
 1

A Hybrid Approach to Concurrent Error Detection for a Compact
ASIC Implementation of the Advanced Encryption Standard

Namin Yu and Howard M. Heys

Electrical and Computer Engineering
Memorial University of Newfoundland

St. John's, NL, Canada

Abstract

In this paper, we investigate the application of concurrent error detection circuitry to a
compact application-specific integrated circuit (ASIC) implementation of the Advanced
Encryption Standard (AES). The specific objective of the design is to develop a method
suitable for compact ASIC implementations targeted to embedded systems such that the
system is resistant to fault attacks. To provide the error detection, recognizing that
previously proposed schemes are not well suited to compact implementations, it is
proposed to adopt a hybrid approach consisting of parity codes in combination with
partial circuit redundancy. For compact ASIC implementations, taking such an approach
gives a better ability to detect faults than simple parity codes, with less area cost than
proposed schemes which use full hardware redundancy. The results of the
implementation analysis in this paper show that it is possible to implement an error
detection scheme that is robust to multiple faults in a compact AES design such that
about 39% of the overall system is devoted to the error detection functionality.

I. Introduction

Since the National Institute of Standards and Technology (NIST) announced the selection
of Rijndael as the Advanced Encryption Standard (AES) in November 2001 [1], AES has
been accepted as the popular means to encrypt sensitive commercial and government
data. Various hardware implementation architectures and optimizations have been
proposed for different applications. Those to achieve high speed typically require a large
area and, hence, are not suitable for practical low-end embedded applications, such as
smart cards, PDAs, cell phones, and other mobile devices.
 Deliberately inducing malicious faults into cryptographic implementations and
breaking the secret keys or cipher structures from the information resulting from faulty
computations is a practical and efficient cryptanalysis technique called fault-based
cryptanalysis, first proposed by Boneh, Demillo, and Lipton [2], and more recently
applied to AES [3]. It is well understood that one approach to guarding against fault
attacks on ciphers is to implement concurrent error detection (CED) circuitry along with
the cipher functional circuit so that suitable action may be taken if an attacker attempts to
acquire secret information about the circuit by inducing faults.
 The objective of the research in this paper is to investigate a compact ASIC
implementation of AES with concurrent error detection. It attempts to create a bridge
between the area requirements of embedded applications and effective fault attack
resistance, such that the system is able to effectively detect faults with modest area
overhead.

 2

A. Advanced Encryption Standard

AES is a symmetric-key block cipher with a data block length of 128 bits, which supports
different key lengths of 128, 192 or 256 bits. In this paper, we consider the
implementation of the 128-bit key system only, as this is the most commonly
implemented form of AES.
 AES can be used to both encrypt and decrypt data. For the 128-bit key
implementation, the encryption and decryption processes consist of 10 rounds of
operations. There are four main operations on the datapath in each round for the
encryption process, as illustrated in Figure 1: byte-substitution, shift-row, mix-column and
add-round-key. Another important function is the key expansion, which takes the 128-bit
key and generates round keys (labeled as Ki in Figure 1) to be applied to each round.

Figure 1. AES Encryption and Decryption

 We now briefly describe the significant operations of the cipher. For the detailed
description, the reader is referred to [4]. For convenience in the description, the 128-bit
data is divided into 16 bytes and arranged as a two-dimensional 4-by-4 array of bytes.

(1) byte-substitution: Each byte is substituted by the corresponding element in a table
referred as an s-box. The s-box is an 8-bit input, 8-bit output component, and,
hence, is represented by a table that contains 256 8-bit values. The byte-
substitution operation is the only non-linear operation in the algorithm.

(2) shift-row: The shift-row operation is a simple transposition operation on the bytes
of each row in the array. The first row has no shift, the second row has a left

 3

rotation of 1 byte, the third row has a left rotation of 2 bytes, and the last row has
a left rotation of 3 bytes.

(3) mix-column: In this operation, a fixed array is used to perform multiplication
using modulo x4 +1 with each column over GF(28). For encryption, the mix-
column operation is performed at each round except the last one.

(4) add-round-key: The add-round-key operation is a bit-wise exclusive-or (XOR)
operation of the whole data block and round key. There is one key addition
operation before the first round for pre-whitening.

(5) key expansion: The key expansion algorithm, or key expander, can take an initial
key of length 128 bits, 192 bits or 256 bits. For a 128-bit key, the key expander
takes the 128-bit initial key as four 32-bit words of input and generates 40 words
to provide each of the 10 rounds with a 4-word round key. Each of the round
keys depends on the key of the previous round.

 The decryption process for AES has a slightly different structure from encryption.
However, with some changes in the operation order and the key expansion function, an
equivalent decryption structure can be achieved using inverse functions for the byte-
substitution, shift-row and mix-column operations.

B. AES Hardware Implementations

The AES algorithm has a simple structure and can be implemented efficiently on a wide
range of platforms. Although the software realization of the AES algorithm can lead to
relatively high throughput when compared to other block ciphers, hardware
implementations such as special purpose cryptographic processors are desirable in many
practical applications. Hardware implementations can generally be viewed as falling into
one of two categories: (1) high-speed implementations and (2) compact implementations.
In this paper, we focus on the compact implementation of AES targeted to lower speed
systems such as cell phones and PDAs and other embedded systems, such as smart cards.
In these applications, the main concern is to minimize the area and limit power
consumption of the design.

Compact AES hardware implementations are typically iterative designs based on one-
round or quarter-round loop architectures, with the application of design techniques for
hardware resource sharing such as the merging of the encryption and decryption
datapaths and the reuse of components between the datapath and key expander.
 Several papers have reported compact designs for AES ASIC implementation. For
example, in [5], the design uses a methodology to minimize the s-box component area
using arithmetic operations in a composite field of the form GF(((22)2)2). The cipher
architecture uses an iterative quarter-round structure. That means the width of the
datapath is 32 bits, so that four s-boxes are processed each pass of the loop. Hence, a full
round of 128-bit data needs four clock cycles to be finished. The hardware resources are
efficiently shared between the encryption and decryption processes, including the sharing
between s-box and inverse s-box and mix-column and inverse mix-column. The s-boxes
are reused between datapath and key expander as well. The key expander generates the
round keys on-the-fly, saving the memory area needed to store the pre-computed keys.
The design produced is an extremely small 128-bit key AES circuit of 5.4k gates based
on a 0.11 m CMOS standard cell library and the system has a throughput of 311 Mbps.

 4

 A more recent compact implementation of AES [6] is able to achieve an even lower
gate count of about 3.4k gates for the circuit in 0.35 m CMOS technology. Additionally,
the circuit is designed for low power consumption. This is principally achieved with an
iterative design based around the use of only one s-box in each iteration. As a result, the
speed of the circuit is dramatically less than other designs and is only 9.9 Mbps.
 In the work presented in this paper, we have chosen to focus on the iterative
architecture based on the quarter-round or four s-box iteration, as we have assumed that
the speed penalty paid for a reduction in circuit size as in [6], is undesirable for many
applications.
 It should also be noted that several papers have investigated the low complexity
implementation of the AES s-box [5, 7, 8]. This work principally focuses on the
implementation of the s-box based on composite field representation in GF(((22)2)2) or
GF((24)2). In [9], various s-box implementations are considered and the implementation
of [7] is selected for the design presented in this paper for its low complexity and
performance.

C. Fault-Based Cryptanalysis

Although today’s hardware implementations are relatively reliable, it is still possible and
practical for opponents to intentionally induce faults into hardware computations,
especially for small, portable devices such as smartcards and other embedded systems.
Fault-based cryptanalysis is a powerful attack technique that deliberately injects faults
into the cryptographic devices and exploits the fact that the erroneous computations leak
secret parameters or sensitive information about the cipher. This attack idea was first
proposed in [2] and, subsequently, in [10], the attack was extended to symmetric
cryptosystems such as DES. Fault analysis has now been applied to AES [3]. Different
fault-based attacks are associated with different assumptions for fault models. As noted in
[3], attacks must consider several aspects of a fault model such as (1) whether the fault is
permanent or transient, (2) whether the fault location and/or timing of the fault can be
controlled, (3) the type of fault (eg. bit flip or stuck-at-0/1), and (4) the number of faults
induced. The results show that AES is sensitive to fault-based attacks and the recovering
of the secret key can be achieved by using a small number of faulty ciphertexts under
certain hardware fault models.

D. Concurrent Error Detection for AES

Concurrent error detection checks the system operation during the computation to
guarantee the system output is correct. If an erroneous output is produced, CED will
detect the presence of the faulty computation and the system can discard the erroneous
output before transmission. Thus, the encryption system can achieve resistance to
malicious fault-based attacks. Any CED technique will introduce some overhead into the
system since circuitry must be added that predicts the system output or some
characteristic parameter of the system output used to check the correctness of the system.

 5

(i) Techniques Based on Hardware or Time Redundancy

Straightforward duplication of the encryption hardware for self-checking is the simplest
form of the redundancy technique for concurrent error detection. The output of the
duplicated circuit is compared with the result of the original hardware, and any mismatch
means the detection of errors. The method can detect any type or any number of fault
injections if the duplicated module is fault-free, and is highly likely to detect any errors
even if faults occur in both the original and duplicated hardware as long as the faults do
not occur at the same location. Since the original circuit and duplicated module are
working simultaneously, this technique does not cause any notable time delay or
degradation of the original hardware performance. However, it requires considerable
hardware overhead of more than 100%. Therefore, this method is not suitable for area
critical applications.
 The time redundancy technique involves encrypting or decrypting the same data a
second time using the same datapath and comparing the two results. This method has
more than 100% time overhead and is only applicable to transient faults. For permanent
faults in the circuit, since the same faults occur in both computations, the system can not
detect errors.
 A hardware and time redundancy approach for the AES system was proposed in [11]
by employing the inverse relationship between the encryption and decryption process.
This method performs a test decryption of the encrypted data and then checks if the
decrypted data matches the original message or not. The authors exploited the inverse
relationship between the encryption and decryption process at the algorithm level, round
level and individual operation level. The method is able to detect any type and any
number of faults, but it needs a separated datapath for encryption and decryption.
Compared to an encryption/decryption integrated datapath, like the AES compact
implementation to be presented in this paper, this method results in more than 100%
hardware overhead.

(ii) Techniques Based on Error Detection Codes

Error detection coding techniques have been applied to CED in block ciphers in several
papers and the fault detection coverage usually depends on the particular adopted coding
schemes and hardware implementation details.
 A simple parity check, with the advantage of low hardware overhead, has been
proposed as a CED method for AES in [12] and [13, 14]. The detection latency and fault
detection coverage depend on how many parity bits the system uses and the locations of
the checking points. In [12], a low-cost approach of concurrent parity checking for the
AES algorithm is proposed. In this method, a simple parity bit for a 128-bit data block is
used and this parity is modified at each step of the AES algorithm to generate the
prediction of the output parity. The predicted parity is then compared to the actual output
parity of each round to detect if there is any error in the system. The checking points are
set at the end of every round, so the detection latency is the time needed to process data
for one round. The parity prediction of the cipher's linear operations (i.e., shift-row, mix-
column and add-round-key) is straightforward and the prediction of the non-linear byte-
substitution is accomplished by using an extra output bit associated with each s-box to

 6

predict the output parity of the s-box. This approach is well suited to memory-based s-
box implementations and, in this context, it is guaranteed to correct single bit faults.
However, since only a single parity bit is used for the 128-bit datapath, this
implementation will not detect many multiple fault scenarios. Further, a single parity bit
for an s-box output does not provide a robust error detection for compact ASIC
implementations of AES, such as the one proposed in this paper, which use a
combinational-logic based s-box implementation, since it is possible for some types of
single faults (that occur within the s-box logic), as well as many other multiple fault
scenarios, to be undetectable.
 The method presented in [13, 14] is similar to [12], but it associates one redundant
parity bit with each byte of the 128-bit data block. Thus the parity code for this approach
uses 16 bits. This 16-bit parity code uses more hardware overhead for parity code storage
and prediction, but it has better fault detection coverage than the 1-bit parity code
scheme. However, again the approach uses a parity bit prediction of the output of s-box
assuming a memory-based s-box implementation and is therefore not well suited to
compact ASIC implementations in that many single and multiple fault scenarios will be
undetectable.
 Other CED methods include systematic nonlinear error detection codes [15]. This
scheme has better fault detection coverage than a normal linear code, and the design
introduces a linear predictor to protect the encryption, decryption and key expander with
about 75% hardware overhead for FPGA implementations. Unfortunately, the overhead
analysis in [15] does adequately describe the design of AES and it is not clear that the
results for a compact implementation would not be worse. Also, recently, in [16], the
application of cyclic redundancy checks to error detection in AES is presented. Several
techniques are considered varying from schemes such as a pure-parity approach to a
hybrid of parity and redundancy. Unfortunately, although the authors do discuss the
overhead associated with each scheme, they do not examine an actual implementation to
characterize the impact of the concurrent error detection on the area of real
implementations.
 In this paper, we examine the application of a hybrid concurrent error detection scheme
in the context of an actual implementation of a compact ASIC design of AES. Our
proposed scheme has the advantage that it is effective for implementations that do not
rely on memory-based s-box structures. As a result, most multiple faults and all single
faults can be detected and, as shown, the area overhead is modest, especially when it is
considered that the targeted design is a compact architecture.

II. A Compact AES Implementation

In this section, we outline a compact AES implementation, first referred to in [9] and
detailed in [17]. In terms of hardware implementation, s-boxes are the most complex
components in the AES algorithm and the s-boxes have an important influence on the
area, speed and power consumption of the overall AES system. Hence, in [9], the
iterative structure and three methods of compact s-box implementation were investigated
through synthesis targeted at 0.18 m CMOS technology. Based on the studies, by
considering the trade-off of area and speed, it was decided to focus the design
investigation on an architecture based on a quarter-round iteration (i.e., processing of 4 s-

 7

boxes per pass of the iterative loop) using s-boxes constructed based on a composite field
representation of the form GF((24)2) [7].

A. Encryption/Decryption Architecture with Key Expansion

In the compact design, the encryption and decryption functionality are merged into one
equivalent architecture and circuitry is provided for key scheduling on-the-fly (that is, in
parallel with the datapath) for encryption and decryption. The hardware components are
shared as much as possible to reduce the circuit size. The encryption/decryption
architecture is shown in Figure 2, where the unlabelled boxes in the diagram represent
registers. Since the architecture operates on 32 bits of datapath per iteration, a full round
requires four iterations. The 32-bit shift registers not only work as data registers but also
implement the shift-row operation.

Figure 2. Encryption-Decryption Datapath

 In order to share the hardware resources between the encryption and decryption
processes, it is necessary to modify the order of operations for the structure. Firstly, the
order of byte-substitution and shift-row for the encryption process is exchanged. Since
both of the operations are byte-oriented, this does not alter the result of the round. The
second change of structure involves exchanging the order of mix-column and add-round-
key for the decryption process. This change causes a corresponding change in the key
expander such that the inverse mix-column is added at the end of key scheduling
function. Also the multiplicative inverse in GF(28) for the s-box and inverse s-box is
shared, as well as the hardware between mix-column and its inverse operation.
 The key expander needs the byte-substitution operation to generate the key for
encryption and decryption. Since the s-box is the most costly component in the circuit,
sharing between the datapath and the key expander is a good method to reduce the circuit

 8

size. Multiplexers are used after the shift-row operation to select to process cipher data or
the round key. The key is taken after byte-substitution back to the key expander to
continue the key process. This sharing of s-boxes causes an increase of one clock cycle in
the datapath for each round in the encryption and decryption. The key expander circuit is
illustrated in Figure 3.

Figure 3. Encryption-Decryption Key Expander

B. Hardware Complexity Analysis

The complete AES algorithm has been designed, simulated, and synthesized using the
0.18 m CMOS standard cell library with the Synopsys Design Analyzer as the design
tool. Synthesizing based on minimizing the area of the circuit resulted in about 6.7k
gates1 with the throughput of the circuit being 112 Mbps. The resulting relative
complexities of the various components are given in Table 1.

1 The number of gates is determined by considering the number of 2-input NAND gates that would
generate the resulting circuit area.

 9

(a) Datapath

Component Complexity
(% of total area)

registers 12.5
multiplexers 10.4

inverse mix-column 7.1
XORs 4.2

round constant calculation 1.3
Total 35.5

(b) Key Expander

(c) Complete AES System

Table 1. Complexity of Compact AES Implementation

III. Concurrent Error Detection Applied to Compact AES

In this section, we now consider the application of an effective error detection scheme to
the compact AES implementation described in the previous section. The proposed
scheme is capable of detecting single bit errors caused by maliciously induced faults by
attackers, as well as most multiple error scenarios. Subsequent to error detection,
appropriate action is taken to suppress release of the flawed ciphertext from the system,
thereby minimizing the cipher's susceptibility to fault-based attacks.

Component
Complexity

(% of total area)
enc/dec s-boxes 24.7
data registers 22.7

mix-column+inverse 7.1
XORs 5.0

multiplexers 2.6
Total 62.1

Component Complexity
(% of total area)

enc/dec datapath 62.1
key expander 35.5

system controller 2.4

 10

A. Proposed Scheme for Error Detection

Based on the review of concurrent error detection techniques and proposed schemes for
CED of AES, we have investigated an error detection approach for our AES
implementation that is a hybrid scheme combining both parity checking and hardware
redundancy techniques. Although multiple parity bits can be an effective mechanism for
detecting single and multiple bit errors, applying a parity bit to the s-box output is not
useful when a fault is induced inside the combinational circuit of the s-box resulting in an
even number of errors at the s-box output that can not be detected. Therefore, hardware
redundancy for the s-boxes is particularly attractive when the s-boxes are implemented
using a compact approach realized as combinational logic. For the mix-column, shift-row
and add-round-key operations, the parity checking schemes are effective with small cost,
so parity checking is adopted for these operations. The proposed scheme is implemented
and analyzed based on our compact hardware implementation of the AES algorithm, and
the CED scheme is applied to the whole AES system including the encryption/decryption
datapath and key expander.
 A multiple-bit parity code similar to [13, 14] is adopted instead of the 1-bit parity code
of [12] even though the 1-bit parity code has smaller hardware overhead, because the
multiple-bit parity code achieves better fault detection coverage for multiple faults. Each
bit in the parity code represents a parity bit for each byte in the data. However, our
scheme differs from [13, 14], in that the s-boxes are duplicated while using parity
prediction for other components in the system, rather than using a pure parity-based
scheme which favours a memory-based implementation of the s-boxes. For parity
prediction of mix-column, the same modification algorithm as in [13, 14] is used. Check
points are placed within each round to achieve good detection latency and higher fault
detection coverage. The objective of the design is to yield fault detection coverage of
100% for the single faulty bit model and high coverage for multiple fault scenarios,
assuming a fault model of a transient or permanent fault as a stuck-at-0 or stuck-at-1 fault
in combinational logic and gate wiring or a bit-flip fault in registers.
 The hybrid CED scheme applied to the quarter-round iterative structure is shown in
Figure 4. The variables sr0, sr1, sr2 and sr3 are four bytes of data in the row r, and pr0, pr1,

pr2 and pr3 are their corresponding four parity bits. Here we will explain the parity
prediction and checking for each operation in more detail:

Data Registers and Shift-Row: A parity generator is needed to generate the parity
code of the original and updated data and put a 4×4 parity code into four 4-bit shift
registers according to the corresponding data byte position. These small parity shift
registers are shifted and loaded with the same pace as the data registers. A parity
checker is placed at the output of the registers to detect the fault in the data registers
and shift-row transformation.
Byte-Substitution: Since the simple parity checking is not sufficient for the
combinational logic of the s-box based on arithmetic in GF((24)2), the s-boxes are
duplicated in hardware. An equality checker is located at the output of the s-boxes to
check any fault in s-box computation. Moreover, another parity generator is needed to
generate the new parity bits after the byte-substitution transformation for the use of
parity checking of mix-column.

 11

Mix-Column: The same mix-column (and inverse mix-column) parity prediction
method as in [13, 14] is adopted. After the mix-column operation, a check point is
applied to detect any fault that may have occurred.
Add-Round-Key: Since this operation is simple XOR gates, the prediction for the new
parity is just the XOR between the old parity and round key parity for each byte.
Also, a check point is applied after this operation.

⊕

Figure 4. Hybrid CED Structure

 The CED scheme is able to detect all single faults occurring at the input of each round,
between the round operations or inside of each round operation. Because all single faults
inside of mix-column result in an odd number of erroneous bits at the output, the
resulting errors can be detected by parity checking [13]. Since the shift-row and add-
round-key operation are simply implemented by wiring and XOR gates, all single faults
result in a single error as well, which can be detected by parity checking. If a single fault
is injected inside of the s-box circuit, the comparison of the faulty s-box output with the
unfaulty s-box output will ensure that the fault is detected.
 For multiple faults, the situation is more complex. For the portions of the circuit
protected by the parity code, faults that result in an odd number of errors can be detected.
As well, faults that result in an odd number of errors in a byte of the datapath will also be
detected, even if the total number of errors is even. The parity code can not detect the
faults that result in an even number of errors such that all bytes have an even number of
errors. For the s-boxes, since the scheme is based on the duplication of s-box
computation, all multiple fault scenarios will be detected, except for the unlikely cases
where the same errors occur at the output of both s-box sets.
 The system can detect the errors shortly after the faults are induced because the
detection latency is only the output delay of each operation. Once an error is detected, the

 12

data currently being processed is discarded. Since the key scheduling uses similar
functions as the datapath, a similar CED approach has been applied to the key expander.

B. Hardware Complexity Analysis

We have implemented the hybrid CED scheme for our AES compact hardware
implementation, including both the encryption/decryption datapath and key expander.
The system was synthesized to minimize area and, hence, can be compared to the original
synthesized circuit without CED, which resulted in 6.7k gates. The resulting circuit for
the AES system with concurrent error detection requires an area equivalent to 10.9k
gates, with 39.1% of the circuit dedicated to CED. This is equivalent to an area overhead
of 64.3% with respect to our original compact AES hardware system. A summary of the
overhead of the scheme is shown in Table 2.

Component
Original Circuit
(without CED)

(gates)

CED Circuit
(gates) CED Overhead

datapath 4228 2555 60.4%
key expander 2428 1613 66.4%

complete system 6656 4278 64.3%

Table 2. Complexity of Hybrid CED Scheme

IV. Conclusion

The primary focus of this paper has been the study of a compact hardware
implementation of the AES system with concurrent error detection. The AES
implementation is aimed at area-critical embedded applications, such as smart cards,
PDAs, cell phones, and other mobile devices. The proposed hybrid CED scheme achieves
effective detection for single faults and most multiple faults with about 39% of the final
compact AES system dedicated to the CED functionality.

References

[1] National Institute of Standards and Technology (NIST), "Advanced
Encryption Standard (AES)", Federal Information Processing Standard
Publication 197, Nov. 2001. Available at:
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[2] D. Boneh, R.A. DeMillo, and R.J. Lipton, "On the Importance of Checking
Cryptographic Protocols for Faults", Advances in Cryptology – EUROCRYPT
'97, Lecture Notes in Computer Science, vol. 1233, Springer, pp. 37-51, 1997.

[3] J. Blomer and J. Seifert, "Fault Based Cryptanalysis of Advanced Encryption
Standard (AES)", Financial Cryptography (FC 2003), Lecture Notes in
Computer Science, vol. 2742, Springer, pp. 162-181, 2003.

[4] J. Daemen and V. Rijmen, "The Design of Rijndael: AES - The Advanced
Encryption Standard", Springer, 2002.

 13

[5] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, "A Compact Rijndael
Hardware Architecture with S-box Optimization", ASIACRYPT 2001, Lecture
Notes in Computer Science, vol. 2248, Springer, pp. 239-254, 2001.

[6] M. Feldhofer, J. Wolkerstorfer, and V. Rijmen, "AES Implementation on a
Grain of Sand", IEE Proceedings on Information Security, vol. 152, no. 1, pp.
13-20, 2005.

[7] J. Wolkerstorfer, E. Oswald, and M. Lamberger, "An ASIC Implementation
of the AES SBoxes", The Cryptographer's Track at the RSA Conference (CT-
RSA 2002), Lecture Notes in Computer Science, vol. 2271, Springer, pp. 67-
78, 2002.

[8] D. Canright, "A Very Compact S-box for AES", Workshop on Cryptography
Hardware and Embedded System (CHES 2005), Lecture Notes in Computer
Science, vol. 3659, Springer, pp. 441-456, 2005.

[9] N. Yu and H.M. Heys, "Investigation of a Compact Hardware
Implementation of the Advanced Encryption Standard", Canadian
Conference on Electrical and Computer Engineering (CCECE 2005), 2005.

[10] E. Biham and A. Shamir, “Differential Fault Analysis of Secret Key
Cryptosystems,” Advances in Cryptology - Crypto '97, Lecture Notes in
Computer Science, vol. 1294, Springer, pp. 513-525, 1997.

[11] R. Karri, K. Wu, P. Mishra, and Y. Kim, “Fault-based Side-channel
Cryptanalysis Tolerant Rijndael Symmetric Block Cipher Architecture,”
IEEE International Symposium on Defect and Fault Tolerance in VLSI
Systems (DFT'01), 2001.

[12] K. Wu, R.Karri, G. Kouznetzov and M.Goessel, “Low Cost Concurrent Error
Detection for the Advanced Encryption Standard,” International Test
Conference 2004 (ITC 2004), pp. 1242-1248, 2004.

[13] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri and V. Piuri, “Error Analysis
and Detection Procedures for a Hardware Implementation of the Advanced
Encryption Standard,” IEEE Transaction on Computers, vol. 52, no.4, pp.
492-505, April 2003.

[14] G. Bertoni, L. Breveglieri, I. Koren, and P. Maistri, "An Efficient Hardware-
Based Fault Diagnosis Scheme for AES: Performance and Cost", IEEE
International Symposium on Defect and Fault Tolerance in VLSI Systems
(DFT '04), 2004.

[15] M. Karpovsky, K. Kulikowski, and A. Taubin, “Robust Protection against
Fault-Injection Attacks on Smart Cards Implementing the Advanced
Encryption Standard,” International Conference on Dependable System and
Networks (DSN ’04), 2004.

[16] C-H. Yen and B-F Wu, "Simple Error Detection Methods for Hardware
Implementation of Advanced Encryption Standard", IEEE Transactions on
Computers, vol. 55, no. 6, pp. 720-731, 2006.

[17] N. Yu, "Compact Hardware Implementation of AES with Concurrent Error
Detection", M.Eng. Thesis, Memorial University of Newfoundland, 2005.

