundeni, σstandard) corresponds to m. Someone can replace m with another message,
say m′, and claim that (σundeni, σstandard) corresponds to m′. No one can prove this
claim, only nominee can.

Different from Chaum’s original scheme [3] (precisely, we use the hash variant of
Chaum’s scheme [15]), the undeniable signature σundeni is computed as H(m‖pkA)xB

rather than H(m)xB as in the original scheme. It is important to include A’s public
key. Otherwise, the scheme will be insecure against unforgeability (Sec. 2.1) and
invisibility (Sec. 2.2) due to the capture of multi-party environment in our security
models. For example, under the model of unforgeability (Sec. 2.1), suppose pkA is
not included, forger F in the model can corrupt A’s private key skA, then query Sign-
Transcript on (m, pkI , pkB, nil) where pkI is some public key returned by CreateUser.
As defined, the game simulator will return a valid quadruple (m,σ, pkI , pkB) where
pkB indicates the nominee. Note that σ = (H(m)xB , SigI(H(m)xB )). Finally, F out-
puts (m∗, σ∗ = (σundeni∗, σstandard∗), pkA, pkB) where m∗ = m, σundeni∗ = H(m)xB

and σstandard∗ = SignA(H(m)xB ). This attack shows that a malicious party A can
sets a party B up and claims that B is A’s nominee even B is not.



Nominative Signature: Application, Security Model and Construction 11

3.2 Security Analysis

We now analyze the security of the construction proposed above with respect to the
security notions formalized in Sec. 2.

Lemma 1. Let k ∈ N be a security parameter. For the nominative signature scheme
proposed above, if a (t, ε,Q)-nominee can forge a valid nominative signature with
probability at least ε, there exists a (t′, ε′)-adversary which can existentially forge a
standard signature under the model of chosen message attack [9] with probability at
least ε′ = (1 − 2−kQ)ε after running at most time t′ = t + Qtq + c where tq is the
maximum time for simulating one oracle query and c is some constant.

Lemma 2. Let k ∈ N be a security parameter. For the nominative signature scheme
proposed above, if a (t, ε, Q)-nominator can forge a valid nominative signature, there
exists a (t′, ε′)-adversary which can solve a CDH (Computational Diffie-Hellman)
problem instance with probability at least ε′ = (1−2−k)(1−2−kQ)Q−1ε after running
at most time t′ = t+Qtq +c where tq is the maximum time for simulating one oracle
query and c is some constant.

Theorem 1 (Unforgeability). The nominative signature scheme proposed above
is unforgeable (Def. 1) if there exists a standard signature scheme which is exis-
tentially unforgeable against chosen message attack [9] and CDH problem in G is
hard.

The theorem follows directly from Lemma 1 and 2.

Theorem 2 (Invisibility). The nominative signature scheme proposed above has
the property of invisibility (Def. 2) under the Decisional Diffie-Hellman (DDH) as-
sumption, if the underlying standard signature scheme is strongly existentially un-
forgeable against chosen message attack (strong euf-cma [1,2,17].

All proofs are given in Appendix A. We require a stronger sense of signature scheme
(namely, strong euf-cma secure) for invisibility, rather than a conventional signature
scheme as required for achieving unforgeability. As shown in the proof (Appendix A),
it prevents the distinguisher from querying the Confirmation/disavowal oracle on an
existentially forged value of the challenge signature σ∗. In practice, strong euf-cma
secure signature schemes can be constructed efficiently. We refer readers to [2,17,11]
for examples of efficient generic constructions of strong euf-cma secure signature
schemes. Other methods in place of a strong euf-cma secure signature scheme may
be feasible. For example, we may define an equivalence calls of all valid signatures
of σ∗ and restrict the Confirmation/disavowal oracle from responding to any of the
values in the class. We leave this as our further investigation.

Theorem 3 (Security Against Impersonation). The nominative signature scheme
proposed above is secure against impersonation (Def. 3) under the discrete logarithm
(DLOG) assumption.



12 D. Liu, D. Wong, X. Huang, G. Wang, Q. Huang, Y. Mu and W. Susilo

Both confirmation and disavowal protocols use the WI protocols of [15], that have
been proven to satisfy the requirement of security against impersonation in a similar
model (Theorem 3 of [15]).

Theorem 4 (Non-repudiation). The nominative signature scheme proposed above
is secure against repudiation by nominee (Def. 4).

This follows directly the soundness property of the WI proofs in [15].

4 Concluding Remarks

In this paper, we proposed a rigorous set of security models for capturing the security
notions of nominative signature. We also proposed a provably secure construction
which efficiently converts Chaum’s undeniable signature to a nominative signature
using a strongly unforgeable signature scheme. As a final remark, we believe that the
security model is of independent interest and further enhancement of the security
model is feasible. We consider this to be our further work.

References

1. J. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption. In Proc.
EUROCRYPT 2002, pages 83–107. Springer-Verlag, 2002. LNCS 2332.

2. D. Boneh, E. Shen, and B. Waters. Strongly unforgeable signatures based on computational
Diffie-Hellman. In Proc. of PKC 2006, pages 229–240. Springer-Verlag, 2006. LNCS 3958.

3. D. Chaum. Zero-knowledge undeniable signatures. In Proc. EUROCRYPT 90, pages 458–464.
Springer-Verlag, 1990. LNCS 473.

4. D. Chaum. Designated confirmer signatures. In Proc. EUROCRYPT 94, pages 86–91. Springer-
Verlag, 1994. LNCS 950.

5. D. Chaum and H. van Antwerpen. Undeniable signatures. In Proc. CRYPTO 89, pages 212–216.
Springer-Verlag, 1990. LNCS 435.

6. D. Chaum and H. van Antwerpen. Cryptographically strong undeniable signatures, uncondi-
tionally secure for the signer. In Proc. CRYPTO 91, pages 470–484. Springer-Verlag, 1992.
LNCS 576.

7. U. Feige and A. Shamir. Witness indistinguishable and witness hiding protocols. In Proc. 22nd
ACM Symp. on Theory of Computing, pages 416–426, May 1990.

8. S. Galbraith and W. Mao. Invisibility and anonymity of undeniable and confirmer signatures.
In Topics in Cryptology – CT-RSA 2003, pages 80–97. Springer-Verlag, 2003. LNCS 2612.

9. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive
chosen-message attack. SIAM J. Computing, 17(2):281–308, Apr. 1988.

10. L. Guo, G. Wang, and D. Wong. Further discussions on the security of a nominative signature
scheme. Cryptology ePrint Archive, Report 2006/007, 2006.

11. Q. Huang, D. S. Wong, and Y. Zhao. Generic transformation to strongly unforgeable signatures.
Cryptology ePrint Archive, Report 2006/346 (Revised Date: 29 Nov 2006), 2006. http://

eprint.iacr.org/2006/346.
12. Z. Huang and Y. Wang. Convertible nominative signatures. In Proc. of Information Security

and Privacy (ACISP’04), pages 348–357. Springer-Verlag, 2004. LNCS 3108.
13. M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and their applications.

In Proc. EUROCRYPT 96, pages 143–154. Springer, 1996. LNCS 1070.

http://eprint.iacr.org/2006/346
http://eprint.iacr.org/2006/346


Nominative Signature: Application, Security Model and Construction 13

14. S. J. Kim, S. J. Park, and D. H. Won. Zero-knowledge nominative signatures. In PragoCrypt’96,
International Conference on the Theory and Applications of Cryptology, pages 380–392, 1996.

15. K. Kurosawa and S. Heng. 3-move undeniable signature scheme. In Proc. EUROCRYPT 2005,
pages 181–197, 2005. LNCS 3494.

16. R. Steinfeld, L. Bull, H. Wang, and J. Pieprzyk. Universal designated-verifier signatures. In
Proc. ASIACRYPT 2003, pages 523–542. Springer, 2003. LNCS 2894.

17. R. Steinfeld, J. Pieprzyk, and H. Wang. How to strengthen any weakly unforgeable signature
into a strongly unforgeable signature. To appear in CT-RSA 2007.

18. W. Susilo and Y. Mu. On the security of nominative signatures. In Proc. of Information
Security and Privacy (ACISP’05), pages 329–335. Springer-Verlag, 2005. LNCS 3547.

A Security Proofs

A.1 Proof of Lemma 1

Proof. Suppose a (t, ε, Q)-forger F has obtained the nominee B’s private key skB =
(xB, SigB) and is able to win Game Unforgeability by producing a valid nominative
signature σ∗ = (σ∗

1, σ
∗
2) on some message m∗. We show that in the random ora-

cle model, F can be turned into a (t′, ε′)-algorithm S which existentially forges a
message-signature pair against a signature scheme (Sig∗, V er∗) under the model of
[9].

Game Simulation: At the beginning of the simulation of Game Unforgeability, S
generates param using SystemSetup, and sets nominator A’s public key to pkA =
(yA, V er∗) where yA = gxA for a randomly chosen xA ∈R Zq. The private key of
A is set to skA = (xA,⊥) where ⊥ denotes an empty string as Sig∗ is unavailable
to S. For nominee B, the public and private keys are all generated using KeyGen.
When F is invoked, according to Game Unforgeability, 1k, pkA and pkB are given
to F and oracles CreateUser, Corrupt, SignTranscript and Confirmation/disavowal are
also simulated. In the following, we describe how SignTranscript is simulated. For a
SignTranscript query, there are three cases.

– Case (1 & 2): If role = nil/nominee, a nominative signature is simulated on the
querying message m by following the specification of SigGen. There is one ex-
ception: if A is indicated as the nominator (i.e. pk1 in Game Unforgeability), S is
unable to follow the protocol to compute A’s standard signature. Therefore, S
forwards the “message” (that is an undeniable signature generated under nom-
inee’s private key) to the signing oracle of Sig∗ and relays the result back to
F .

– Case (3): If role = nominator, S, acting as nominee, simulates a run of SigGen
with F . S can simply follow the exact execution of SigGen.

For a Confirmation/disavowal query, since S has the first component of all parties’
private keys, S can always carry out the confirmation/disavowal protocol. This also



14 D. Liu, D. Wong, X. Huang, G. Wang, Q. Huang, Y. Mu and W. Susilo

implies that S can always carry out simulations which are computationally indistin-
guishable from real simulations no matter they are under passive/active/concurrent
attacks.

Reduction Techniques: First, we show that with probability at most 2−kQ, σ∗
1

has been queried to oracle SignTranscript. As restricted by Game Unforgeability,
(m∗, pkA, pkB, role) should have never been queried to oracle SignTranscript. Hence
if oracle SignTranscript has output a nominative signature which contains the unde-
niable signature σ∗

1, it should be an undeniable signature for some message, say m̂,
with respect to some nominator and nominee identified by public keys pk1 and pk2,
respectively. Since S simulates H by picking values to return uniformly at random
from G, the chance that at least there is one execution of SignTranscript that has
σ∗

1 as the undeniable signature is at most 2−kQ. Hence when F outputs a forgery,
σ∗

2 must be a forgery with respect to (Sig∗, V er∗) on “message” σ∗
1 with exceptional

probability of at most 2−kQ.
If the advantage of F in Game Unforgeability is ε, the probability that S existen-

tially forges a signature with respect to (Sig∗, V er∗) is at least ε′ = (1 − 2−kQ)ε.
If each random oracle query takes at most time tq to finish, the simulation time of
the game is at most t′ = t + Qtq + c where c denotes some constant time for system
setup and key generation. ut

A.2 Proof of Lemma 2

Proof. Suppose a (t, ε, Q)-forger F has nominator A’s private key skA = (xA, SigA)
and is able to win Game Unforgeability by producing a valid nominative signature
σ∗ = (σ∗

1, σ
∗
2) on some message m∗, we show that in the random oracle model F can

be turned into a (t′, ε′)-algorithm S which can solve a CDH instance. Suppose the
CDH instance is (g, U, V ) where U = gu and V = gv).

In the simulation of Game Unforgeability, S sets the public key of nominee B
to pkB = (gu, V erB) where V erB is the signature verification algorithm generated
according to the KeyGen algorithm. B’s private key is set to skB = (⊥, SigB) where
SigB is the corresponding signature generation algorithm of V erB. The simulation
is similar to that in the proof of Lemma 1 with some exception detailed in the
following. For a SignTranscript query, there are three cases.

– Case (1 & 2): If role = nil/nominator, a nominative signature is simulated on
the querying message m by following the specification of SigGen. There is one
exception: if B is indicated as the nominee, S is unable to follow the protocol to
compute σundeni which should be equal to H(m‖pk1)u. To do so, S simulates H
as follows.

For each query of H(message) for some message ∈ {0, 1}∗, S randomly
picks r ∈R Zq and sets gr as the reply.

Hence S will set σundeni as U r.



Nominative Signature: Application, Security Model and Construction 15

– Case (3): If role = nominee, S, acting as nominator, simulates a run of SigGen
with F . S can simply follow the exact execution of SigGen.

For a Confirmation/disavowal query on (m,σ = (σ1, σ2), pk1, pk2), if B is the nominee,
S has to carry out the confirmation/disavowal protocol as the prover. Although S
does not know the discrete logarithm of U , S knows the corresponding discrete
logarithm of H(m‖pk1) except when m = m∗ and pk1 = pkA (note that pk2 = pkB).
We will see shortly in the next paragraph that there is a case that H(m∗‖pkA) is
set to V and hence S does not know the corresponding discrete logarithm. This case
is not going to happen due to the restriction of Game Unforgeability that the tuple
(m∗, σ, pkA, pkB) cannot be queried to Confirmation/disavowal. Thus, S can always
carry out the protocol to show whether (g, U,H(m‖pk1), σ1) is a DH-tuple or not
using WI protocols. This implies that S can always carry out simulations which are
computationally indistinguishable from real simulations no matter they are under
passive/active/concurrent attacks.

In the proof of Lemma 1, we show that with probability at least (1 − 2−kQ),
σ∗

1 has never been queried to oracle SignTranscript. In addition, without querying
H(m∗‖pkA), F has only 2−k chance to guess the value right. If F has queried H for
(m∗‖pkA), and if S has guessed correctly the message m∗, then S can set H(m∗‖pkA)
to V . Obviously, σ∗

1 is the solution of the CDH instance. If S randomly picks a
query of H as the guess of H(m∗‖pkA), the success probability of S is 1/Q. Hence,
S can solve the CDH problem instance with probability at least ε′ = (1− 2−k)(1−
2−kQ)Q−1ε. Similar to the proof of Lemma 1, the running time of S is at most
t′ = t + Qtq + c. ut

A.3 Proof of Theorem 2

Proof. We first show that if there exists a distinguisher with advantage ε in Game
Invisibility, we can construct a distinguisher with the same advantage in breaking the
invisibility of the hash variant of Chaum’s undeniable signature scheme described
in [15]. Let DNS denote the distinguisher against our scheme and DUS be the dis-
tinguisher against the hash variant of Chaum’s scheme. We will show how DUS can
use DNS as a subroutine.

Game Simulation: At the beginning of the simulation of Game Invisibility, DUS uses
KeyGen to generate nominator A’s public key pkA = (yA, V erA) and private key
skA = (xA, SigA). Nominee B′s public key is set as pkB = (yB, V erB) and private
key as skB = (⊥, SigB). Here, yB is the target public key of DUS and the pair
(V erB, SigB) is generated by DUS using KeyGen. When DNS is invoked, according to
Game Invisibility, 1k, pkA and pkB are given to DNS and oracles CreateUser, Corrupt,
SignTranscript and Confirmation/disavowal are also simulated. In the following, we
describe how SignTranscript is simulated.

For a SignTranscript query, there are three cases.



16 D. Liu, D. Wong, X. Huang, G. Wang, Q. Huang, Y. Mu and W. Susilo

– Case (1 & 2): If role = nil/nominator, a nominative signature is simulated on
the querying message m by following the specification of SigGen. There is one
exception: if B is indicated as the nominee (i.e. pk2 in Game Invisibility), DUS

is unable to follow the protocol to compute B’s undeniable signature. There-
fore, DUS forwards the “message= m‖pk1” to the undeniable signing oracle of
Chaum’s scheme and relays the result back to DNS .

– Case (3): If role = nominee, DUS , acting as nominator, simulates a run of SigGen
with DNS . DUS can simply follow the exact execution of SigGen.

For a Confirmation/disavowal query, there are two cases:

– Case (1): If B is indicated as the nominee (i.e. pk2 in Game Invisibility), DUS

is unable to follow the protocol to convince or deny a nominative signature
σ = (σundeni, σstandard). Therefore, DUS forwards the query (m‖pk1, σ

undeni, yB)
to the undeniable Confirmation/Disavowal oracle, and relays all the messages
exchanged between the oracle and DNS accordingly.

– Case (2): Otherwise, DUS can simply follow the exact execution of Confirma-
tion/Disavowal protocol.

Since we use the witness indistinguishable protocols in [15] as the underlying Con-
firmation/Disavowal protocol, the above simulation can be carried out with an ac-
tive/concurrent DNS [15].

At some point in the attacking phase, DNS will output a message m∗ and request
a challenge nominative signature σ∗ on m∗. Upon receiving m∗, DUS sets a message
as m‖pkA and request a challenging undeniable signature on this message. After
obtaining the challenging undeniable signature σundeni, DUS computes a standard
signature σstandard = SigB(σundeni) and sets the challenging nominative signature as
(σundeni, σstandard). After receiving it, DNS can still access all the oracles and DUS

will simulate these oracles as described above. Also note that since the underlying
standard signature is strongly unforgeable, it is also infeasible for DNS to generate
another valid standard signature σ̄standard 6= σstandard. Hence, DUS can always carry
out the oracle simulations. At the end, DNS will output its guess b′ and DUS will
set b′ as its own guess.

It is obvious that if the challenging signature σundeni is a valid undeniable sig-
nature of Chaum’s scheme, (σundeni, σstand) will be a valid nominative signature of
our scheme and vice versa. Therefore, DNS will have the same advantage as DUS .
According to Theorem 2 of [15], DUS has a negligible advantage in breaking the in-
visibility of Chaum’s scheme with the witness indistinguishable protocols described
in [15], under the assumption that Decisional Diffie-Hellman (DDH) problem is hard.
Thus, our nominative signature scheme also has the property of invisibility under
the Decisional Diffie-Hellman (DDH) assumption, ut


	Nominative Signature: Application, Security Model and Construction
	Dennis Y. W. Liu cl@@auth, Duncan S. Wong cl@@auth, Xinyi Huang cl@@auth, Guilin Wang cl@@auth, Qiong Huang cl@@auth, Yi Mu cl@@auth, Willy Susilo
	Introduction
	User Certification Systems
	Related Work

	Definitions and Security Models
	Unforgeability
	Invisibility
	Security Against Impersonation
	Non-repudiation

	Our Construction
	Discussions
	Security Analysis

	Concluding Remarks
	Security Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 2




