
A Cramer-Shoup Encryption Scheme

from the Linear Assumption

and from Progressively Weaker Linear Variants

Hovav Shacham∗

Weizmann Institute of Science
hovav.shacham@weizmann.ac.il

Abstract

We describe a CCA-secure public-key encryption scheme, in the Cramer-Shoup paradigm,
based on the Linear assumption of Boneh, Boyen, and Shacham. Through a comparison to
the Kiltz tag-encryption scheme from TCC 2006, our scheme gives evidence that the Cramer-
Shoup paradigm yields CCA encryption with shorter ciphertexts than the Canetti-Halevi-Katz
paradigm.

We present a generalization of the Linear assumption into a family of progressively weaker
assumptions and show how to instantiate our Linear Cramer-Shoup encryption using the pro-
gressively weaker members of this family.

1 Introduction

Cramer and Shoup [16, 19] presented the first practical CCA-secure public key encryption system,
based on the decisional Diffie-Hellman (DDH) assumption. They later generalized their construction
by considering an algebraic primitive they call universal hash proof systems [18]; they showed that
this framework yields not only the original DDH-based Cramer-Shoup scheme but also encryption
schemes based on quadratic residuosity and on Paillier’s assumption [33].

Canetti, Halevi, and Katz (CHK) [15] proposed an alternative way to obtain CCA-secure en-
cryption schemes, which takes a selective-ID secure identity-based encryption (IBE) scheme and
a one-time strongly unforgeable signature scheme and yields a CCA-secure encryption scheme by
means of a black-box transformation. Boneh and Katz [9] showed a similar transformation in which
a MAC takes the place of the signature, so the resulting encryption scheme is more efficient.1 Either
of these transformations, applied to the (first) Boneh-Boyen IBE [4], yields a CCA-secure encryp-
tion scheme based on the decisional bilinear Diffie-Hellman assumption. The resulting scheme is
less efficient than Cramer-Shoup, because decryption requires computing a pairing, an expensive
operation [21].

At TCC 2006, Kiltz [24] observed that the full power of an IBE scheme is unnecessary for
applying the CHK transform, and introduced a weaker primitive, selective-tag weakly CCA-secure
tag encryption, that is sufficient. (This primitive, he shows, is implied both by selective-ID IBE
and by weakly CCA-secure tag encryption, thus unifying the CHK transformation with a similar
one proposed independently by MacKenzie, Reiter, and Yang [27] and based on tag encryption.)

∗Supported by a Koshland Scholars Program fellowship.
1See also the combined journal paper [7].

1

In addition, he describes a concrete selective-tag weakly CCA-secure tag encryption scheme, based
on the Linear assumption introduced by Boneh, Boyen, and Shacham [6]. The Kiltz tag encryption
scheme makes use of a pairing in the proof of security, but not in the encryption or decryption
algorithms, and the same is true also of the CCA-secure encryption scheme obtained from it by
means of the CHK transformation.

Our Contribution. We develop a variant of Cramer-Shoup encryption that is secure under the
Linear assumption. Like the DDH-based Cramer-Shoup scheme, our scheme is CCA secure. Our
scheme makes no use of pairings either in the encryption or decryption algorithms or in the proof of
security; but it remains secure even when instantiated in a group for which there exists a computable
pairing. Using our scheme one can construct a variant of Boneh-Boyen-Shacham group signatures
secure in the full Bellare-Micciancio-Warinschi model [3] rather than a relaxation of that model [6].

In addition to being practically useful as a replacement for Cramer-Shoup in bilinear groups,
our construction fits within a line of research that seeks to weaken the assumption underlying
Cramer-Shoup. For example, Shoup demonstrated a variant of Cramer-Shoup that admits a proof
of security under DDH in the standard model and under CDH using random oracles [37], and
Gennaro, Krawczyk, and Rabin showed how one can securely instantiate Cramer-Shoup in Z∗p
provided DDH holds in some subgroup [22].

More importantly, our scheme set side-by-side the Kiltz scheme allows, for the first time, an
apples-to-apples comparison of the Cramer-Shoup and CHK methodologies for obtaining CCA-
secure encryption. (Previous to our work, no single assumption was the basis for encryption schemes
in both the Cramer-Shoup and a CHK paradigms.) The comparison shows that, at least in this
case, the CHK methodology yields the scheme with shorter public keys and faster encryption and
decryption algorithms but the Cramer-Shoup methodology yields the scheme with substantially
shorter ciphertexts. The Cramer-Shoup–based construction also has the advantage of not requiring
the presence of a computable pairing.

We generalize DDH and the Linear assumption into a family of assumptions {Lk}k≥1 that are
progressively weaker. (Two members of this family are already familiar: L1 is DDH, L2 is the
Linear assumption.) Specifically, we show that, in Shoup’s generic group model [36], Lk+1 holds
even when Lk does not. We then describe a family of Cramer-Shoup variants secure respectively
under each Lk. Other DDH-based cryptosystems can be similarly generalized. Members of the Lk

family for large k can be used as a hedge against the development of algorithms for solving DDH or
Linear.

2 Preliminaries

2.1 The Linear Assumption

Boneh, Boyen, and Shacham [6] introduced a decisional assumption, called Linear, intended to take
the place of DDH in groups — in particular, bilinear groups [23] —where DDH is easy. For this
setting, the Linear problem has desirable properties, as Boneh, Boyen and Shacham show: it is
hard if DDH is hard, but, at least in generic groups [36], remains hard even if DDH is easy.

Letting G be a cyclic multiplicative group of prime order p, and letting g1, g2, and g3 be
arbitrary generators of G, consider the following problem:

2

Linear Problem in G: Given g1, g2, g3, g
a
1 , gb

2, g
c
3 ∈ G as input, output yes if a + b = c and no

otherwise.

The advantage of an algorithm A in deciding the Linear problem in G is

Advlinear
A

def=

∣∣∣∣∣∣ Pr
[
A(g1, g2, g3, g

a
1 , gb

2, g
a+b
3) = yes : g1, g2, g3

R← G, a, b
R← Zp

]
− Pr

[
A(g1, g2, g3, g

a
1 , gb

2, η) = yes : g1, g2, g3, η
R← G, a, b

R← Zp

] ∣∣∣∣∣∣ ,

with the probability taken over the uniform random choice of the parameters to A and over the
coin tosses of A. We say that an algorithm A (t, ε)-decides Linear in G if A runs in time at most t,
and Advlinear

A is at least ε.

Definition 2.1. We say that the (t, ε)-Decision Linear Assumption holds in G if no algorithm
(t, ε)-decides the Decision Linear problem in G.

The Linear problem is well-defined in any group where DDH is; its main use, however, is in
bilinear groups, for which see, e.g., [8, 10, 34].

2.1.1 Linear Encryption

Boneh, Boyen, and Shacham describe a natural variant of ElGamal encryption that is CPA-secure
under the Linear assumption:

LE.Kg. Choose a random generator g3
R← G and exponents x1, x2

R← Zp, and set g1 ← g
1/x1

3 and
g2 ← g

1/x2

3 . The public key is pk = (g1, g2, g3) ∈ G3; the secret key is sk = (x1, x2) ∈ Z2
p.

LE.Enc(pk,M). To encrypt a message M ∈ G, parse pk as (g1, g2, g3) ∈ G3, choose random
exponents r1, r2

R← Zp, and set

u1 ← gr1
1 and u2 ← gr2

2 and u3 ←M · gr1+r2
3 ;

the ciphertext is ct = (u1, u2, u3) ∈ G3.

LE.Dec(sk, ct). Parse the private key sk as (x1, x2) ∈ Zp and the ciphertext ct as (u1, u2, u3) ∈ Z3
p,

and compute and output M ← u3/(ux1
1 ux2

2).

Correctness is easy to verify, and CPA security follows directly from the Linear assumption.

2.2 DDH Cramer-Shoup

We recall the Cramer-Shoup encryption scheme based on DDH. We use the notation of the confer-
ence version of the Cramer-Shoup paper [16]. (We make one change in the derivation of h, following
scheme CS1 of [19] rather than CS1b.) In what follows we retain this notation for our own schemes,
for ease of comparison.

Let HF be a family of universal one-way hash functions [31] from G3 to Zp. To simplify the

notation, we let HF stand also for the family’s keyspace, and write H
R← HF for choosing a random

such function.

3

CS.Kg. Choose random generators g1, g2
R← G and exponents x1, x2, y1, y2, z1, z2

R← Zp and set

c← gx1
1 gx2

2 and d← gy1
1 gy2

2 and h← gz1
1 gz2

2 .

In addition, choose a UOWHF H
R← HF . The public key is pk = (g1, g2, c, d, h,H) ∈ G5×HF ;

the secret key is sk = (x1, x2, y1, y2, z1, z2) ∈ Z6
p.

CS.Enc(pk,M). To encrypt a message M ∈ G, parse pk as (g1, g2, c, d, h,H) ∈ G5 ×HF . Choose
a random exponent r

R← Zp, and set

u1 ← gr
1 and u2 ← gr

2 and e←M · hr;

now compute α← H(u1, u2, e) and, finally, v ← (cdα)r. The ciphertext is ct = (u1, u2, e, v) ∈
G4.

CS.Dec(pk, sk, ct). Parse the public key pk as (g1, g2, c, d, h,H) ∈ G5 ×HF , the private key sk as
(x1, x2, y1, y2, z1, z2) ∈ Z6

p and the ciphertext ct as (u1, u2, e, v) ∈ G3. Compute α ←
H(u1, u2, e) and test that

ux1+αy1
1 · ux2+αy2

2
?= v

holds. If it does not, output “reject”. Otherwise, compute and output M ← e/(uz1
1 uz2

2).

3 Linear Cramer-Shoup

We describe a variant of Cramer-Shoup encryption based on the Linear assumption. Our scheme
makes no use of pairings either in the encryption or decryption algorithms or in the proof of security.
It can be instantiated in groups where DDH is easy as well as in groups where DDH is hard.

For the Linear Cramer-Shoup scheme, let HF ′ be a family of universal one-way hash functions
from G4 to Zp.

LCS.Kg. Choose random generators g1, g2, g3
R← G and exponents

x1, x2, x3, y1, y2, y3, z1, z2, z3
R← Zp

and set

c1 ← gx1
1 gx3

3 d1 ← gy1
1 gy3

3 h1 ← gz1
1 gz3

3

c2 ← gx2
2 gx3

3 d2 ← gy2
2 gy3

3 h2 ← gz2
2 gz3

3 .

In addition, choose a UOWHF H
R← HF ′. The public key is pk = (g1, g2, g3, c1, c2, d1, d2,

h1, h2,H) ∈ G9 ×HF ′; the secret key is sk = (x1, x2, x3, y1, y2, y3, z1, z2, z3) ∈ Z9
p.

LCS.Enc(pk,M). To encrypt a message M ∈ G, parse pk as pk = (g1, g2, g3, c1, c2, d1, d2, h1, h2,H) ∈
G9 ×HF ′. Choose random exponents r1, r2

R← Zp, and set

u1 ← gr1
1 and u2 ← gr2

2 and u3 ← gr1+r2
3 and e←M · hr1

1 hr2
2 ;

now compute α ← H(u1, u2, u3, e) and, finally, v ← (c1d
α
1)r1 · (c2d

α
2)r2 . The ciphertext is

ct = (u1, u2, u3, e, v) ∈ G5.

4

LCS.Dec(pk, sk, ct). Parse the public key pk as (g1, g2, g3, c1, c2, d1, d2, h1, h2,H) ∈ G9 ×HF ′, the
private key sk as (x1, x2, x3, y1, y2, y3, z1, z2, z3) ∈ Z9

p, and the ciphertext ct as (u1, u2, u3, e, v) ∈
G4. Compute α← H(u1, u2, u3, e) and test that

ux1+αy1
1 · ux2+αy2

2 · ux3+αy3
3

?= v (1)

holds. If it does not, output “reject”. Otherwise, compute and output M ← e/(uz1
1 uz2

2 uz3
3).

Correctness. If the keys and encryption are generated according to the algorithms above, the
test (1) in Dec will be satisfied, since we will then have

ux1+αy1
1 · ux2+αy2

2 · ux3+αy3
3 =

(
gr1
1

)x1+αy1 ·
(
gr2
2

)x2+αy2 ·
(
gr1+r2
3

)x3+αy3

=
(
gx1+αy1
1 gx3+αy3

3

)r1 ·
(
gx2+αy2
2 gx3+αy3

3

)r2

= (c1d
α
1)r1 · (c2d

α
2)r2 = v ,

as required. Next, the decryption will obtain the correct M , since

e/(uz1
1 uz2

2 uz3
3) = e

/ (
gr1z1
1 gr2z2

2 g
(r1+r2)(z3)
3

)
= (e)

/ (
(gz1

1 gz3
3)r1(gz2

2 gz3
3)r2

)
= (M · hr1

1 hr2
2)

/
(hr1

1 hr2
2) = M .

Security. We now show that the the LCS scheme is CCA secure. The proof closely follows that
of the Cramer-Shoup scheme.

Theorem 3.1. The LCS scheme is secure in the CCA sense if HF ′ a secure UOWHF family and
the Linear assumption holds in G.

Proof. We show how to decide instances of the Linear problem using a CCA distinguisher A.
Consider an algorithm B that is given, as input, an instance (g1, g2, g3, u1, u2, u3); its goal is to
output yes if logg3

u3 = logg1
u1+logg2

u2, no otherwise. As in the real setup algorithm, algorithm B
chooses

x1, x2, x3, y1, y2, y3, z1, z2, z3
R← Zp

and sets

c1 ← gx1
1 gx3

3 d1 ← gy1
1 gy3

3 h1 ← gz1
1 gz3

3

c2 ← gx2
2 gx3

3 d2 ← gy2
2 gy3

3 h2 ← gz2
2 gz3

3 .

It also chooses a UOWHF H
R← HF ′. It provides to A the public key pk = (g1, g2, g3, c1, c2, d1, d2,

h1, h2,H), and keeps to itself the secret key sk = (x1, x2, x3, y1, y2, y3, z1, z2, z3). Algorithm B
answers A’s decryption queries by following LCS.Dec(pk, sk, ·). (Note that this algorithm does
not require knowledge of the discrete-log relationships amongst g1, g2, and g3, and that B knows
the secret key.) When A submits the messages M0 and M1 on which it wishes to be challenged, B
chooses b

R← {0, 1}, sets e←Mb ·uz1
1 uz2

2 uz3
3 , α← H(u1, u2, u3, e), and v ← ux1+αy1

1 ·ux2+αy2
2 ·ux3+αy3

3 .
It then supplies to A the challenge ciphertext ct∗ = (u1, u2, u3, e, v). Algorithm B then responds
to A’s further decryption queries as before. Finally A outputs its guess b′ for b. If b = b′,
algorithm B outputs yes; otherwise it answers no.

5

Clearly, if A has a different advantage in guessing the bit b when B is run with a Linear tuple
(g1, g2, g3, g

r1
1 , gr2

2 , gr1+r2
3) and when B is run with a random tuple (g1, g2, g3, g

r1
1 , gr2

2 , η), we obtain
a distinguisher for the Linear problem. In the remainder of the proof, we establish that in the first
case A’s advantage is nonnegligible, as in the real distinguishing game, whereas in the second case
A’s advantage is negligible.

First, suppose that B’s input is a Linear tuple (g1, g2, g3, g
r1
1 , gr2

2 , gr1+r2
3) for some (unknown)

r1 and r2. We will show that the challenge ciphertext is properly formed and distributed. Since
the public key and the decryption queries are formed exactly as in the real distinguishing game,
this shows that the adversary’s view is the same as in the real distinguishing game, and so is its
advantage in guessing b. The first three components of the challenge ciphertext, u1 = gr1

1 , u2 = gr2
2 ,

and u3 = gr1+r2
3 , are clearly correctly formed. Algorithm B computes e according to a different

formula than is specified in LCS.Enc, but it in fact computes the correct value, since

hr1
1 hr2

2 =
(
gz1
1 gz3

3

)r1 ·
(
gz2
2 gz3

3

)r2 = gr1z1
1 gr2z2

2 g
(r1+r2)(z3)
3 = uz1

1 uz2
2 uz3

3 .

Next, α is computed by B per LCS.Enc. Finally, B computes the correct value for v since

(c1d
α
1)r1 · (c2d

α
2)r2 =

(
gx1+αy1
1 gx3+αy3

3

)r1 ·
(
gx2+αy2
2 gx3+αy3

3

)r2

= g
(r1)(x1+αy1)
1 · g(r2)(x2+αy2)

2 · g(r1+r2)(x3+αy3)
3

= ux1+αy1
1 · ux2+αy2

2 · ux3+αy3
3 .

Observe that algorithm B chooses the secret key (x1, x2, x3, y1, y2, y3, z1, z2, z3) itself, and can there-
fore answer decryption queries by following LCS.Dec. This means that algorithm A’s decryption
queries are answered in exactly the same way in both the simulation and in the attack game. Thus
we have established that, when B’s input is a linear tuple, it simulates A’s environment perfectly.

To complete the proof, we argue that, when B’s input is a random tuple, the bit b remains
independent of A’s view except with negligible probability.

Let “log(·)” stand for “logg1
(·)” and define w2 = log g2 and w3 = log g3. Consider the three

elements (z1, z2, z3) of the private key. The public key values h1 and h2 constrain these to line on
the line at the intersection of the planes defined by

log h1 = z1 + w0z0 and log h2 = w2z2 + w0z0 . (2)

Now, a decryption query for a valid ciphertext whose first three components form a valid Linear
tuple (u′1, u

′
2, u

′
3) = (gr′1

1 , g
r′2
2 , g

r′1+r′2
3) will allow the adversary to obtain

(
(u′1)

z1(u′2)
z2(u′3)

z3
)
; but in

this case we have

log
(
(u′1)

z1(u′2)
z2(u′3)

z3
)

= (r′1)(z1 + w3z3) + (r′2)(w2z2 + w3z3) ,

which is linearly dependent on values already known to the adversary from (2). This analysis
doesn’t hold if the decryption oracle accepts a ciphertext whose first three elements do not form
a linear tuple; below we will show that the decryption oracle accepts such invalid ciphertexts only
with negligible probability.

Now consider the challenge ciphertext ct∗ = (u1, u2, u3, e, v). Let u1 = gr1
1 , u2 = gr2

2 , and
u3 = gr3

3 . Except with negligible probability we have r3 6= r1 + r2. The message Mb is blinded in e
by the value uz1

1 uz2
2 uz3

3 whose discrete logarithm is

log(uz1
1 uz2

2 uz3
3) = r1z1 + r2w2z2 + r3w3z3 = (r1)(z1 + w3z3) + (r2)(w2z2 + w3z3) + (∆r)(w3z3) ,

6

where we set ∆r = r3−r1−r2 6= 0. Thus to an adversary who has received decryption queries only
for valid ciphertexts this value is independent of its view, namely of (2). This means that Mb is
independent of the adversary’s view, even given e, and thus b is, too.

What remains to show is that the decryption oracle accepts invalid ciphertexts only with negligi-
ble probability. What we will in fact show is that, given that through query i the decryption oracle
has not accepted an invalid ciphertext, the probability that it accepts an invalid one at query i+1 is
negligible. There are in fact two cases to consider: decryption queries made by algorithm A before
it has seen the challenge ciphertext, and decryption queries made after it has seen the challenge
ciphertext. In fact, the analysis in the first case follows from the analysis in the second, since the
challenge ciphertext gives the adversary more information about the values (x1, x2, x3, y1, y2, y3)
by which Dec checks ciphertext validity.

Observe that the values (x1, x2, x3, y1, y2, y3) lie along a plane in Z6
p specified by

log c1 = x1 + w3x3 log c2 = w2x2 + w3x3

log d1 = y1 + w3y3 log d2 = w2y2 + w3y3
(3)

In the second case, then, let ct∗ = (u1, u2, u3, e, v) be the challenge ciphertext, and suppose that
A submits a decryption query (u′1, u

′
2, u

′
3, e

′, v′). Here (u′1, u
′
2, u

′
3) = (gr′1

1 , g
r′2
2 , g

r′3
3), with r′3 6= r′1 +r′2.

Let α = H(u1, u2, u3, e) and α′ = H(u′1, u
′
2, u

′
3, e

′). There are three possibilities:

Case 1. (u1, u2, u3, e) = (u′1, u
′
2, u

′
3, e

′), but v 6= v′. In this case, the decryption oracle will reject,
since v as calculated in generating ct∗ is the only correct checksum value for (u1, u2, u3, e).

Case 2. (u1, u2, u3, e) 6= (u′1, u
′
2, u

′
3, e

′), yet α = α′. In this case, the adversary has generated a
hash collision. We will deal with this case at the end of the proof, showing how to use an
adversary that triggers it to break the UOWHF security of HF ′. There thus remains:

Case 3. (u1, u2, u3, e) 6= (u′1, u
′
2, u

′
3, e

′), and α 6= α′.

In this third case, we ask: What is the probability, given the adversary’s view, that v′ is correctly
chosen, so that the decryption algorithm accepts it? We can write the equation expressing this,
along with the equations expressing the constraints (3) and the constraint on the value v in ct∗ in
matrix form as

log c1

log c2

log d1

log d2

log v
log v′

 =

1 0 w3 0 0 0
0 w2 w3 0 0 0
0 0 0 1 0 w3

0 0 0 0 w2 w3

r1 r2w2 r3w3 αr1 αr2w2 αr3w3

r′1 r′2w2 r′3w3 α′r′1 α′r′2w2 α′r′3w3

 ·

x1

x2

x3

y1

y2

y3

 .

What we wish to show is that the last line is independent of the others, so that the correct
checksum v′ is independent of the adversary’s view. But, denoting the 6 × 6 matrix by M , we
observe that

det M = −w2
2w

2
3(α− α′)(r3 − r1 − r2)(r′3 − r′1 − r′2) 6= 0 ,

so the equations are indeed independent.
What remains is only to deal with the second case above, in which A finds a hash collision.

Against this type of adversary, we deploy a different simulation strategy. We choose generators

7

g1, g2, g3
R← G at random, along with values u1, u2, u3, e

R← G. With overwhelming probability,
(g1, g2, g3, u1, u2, u3) is not a Linear tuple. We now provide (u1, u2, u3, e) to the UOWHF challenger,
which responds with a hash function H ∈ HF ′. We now follow the simulation as specified for
algorithm B, but set the first four components of the challenge ciphertext to be (u1, u2, u3, e); that
is, we do not encrypt the message Mb at all. (The last component, v, is computed as it is by B.)
As argued above, the value encrypted in (u1, u2, u3, e) remains independent of A’s view unless it
obtains the decryption of an invalid ciphertext; but this happens, with invalid queries of Case 1 or
Case 3, with negligible probability, again as argued above. Thus the modified simulation is the
same as the original simulation in the adversary’s view. When, at last, the adversary makes its
Case 2 query for a ciphertext (u′1, u

′
2, u

′
3, e

′, v′) such that (u′1, u
′
2, u

′
3, e

′) 6= (u1, u2, u3, e) and yet
H(u′1, u

′
2, u

′
3, e

′) = H(u1, u2, u3, e), we immediately obtain the UOWHF break.

It is also possible to analyze the LCS scheme using the universal hash proof paradigm of [18].
We give the details in Appendix A.

3.1 Comparison to Kiltz Tag Encryption

With our scheme, it is possible to give an apples-to-apples comparison, for the first time, of
CCA-secure encryption schemes obtained with the Cramer-Shoup (CS) and Canetti-Halevi-Katz
(CHK) methodologies. Until recently, Cramer-Shoup encryption schemes were available from DDH,
quadratic residuosity, and Paillier’s assumption [17, 19], whereas Canetti-Halevi-Katz encryption
schemes were available from decisional bilinear Diffie-Hellman [15, 4] and the Linear assumption [24].
Since there was no overlap in the underlying assumption lists, it was impossible to compare fairly
any instantiations of the two methodologies. With our Linear Cramer-Shoup scheme given above,
there is, for the first time, an overlap: our scheme and that given by Kiltz [24], under the Linear
assumption. By comparing these two we also give a comparison of the methodologies by which they
were constructed. This is what we mean by an “apples-to-apples comparison.” It would, of course,
also be interesting were it possible to compare the methodologies more generally, independent of
any particular assumption. We view the present work as the first step towards this goal.2

To facilitate the comparison, we recall Kiltz’s tag encryption scheme based on the Linear as-
sumption [24]. Kiltz shows that the scheme is a selective-tag weakly-CCA secure tag encryption,
and that this notion suffices for applying the CHK transform to obtain a CCA-secure encryption
scheme.

Unlike the IBE schemes to which the CHK transform was first applied, Kiltz’s scheme does
not require pairing evaluation either to encrypt or decrypt. The pairing is used in the proof of
security, however, so the scheme can nevertheless only be instantiated in bilinear groups. (Or,
more generally, in a “gap” group [23] where DDH is easy and Linear is hard.)

The scheme is as follows.3

KT.Kg. Choose a random generator z
R← G and exponents x1, x2

R← Zp, and set g1 ← z1/x1 and

g2 ← z1/x2 ; then choose y1, y2
R← Zp and set u1 ← gy1

1 and u2 ← gy2
2 . The public key is

pk = (g1, g2, z, u1, u2) ∈ G5; the secret key is sk = (x1, x2, y1, y2) ∈ Z4
p.

2Or, with apologies to Kant, a prolegomena to any future metacomparison.
3In the description, we retain Kiltz’s notation. A version closer to our own notation would require the following

changes: for z, read g3; for u1 and u2, c1 and c2; for C1 and C2, u1 and u2; for E, e; for D! and D2, v1 and v2.

8

KT.TEnc(pk, t,M). To encrypt a message M ∈ G and tag t ∈ Zp, parse pk as pk = (g1, g2, z,

u1, u2) ∈ G5. Choose random exponents r1, r2
R← Zp, and set

C1 ← gr1
1 C2 ← gr2

2 E ←M · zr1+r2 D1 ←
(
u1z

t
)r1 D2 ←

(
u2z

t
)r2 .

The ciphertext is ct = (C1, C2, E, D1, D2) ∈ G5.

KT.TDec(sk, t, ct). To decrypt ct with tag t ∈ Zp, parse the private key sk as sk = (x1, x2,
y1, y2) ∈ Z4

p and the ciphertext as ct = (C1, C2, E, D1, D2) ∈ G5. Test that

Cx1t+y1
1

?= D1 and Cx2t+y2
2

?= D2

both hold. If they do not, output “reject”.4 Otherwise, compute and output M ←
e/(Cx1

1 Cx2
2).

Performance Comparison. We now compare Linear Cramer-Shoup to the CCA encryption
scheme derived via the CHK transform from the KT scheme above.

This KT+CHK scheme has two advantages over the LCS scheme. First, its public and pri-
vate keys are shorter than those in Linear Cramer-Shoup. Second, its decryption and encryption
algorithms are faster: properly implemented, they require about one exponentiation less.

However, LCS has a major advantage over KT+CHK: it gives shorter ciphertexts. There are
two reasons. First, it does not incur overhead from the CHK transform. Second, it does not require
a pairing, so it can be instantiated in groups where element representation grows more slowly.

Ciphertexts in both the Kiltz tag encryption scheme and Linear Cramer-Shoup consist of five
elements of the group G. However, Linear Cramer-Shoup is a CCA encryption scheme as is,
whereas Kiltz’s scheme is not; the KT+CHK encryption scheme obtained by means of CHK incurs
some overhead because of the transform. Specifically, the CHK transform affixes to the underlying
ciphertext a signature verification key and a signature. The Boneh-Katz variant affixes a MAC, a
commitment to the MAC key, and the encryption of the corresponding decommitment. Even the
second, more efficient of these adds several hundred bits to the ciphertext at the 80-bit security
levels [7, Table 1] —one or two extra group elements, in effect.

It would be possible to avoid the CHK overhead by applying the Boyen-Mei-Waters (BMW)
transform instead [12]. However, since the KT scheme is only secure in a “selective-tag” sense,
the BMW transform would apply directly only to a tag-KEM variant (cf. [1]) of Kiltz’s scheme,
and it would yield a CCA-secure KEM, not a CCA encryption scheme. One could obtain a fully-
secure tag encryption from Kiltz’s scheme by replacing the Boneh-Boyen–like tag “hashes” [4] in
D1 and D2 with the Waters hash [38] and apply the BMW transform to obtain a CCA-secure
encryption scheme; but using the Waters hash would add several exponentiations to the encryption
and decryption algorithms and greatly increase the size of the public parameters, which nullifies
the advantages listed above for KT+CHK.

Since the Kiltz tag encryption scheme makes use of the pairing in its proof of security, it can
only be instantiated safely in groups that feature a computable pairing, even though none of the
algorithms specified in the scheme makes use of the pairing. Because of the Menezes-Okamoto-
Vanstone reduction [28], there exist subexponential discrete log algorithms in such groups, so their

4The decryption procedure described here is a variant of that given by Kiltz. He recommends a different procedure
that performs the validity test and decryption simultaneously; for invalid ciphertexts, it outputs a random element
of G rather than an explicit rejection. Kiltz’s procedure saves an exponentiation over the one given here.

9

size must be scaled more than linearly in the security parameter. By contrast, the Linear Cramer-
Shoup scheme does not require a pairing (though it remains secure in the presence of one), and can
therefore be instantiated in elliptic-curve groups where discrete logarithm is exponentially hard.

At the 80-bit security level, there exist groups with a computable pairing whose representation
is as short— 160 bits —as that of elliptic curve groups without a pairing,5 but for larger security
levels a marked difference develops. For example, for 256-bit security, the best known curve choice
with the computable pairing necessary for the Kiltz scheme yields a group G whose elements have
1024-bit representation.6 By contrast, Linear Cramer-Shoup can be instantiated on elliptic curves
without a computable pairing, so that elements of G have 512-bit representation.

Since the algorithms of the Kiltz scheme do not actually use the pairing, it would be possible to
instantiate it on groups without a computable pairing, which would eliminate the scaling advantage
of Linear Cramer-Shoup; but in such an instantiation the scheme could be considered secure only
under a stronger “gap” variant [32] of the Linear assumption in which the reduction algorithm has
access to a DDH oracle.

3.2 Application: Fully-Anonymous Group Signatures

The Linear assumption and the Linear encryption of Section 2.1.1 were introduced by Boneh,
Boyen, and Shacham for use in a group signature scheme. Their scheme follows the paradigm laid
out by Camenisch and Stadler [14]: a group signature consists of the encryption, under the group
manager’s key, of (part of) the user’s membership certificate, together with a NIZK proof that the
encryption was correctly performed and the certificate is valid. Boneh, Boyen, and Shacham use
Strong Diffie-Hellman [5] in a bilinear group for the membership certificate. This creates a problem
for the identity escrow encryption: in the bilinear group G DDH is not hard and so Cramer-Shoup
is not available; but encrypting in the target group GT (as Camenisch and Lysyanskaya do in
their group signature scheme [13]) would greatly increase the length of the group signature, since
elements of GT have much longer representation than those of G. Boneh, Boyen, and Shacham
propose to solve this problem by using Linear encryption in G for the identity escrow.

Boneh, Boyen, and Shacham prove their scheme secure (in the random oracle model) in a
relaxation of the group signature model of Bellare, Micciancio, and Warinschi [3]. The relaxation is
necessary since Linear encryption, like ElGamal encryption, is only CPA secure, so only “CPA-full-
anonymity” and not the Bellare-Micciancio-Warinschi notion of “full-anonymity” is achieved. We
observe that if the Linear encryption in the Boneh-Boyen-Shacham group signature is replaced with
either Kiltz’s tag-encryption scheme under the CHK transformation7 or our LCS scheme (and the
NIZK is modified appropriately) the result is a group signature that is provably secure in the full
Bellare-Micciancio-Warinschi model, solving an open problem of Boneh, Boyen, and Shacham’s. If
LCS is used, the signatures remain quite short: 1765 bits at the 80-bit security level rather than
1443 bits for the CPA-fully-anonymous version.

5Using Barreto-Naehrig [2] or Freeman [20] curves.
6More precisely, the bilinear group G < E(Fq) should be 512 bits and the pairing target group GT < F×

qk should

be approximately 15,000 bits [26, 25]. The best known curve choice for these parameters is that of Cocks and
Pinch [35, 21], with 1024-bit finite field Fq and embedding degree k = 15. Elements of G then have 1024-bit
representations.

7The Boneh-Katz variant cannot be used since no efficient NIZK is known for proving that the MAC was correctly
computed.

10

4 Generalizations of the Linear Assumption

For a constant k ≥ 1, letting G be as above, and letting letting g1, g2, . . . , gk and g0 be arbitrary
generators of G, consider the following problem:

k-Linear Problem in G: Given g1, g2, . . . , gk, g0, gr1
1 , gr2

2 , . . . , grk
k , gr0

0 ∈ G as input, output yes

if r0 =
∑k

i=1 ri and no otherwise.

For notational convenience, we refer to the k-Linear problem as Lk. Observe that L1 is DDH and
L2 is the Linear problem of Section 2.1. For each k the Lk problem defines a language (that is a
subset of G2k+2) in the obvious way. Alternatively, for each k and for any fixed choice of generators
g1, . . . , gk, g0, we can define a language that is a subset of Gk+1; this agrees with the languages
defined in Appendix A. As we did with the Linear assumption, we define the advantage of an
algorithm A in deciding Lk in G as

Advk-linear
A

def=

∣∣∣∣∣∣∣∣∣∣∣∣
Pr

 A(
g1, . . . , gk, g0, gr1

1 , . . . , grk
k , g

Pk
i=1 rk

0

)
= yes :

g1, . . . , gk, g0
R← G, r1, . . . , rk

R← Zp

− Pr

[
A

(
g1, . . . , gk, g0, gr1

1 , . . . , grk
k , η

)
= yes :

g1, . . . , gk, g0, η
R← G, r1, . . . , rk

R← Zp

]
∣∣∣∣∣∣∣∣∣∣∣∣

,

with the probability taken over the uniform random choice of the parameters to A and over the
coin tosses of A. We say that an algorithm A (t, ε)-decides Lk in G if A runs in time at most t,
and Advk-linear

A is at least ε.

Definition 4.1. We say that the (t, ε)-Lk assumption holds in G if no algorithm (t, ε) decides Lk

in G.

Relationships Between Lk Problems. We give evidence that the Lk family is a family of
progressively harder problems. Specifically, we prove two theorems, whose informal statements are:

Theorem 4.2. If Lk+1 is easy, then Lk is easy.

Theorem 4.3. In a generic group Lk+1 is hard even if Lk is easy.

These results can be viewed as generalizations of the observations about the relationship of
DDH and Linear given by Boneh, Boyen, and Shacham [6]. Taken together, Theorems 4.2 and 4.3
imply the following relationship amongst the assumptions, in generic groups at least:

L1 	 L2 	 L3 	 · · · 	 Lk 	 Lk+1 	 · · ·

We stress again that as k increases the assumptions become progressively weaker. (By contrast, the
computational problems associated with each Lk are all equivalent to each other and, in particular,
to CDH.)

Formal statements and proofs for Theorems 4.2 and 4.3 are given in Appendix B.
Since the Lk assumptions become progressively weaker as k increases, one can use the following

strategy as a hedge against the development of algorithms capable of solving DDH or Linear:8

8The pairing gives one such algorithm for DDH, as observed by Joux and Nguyen [23]; its first uses in cryptography
were destructive, breaking schemes based on DDH in groups where it (the pairing) is efficiently computable [29].

11

generalize a cryptosystem so that instances of it can be proved secure based on Lk for each k, and
then deploy the instantiation based on, say, L3 or L4. Below, we show how Cramer-Shoup and
Linear Cramer-Shoup generalize to Lk. Beyond that, it is quite simple to follow this strategy also
for the DDH-based PRF of Naor and Reingold [30]; and the strategy should also be useful for many
other DDH-based cryptosystems.

4.1 Cramer-Shoup from Generalized Linear

We describe a family of encryption schemes based on Lk. For each k, the k-CS encryption scheme
is secure in G assuming Lk is hard in G. We stress that no additional structure is required of the
group G — in particular, we assume nothing about the existence or nonexistence of a bilinear or
k-multilinear map.

For k = 1, our k-CS scheme is just the original Cramer-Shoup; for k = 2, it is the Linear
Cramer-Shoup of Section 3.

For each k, let HFk be a family of universal one-way hash functions from Gk+2 to Zp.

k-CS.Kg. Choose random generators g1, . . . , gk, g0
R← G and exponents

x1, . . . , xk, x0, y1, . . . , yk, y0, z1, . . . , zk, z0
R← Zp

and set

c1 ← gx1
1 gx0

0 d1 ← gy1
1 gy0

0 h1 ← gz1
1 gz0

0

c2 ← gx2
2 gx0

0 d2 ← gy2
2 gy0

0 h2 ← gz2
2 gz0

0

...
...

...
ck ← gxk

k gx0
0 dk ← gyk

k gy0
0 hk ← gzk

k gz0
0 .

In addition, choose a UOWHF H
R← HFk. The public key is

pk = (g1, . . . , gk, g0, c1, . . . , ck, d1, . . . , dk, h1, . . . , hk,H) ∈ G4k+1 ×HFk ;

the secret key is

sk = (x1, . . . , xk, x0, y1, . . . , yk, y0, z1, . . . , zk, z0) ∈ Z3k+3
p .

k-CS.Enc(pk,M). To encrypt a message M ∈ G, parse pk as pk = (g1, . . . , gk, g0, c1, . . . , ck,

d1, . . . , dk, h1, . . . , hk,H) ∈ G4k+1×HFk. Choose random exponents r1, . . . , rk
R← Zp and set

u1 ← gr1
1 · · · uk ← grk

k and u0 ← g
Pk

i=1 ri

0 and e←M ·
k∏

i=1

hri
i ;

now compute α ← H(u1, . . . , uk, u0, e) and, finally, v ←
∏k

i=1(cid
α
i)ri . The ciphertext is

ct = (u1, . . . , uk, u0, e, v) ∈ Gk+3.

12

k-CS.Dec(pk, sk, ct). Parse the public key pk as pk = (g1, . . . , gk, g0, c1, . . . , ck, d1, . . . , dk, h1, . . . , hk,H) ∈
G4k+1×HFk, the private key sk as sk = (x1, . . . , xk, x0, y1, . . . , yk, y0, z1, . . . , zk, z0) ∈ Z3k+3

p ,
and the ciphertext ct as ct = (u1, . . . , uk, u0, e, v) ∈ Gk+3. Compute α← H(u1, . . . , uk, u0, e)
and test that (∏k

i=1
uxi+αyi

i

)
· ux0+αy0

0
?= v (4)

holds. If it does not, output “reject”. Otherwise, compute and output M ← e
/ (

(
∏k

i=1 uzi
i)·

uz0
0

)
.

Correctness. We show that the k-CS scheme is correct in Appendix C.

Security. The k-CS scheme is CCA secure if Lk is hard. We note again that the proof makes no
assumption about the hardness of Lk−1 and does not require either the existence or the nonexistence
of a bilinear or a k-multilinear map.

Theorem 4.4. The k-CS scheme is secure in the CCA sense if HFk a secure UOWHF family and
the Lk assumption holds in G.

The proof is quite similar to the proof of Theorem 3.1. In Appendix C we provide a proof sketch
that highlights the differences between the two.

Acknowledgments

The authors thank Moni Naor, Adam Smith, and Brent Waters for helpful discussions regarding
this work, and Dan Boneh for suggesting the Lk assumption family.

References

[1] M. Abe, R. Gennaro, K. Kurosawa, and V. Shoup. Tag-KEM/DEM: A new framework for
hybrid encryption and a new analysis of Kurosawa-Desmedt KEM. In R. Cramer, editor,
Proceedings of Eurocrypt 2005, volume 3494 of LNCS, pages 128–46. Springer-Verlag, May
2005.

[2] P. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In B. Preneel and
S. Tavares, editors, Proceedings of SAC 2005, volume 3897 of LNCS, pages 319–31. Springer-
Verlag, 2006.

[3] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: Formal defini-
tions, simplified requirements, and a construction based on general assumptions. In E. Biham,
editor, Proceedings of Eurocrypt 2003, volume 2656 of LNCS, pages 614–29. Springer-Verlag,
May 2003.

[4] D. Boneh and X. Boyen. Efficient selective-ID secure identity based encryption without random
oracles. In C. Cachin and J. Camenisch, editors, Proceedings of Eurocrypt 2004, volume 3027
of LNCS, pages 223–38. Springer-Verlag, May 2004.

13

[5] D. Boneh and X. Boyen. Short signatures without random oracles. In C. Cachin and J. Ca-
menisch, editors, Proceedings of Eurocrypt 2004, volume 3027 of LNCS, pages 56–73. Springer-
Verlag, May 2004.

[6] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin, editor,
Proceedings of Crypto 2004, volume 3152 of LNCS, pages 41–55. Springer-Verlag, Aug. 2004.

[7] D. Boneh, R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based
encryption. SIAM J. Computing, 36(5):1301–28, Dec. 2006.

[8] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM J. Com-
puting, 32(3):586–615, 2003. Extended abstract in Proceedings of Crypto 2001.

[9] D. Boneh and J. Katz. Improved efficiency for CCA-secure cryptosystems built using identity
based encryption. In A. J. Menezes, editor, Proceedings of CT-RSA 2005, volume 3376 of
LNCS, pages 87–103. Springer-Verlag, Feb. 2005.

[10] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. J. Cryptology,
17(4):297–319, Sept. 2004. Extended abstract in Proceedings of Asiacrypt 2001.

[11] D. Boneh and A. Silverberg. Applications of multilinear forms to cryptography. In C. G.
Melles, J.-P. Brasselet, G. Kennedy, K. Lauter, and L. McEwan, editors, Topics in Algebraic
and Noncommutative Geometry: Proceedings in Memory of Ruth Michler, volume 324 of Con-
temporary Mathematics, pages 71–90. American Mathematical Society, 2003.

[12] X. Boyen, Q. Mei, and B. Waters. Direct chosen ciphertext security from identity-based
techniques. In V. Atluri, C. Meadows, and A. Juels, editors, Proceedings of CCS 2005, pages
320–329. ACM Press, Nov. 2005.

[13] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials from bilinear
maps. In M. Franklin, editor, Proceedings of Crypto 2004, volume 3152 of LNCS, pages 56–72.
Springer-Verlag, Aug. 2004.

[14] J. Camenisch and M. Stadler. Efficient group signature schemes for large groups (extended
abstract). In B. Kaliski, Jr., editor, Proceedings of Crypto 1997, volume 1294 of LNCS, pages
410–24. Springer-Verlag, Aug. 1997.

[15] R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based encryption.
In C. Cachin and J. Camenisch, editors, Proceedings of Eurocrypt 2004, volume 3027 of LNCS,
pages 207–22. Springer-Verlag, May 2004.

[16] R. Cramer and V. Shoup. A practical public key encryption system provably secure against
adaptive chosen ciphertext attack. In H. Krawczyk, editor, Proceedings of Crypto 1998, volume
1642 of LNCS, pages 13–25. Springer-Verlag, Aug. 1998.

[17] R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption. ACM
Trans. Info. & System Security, 3(3):161–85, 2000.

[18] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext
secure public-key encryption. In L. Knudsen, editor, Proceedings of Eurocrypt 2002, volume
2332 of LNCS, pages 45–64. Springer-Verlag, May 2002.

14

[19] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes
secure against adaptive chosen ciphertext attack. SIAM J. Computing, 33(1):167–226, 2003.

[20] D. Freeman. Constructing pairing-friendly elliptic curves with embedding degree 10. In F. Hess,
S. Pauli, and M. Pohst, editors, Proceedings of ANTS VII, volume 4076 of LNCS, pages 452–65.
Springer-Verlag, July 2006.

[21] S. Galbraith. Pairings. In I. F. Blake, G. Seroussi, and N. Smart, editors, Advances in Elliptic
Curve Cryptography, volume 317 of London Mathematical Society Lecture Notes, chapter IX,
pages 183–213. Cambridge University Press, 2005.

[22] R. Gennaro, H. Krawczyk, and T. Rabin. Secure hashed diffie-hellman over non-DDH groups.
In C. Cachin and J. Camenisch, editors, Proceedings of Eurocrypt 2004, volume 3027 of LNCS,
pages 361–81. Springer-Verlag, May 2004.

[23] A. Joux and K. Nguyen. Separating decision Diffie-Hellman from computational Diffie-Hellman
in cryptographic groups. J. Cryptology, 16(4):239–47, Sept. 2003.

[24] E. Kiltz. Chosen-ciphertext security from tag-based encryption. In S. Halevi and T. Rabin,
editors, Proceedings of TCC 2006, volume 3876 of LNCS, pages 581–600. Springer-Verlag, Mar.
2006.

[25] N. Koblitz and A. Menezes. Pairing-based cryptography at high security levels. In N. Smart,
editor, Proceedings of Cryptography and Coding 2005, volume 3796 of LNCS, pages 13–36.
Springer-Verlag, Dec. 2005.

[26] A. Lenstra. Unbelievable security: Matching AES security using public key systems. In
C. Boyd, editor, Proceedings of Asiacrypt 2001, volume 2248 of LNCS, pages 67–86. Springer-
Verlag, Dec. 2001.

[27] P. MacKenzie, M. Reiter, and K. Yang. Alternatives to non-malleability: Definitions, con-
structions, and applications (extended abstract). In M. Naor, editor, Proceedings of TCC
2004, volume 2951 of LNCS, pages 171–90. Springer-Verlag, Feb. 2004.

[28] A. Menezes, T. Okamoto, and P. Vanstone. Reducing elliptic curve logarithms to logarithms
in a finite field. IEEE Trans. Info. Th., 39(5):1639–46, 1993.

[29] V. Miller. The Weil pairing, and its efficient calculation. J. Cryptology, 17(4):235–61, Sept.
2004.

[30] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random func-
tions. J. ACM, 51(2):231–62, Mar. 2004.

[31] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications.
In D. S. Johnson, editor, Proceedings of STOC 1989, pages 33–43. ACM Press, May 1989.

[32] T. Okamoto and D. Pointcheval. The gap problems: A new class of problems for the security of
cryptographic primitives. In K. Kim, editor, Proceedings of PKC 2001, volume 1992 of LNCS,
pages 104–18. Springer-Verlag, Feb. 2001.

15

[33] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In J. Stern,
editor, Proceedings of Eurocrypt 1999, volume 1592 of LNCS, pages 223–38. Springer-Verlag,
May 1999.

[34] K. Paterson. Cryptography from pairings. In I. F. Blake, G. Seroussi, and N. Smart, editors,
Advances in Elliptic Curve Cryptography, volume 317 of London Mathematical Society Lecture
Notes, chapter X, pages 215–51. Cambridge University Press, 2005.

[35] M. Scott. Scaling security in pairing-based protocols. Cryptology ePrint Archive, Report
2005/139, 2005. http://eprint.iacr.org/.

[36] V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy, editor,
Proceedings of Eurocrypt 1997, volume 1233 of LNCS, pages 256–66. Springer-Verlag, May
1997.

[37] V. Shoup. Using hash functions as a hedge against chosen ciphertext attack. In B. Preneel,
editor, Proceedings of Eurocrypt 2000, volume 1807 of LNCS, pages 275–88. Springer Verlag,
May 2000.

[38] B. Waters. Efficient identity-based encryption without random oracles. In R. Cramer, editor,
Proceedings of Eurocrypt 2005, volume 3494 of LNCS, pages 114–27. Springer-Verlag, May
2005.

A Projective Hashing from the Linear Language

It is also possible to analyze the LCS scheme using the universal hash proof paradigm of [18].
Let g1, g2, and g3 be randomly chosen elements of G. In Figure 1 we define the projective hash for

the Linear language for (g1, g2, g3). Letting k = (z1, z2, z3) and (u1, u2) = α(k) = (gz1
1 gz3

3 , gz2
2 gz3

3),
we observe that for x ∈ L we have x = (u1, u2, u3) = (gr1

1 , gr2
2 , gr1+r2

3) and so

Hk(x) = gr1z1
1 gr2z2

2 g
(r1+r2)(z3)
3 = (gz1

1 gz3
3)r1(gz2

2 gz3
3)r2 = hr1

1 hr2
2 ,

so Hk(x) can be calculated using only α(k) and the witness w = (r1, r2), as required. On the other
hand, for any x 6= L, s ∈ S, and π ∈ Π it is easy to see that

Pr
k

[Hk(x) = π | α(k) = s] = 1/p .

Thus H = (H,K,L,Π, S, α) is a (1/p)-universal projective hash family.
Now, let HCR be a collision-resistant hash function. In Figure 2 we define an extended projective

hash for the Linear language. Letting k = (x1, x2, x3, y1, y2, y3) and (c1, c2, d1, d2) = α̂(k), we
observe as before that for x ∈ L̂ we have x = (u1, u2, u3, e) = (gr1

1 , gr2
2 , gr1+r2

3 , e) and so

Ĥk(x) = g
(r1)(x1+ty1)
1 g

(r2)(x2+ty2)
2 g

(r1+r2)(x3+ty3)
3 = (c1d

t
1)

r1(c2d
t
2)

r2 ,

where t = HCR(u1, u2, u3, e), and so Ĥk(x) can be calculated using only α̂(k) and the witness
w = (r1, r2), as required. However, the analysis in the Theorem above shows that for any x, x∗ 6= L,
s ∈ S, and π, π∗ ∈ Π such that x 6= x∗ and HCR(x) 6= HCR(x∗) we have

Pr
k

[Ĥk(x) = π | Ĥk(x∗) = π∗ ∧ α(k) = s] = 1/p .

16

http://eprint.iacr.org/

K : Z3
p X : G3 Π: G S : G2

L : {(gr1
1 , gr2

2 , gr3
3 | r1, r2 ∈ Zp}

α : K → S; (z1, z2, z3) 7→ (gz1
1 gz3

3 , gz2
2 gz3

3)
H : K ×X → Π;

(
(z1, z2, z3), (u1, u2, u3)

)
7→ uz1

1 uz2
2 uz3

3

Figure 1: Universal projective hash family for the Linear language.

K̂ : Z6
p X̂ : X ×Π Π̂: G Ŝ : G4 L̂ : L×Π

α̂ : K̂ → Ŝ; (x1, x2, x3, y1, y2, y3) 7→ (gx1
1 gx3

3 , gx2
2 gx3

3 , gy1
1 gy3

3 , gy2
2 gy3

3)

Ĥ : K̂ × X̂ → Π̂;
(
(x1, x2, x3, y1, y2, y3), (u1, u2, u3, e)

)
7→ ux1+ty1

1 ux2+ty2
2 ux3+ty3

3

where t = HCR(u1, u2, u3, e)

Figure 2: Universal2 projective hash family for the Linear language.

Thus Ĥ = (Ĥ, K̂, L̂, Π̂, Ŝ, α̂) is a (1/p)-universal2 projective hash family provided HCR is collision
resistant. The generic construction of [18], instantiated with H and Ĥ, yields the LCS scheme
described above.

B Generic Group Results for Generalized Linear

Theorem 4.2 is trivial to prove. Given an Lk+1 solver A and an Lk instance

U = (g1, . . . , gk, g0, gr1
1 , . . . , grk

k , η) ,

choose gk+1
R← G and rk+1

R← Zp, and set η′ ← η · grk+1

0 . Then

U ′ = (g1, . . . , gk, gk+1, g0, gr1
1 , . . . , grk

k , g
rk+1

k+1 , η′)

is a uniformly distributed Lk+1-language element when U is a uniformly distributed Lk-language
element, and a uniformly random element of G2(k+1) when U is a uniformly random element of G2k.
Thus we can run A on input U ′ and return whatever it returns.

To prove Theorem 4.3 we in fact prove a stronger result by means of multilinear maps [11].
For our purposes, a k-multilinear map is an efficiently computable map ek : Gk → GT such
that ek(ua1

1 , . . . , uak
k) = ek(u1, . . . , uk)

Qk
i=1 ai for all u1, . . . , uk ∈ G and a1, . . . , ak ∈ Zp; and

ek(g, . . . , g) 6= 1. Observe that a 2-multilinear map is just a bilinear map.

Lemma B.1. Given a k + 1-multilinear map there is an efficient algorithm for deciding Lk.

Proof. The algorithm is simply this: Given an instance

g1, . . . , gk, g0, gr1
1 , . . . , grk

k , η ,

17

output “yes” if

ek+1(g1, . . . , gk, η) ?=
k∏

i=1

ek+1

(
g1, . . . , gi−1, g

ri
i , gi+1, . . . , gk, g0

)
(5)

and “no” otherwise. This is correct because

k∏
i=1

ek+1

(
g1, . . . , gi−1, g

ri
i , gi+1, . . . , gk, g0

)
=

k∏
i=1

ek+1(g1, . . . , gk, g0)ri

= ek+1(g1, . . . , gk, g0)
Pk

i=1 gi ,

and, letting η = gr0
0 for some r0, we see that (5) holds exactly when r0 equals

∑k
i=1 ri, as required.

Lemma B.2. If A solves Lk in the generic group model while making at most q oracle queries then
its success probability is at most k(q + 2k + 4)2/p.

Proof. Let g be a generator of G, and let x1, . . . , xk, y
R← Zp; we let gi = gxi for 1 ≤ i ≤ k, and

g0 = gy. Further, let r1, . . . , rk, s
R← Zp and d

R← {0, 1}. Now set Td ← gy
Pk

i=1 ri and T1−d ← gs.
The adversary is given as input the opaque representations for the elements

g, gx1 , . . . , gxk , gy, gx1ri , . . . , gxkrk , T0, T1 ;

its goal is to guess the value of d.
Internally, algorithm B keeps track of elements handled by A as polynomials in the ring

Zp[X1, . . . , Xk, Y, R1, . . . , Rk, S]. Externally, it describes these as arbitrary opaque strings in some
sufficiently large domain. To keep track of these two representations, it maintains lists

{
(Fi, ξi)

}
and{

(FT,i, ξT,i)
}

for elements of G and GT , respectively. Whenever A makes a query for some opera-
tion, B looks up the operands (as represented by A as bit strings) in the appropriate list to recover
the internal representations. Whenever B must provide to A an element for the first time it cre-
ates for it a random external representation. If the domain for the external representation is large
enough the following two events happen only with negligible probability: (1) algorithm A makes a
query for an element other than those it obtained from B; (2) algorithm B chooses the same opaque
representation for two different elements.

The elements which B provides to A at the beginning of the game are represented internally by
polynomials as follows:

g : F = 1 g1 : F = X1 · · · gk : F = Xk g0 : F = Y

gr1
1 : F = X1R1 · · · grk

k : F = XkRk T0 : F = T0 T1 : F = T1

Observe that each polynomial above has degree at most 2. Next, algorithm B allows A to perform
operations on the elements to which it is given opaque representations, according to the following
rules.

Group action. Given elements in G with internal representations F1 and F2, set F ′ ← F1 + F2.
Add F ′ to the G representation list if it is not already there, and respond with its external
representation. The group action for GT is handled analogously.

18

Inversion. Given an element in G with internal representation F , set F ′ ← −F . Add F ′ to the
G representation list if it is not already there, and respond with its external representation.
Inversion in GT is handled analogously.

Multilinear map. Given elements in G with internal representations F1, . . . , Fk, set F ′ ←
∏k

i=1 Fi.
Add F ′ to the GT representation list if it is not already there, and respond with its external
representation.

Observe that only the multilinear map operation produces as output an internal representation
F ′ whose degree is greater than those of the inputs. Since the map can be applied only to elements
of G and produces an element in GT , and considering the degrees of the initial elements provided
to A, we obtain the following invariants: deg F ≤ 2 for all F on the G representation list; and
deg FT ≤ 2k for all FT on the GT representation list.

Finally, A halts and outputs its guess d′ for d. Now B chooses random values x1, . . . , xk, y,

r1, . . . , rk, s
R← Zp. Suppose we now set

X1 ← x1 · · · Xk ← xk Y ← y

R1 ← r1 · · · Rk ← rk Td ← y ·
k∑

i=1

ri T1−d : s ;

the simulation engineered by algorithm B is consistent with these values unless there are two distinct
polynomials F1 and F2 on the G representation list or two distinct polynomials FT,1 and FT.2 on the
GT representation list that take on the same value under the assignment above. In the remainder
of the proof, we will first show that the adversary is unable to cause such a collision independent of
the choice of random values and then bound the probability that a choice of random values causes
a collision.

The crux of the first part of the argument is this. The values of the expressions substituted for
the formal variables are all independent of each other except for that of Td, which takes on the value
y ·

∑k
i=1 ri. Thus the adversary, to cause an independent collision, must produce from the other

terms a polynomial that is a multiple of Y ·
∑k

i=1 Ri, say F = AY
∑k

i=1 Ri for some nonzero A.
By inspecting the operations we perform on the internal representations of elements on the G and

GT lists and the elements with which the G list is initially populated, one can easily ascertain that
any monomial produced divisible by Ri must also be divisible by Xi. Now, for each i, consider our
polynomial F = AY

∑k
j=1 Rj . Each monomial in the expansion of AY Ri must be divisible by Xi,

from which it follows that Xi | A.
(In more detail, the argument goes like this. Suppose F = AY

∑k
j=1 Rj = (sXi+t)(Y

∑k
j=1 Rj),

where s and t are polynomials in Zp[X1, . . . , Xk, Y, R1, . . . , Rk, S] and where Xi does not divide any
monomial in t. Now multiply F out, and collect terms that differ only by integer coefficient. No
term that derives from sXiY

∑k
j=1 Rj will cancel out or otherwise collect with a term that derives

from tY
∑k

j=1 Rj , since all the former will all have an Xi component and none of the latter will.
Moreover, some terms deriving from the expansion of tY

∑k
j=1 Rj will have an Ri component, since

Ri, as a formal variable, is not invertible in our polynomial ring. Next, consider the operations
that we can perform: addition of polynomials representing elements in G, addition of polynomials
representing elements in GT , and products of k polynomials representing elements in G. It is clear
that any GT polynomial that can be formed by these operations can also be formed without using

19

G addition, by distributivity. Since the terms with which we begin are all monomials representing
elements in G, it follows that every GT polynomial we can produce can be expressed in a canonical
form as

∑
l ci · pl1 · · · plk, where ci is a coefficient in Z, each plm is a monomial from amongst the

available monomials, and no two terms differ only in coefficient; the last criterion follows since such
terms could be collected. What is more, given any GT polynomial we can produce, if we express
it in canonical form, then each of its terms can be computed by as the product ·pl1 · · · plk of G
monomials that is then added to itself the appropriate number of times to give the coefficient ci.9

It follows, then, that in any GT polynomial we can produce, when it is expressed in canonical
representation, each of its terms can be produced independently of all the rest as the product of
at most k starting G monomials, together with an integer coefficient. Finally, consider again the
expansion of F = (sXi + t)(Y

∑k
j=1 Rj), canonically represented. We have seen that it contains at

least one term, deriving from tY
∑k

j=1 Rj , that is divisible by Ri but not by Xi, and it therefore
follows, from the argument made above about producible GT polynomials, that this term is itself
producible on its own. But this now means that we can form a monomial product, out of the terms
with which we started, that is divisible by Ri but not by Xi; and this is plainly impossible since the
only term with which we started that contains Ri is XiRi, which, if used, would introduce an Xi

as well. It follows that t = 0 and A = sXi, and therefore that Xi | A. Moreover, this argument
clearly applies for each i.)

Thus each term of F must be divisible by the following k + 2 monomials: X1, . . . , Xk; Y ; and
Ri for some i. But forming such a term would require taking the product of at least k + 1 of the
polynomials available to the adversary, since Y occurs only on its own and no term XaXb occurs
for any a, b. Since the multilinear map allows the adversary to compute only the product of at
most k terms, we deduce that the adversary cannot synthesize any multiple of Y ·

∑k
i=1 Ri thereby

to cause a collision.
It remains only to bound the probability that a random choice of the values x1, . . . , xk, y,

r1, . . . , rk, s will cause some two distinct polynomials to have the same value. All polynomials
on the G representation list have degree at most 2, so any two such polynomials Fi and Fj are
such that Fi(· · ·) = Fj(· · ·) with probability at most 2/p over the choice of values. Similarly, all
polynomials on the GT representation list have degree at most 2k, so any two such polynomials
FT,i and FT,j are such that FT,i(· · ·) = FT,j(· · ·) with probability at most 2k/p over the choice of
values. The lists are populated initially with 2k + 4 values. If the adversary makes q queries to its
oracles then the lists contain at most q + 2k + 4 entries, so a sum over all pairs of entries gives a
bound on the success probability of the adversary:

ε ≤
(

q + 2k + 4
2

)
2k

p
<

k(q + 2k + 4)2

p
,

Lemmas B.1 and B.2, taken together, show that in generic groups featuring a k-multilinear map
Lk is easy but Lk+1 is hard, which proves Theorem 4.3.

9In fact, for any such term the choice of Plm values is unique up to permutation by our choice of initial G monomials,
but this is not important.

20

C Security of Generalized Linear Cramer-Shoup

Correctness. If the keys and encryption are generated according to the algorithms above, the
test (4) in Dec will be satisfied, since we will then have(∏k

i=1
uxi+αyi

i

)
· ux0+αy0

0 =
(
gx0+αy0
0

)Pk
i=1 ri ·

∏k

i=1

(
gxi+αyi
i

)r

i

=
∏k

i=1

(
(gxi

i gx0
0)(gyi

i gy0
0)α

)r

i

=
∏k

i=1
(cid

α
i)r

i = v ,

as required. Next, the decryption will obtain the correct M , since

e
/ (

(
k∏

i=1

uzi
i) · uz0

0

)
= e

/ (
g
(
Pk

i=1 ri)(z0)
0 ·

k∏
i=1

grizi
i

)
= (e)

/ (k∏
i=1

(gzi
i gz0

0)ri
)

=
(
M ·

k∏
i=1

hri
i

) / (k∏
i=1

(hi)ri
)

= M .

Security We present a sketch of the proof of Theorem 4.4. The proof is quite similar to the proof
of Theorem 3.1, so we focus on those portions that are different.

Proof sketch of Theorem 4.4. The proof is quite similar to the proof of Theorem 3.1. Algorithm B
is given as input an Lk-instance (g1, . . . , gk, g0, u1, . . . , uk, u0); its goal is to decide whether this is
an Lk tuple. It follows k-CS.Kg in setting up the public and private keys; the public key it provides
to the adversary, algorithm A. It answers A’s decryption queries by following k-CS.Dec(pk, sk, ·).
When A submits the messages M0 and M1 on which it wishes to be challenged, B chooses b

R← {0, 1}
and sets

e←Mb ·
(∏k

i=1
uzi

i

)
· uz0

0 α← H(u1, . . . , uk, u0, e) v ←
(∏k

i=1
uxi+αyi

i

)
· ux0+αy0

0 .

It then supplies to A the challenge ciphertext ct∗ = (u1, . . . , uk, u0, e, v). Algorithm B then responds
to A’s further decryption queries as before. Finally A outputs its guess b′ for b. If b = b′,
algorithm B outputs yes; otherwise it answers no.

The remainder of the proof establishes that if the input to B is a Lk tuple then A guesses b
with nonnegligible advantage, as in the real distinguishing challenge, whereas if the input to B is a
random tuple A’s advantage is negligible.

In the first case, the input is such that ui = gri
i for 1 ≤ i ≤ k, and u0 = g

Pk
i=1 ri

i , where the ri’s
are random in Zp and unknown to B. It is quite easy to see that the challenge ciphertext is formed
and distributed exactly as in the distinguishing challenge, and that algorithm B answers decryption
queries exactly as in the distinguishing challenge. (The formulas it uses are different than those
specified in k-CS.Dec above, but these different formulas yield the same values, as shown in the
correctness argument above.)

In the second case, we have u0 = gr0
i for some r0 uniformly distributed in Zp. let “log(·)”

stand for “logg(·)” for some generator g of G and define, for 0 ≤ i ≤ k, wi = log gi. Consider
the elements (z1, . . . , zk, z0) of the private key. The public key values (h!, hk) constrain these

21

to lie on the line at the intersection of the hyperplanes defined by
{
log hi = wizi + w3z3

}k

i=1
.

Now consider a decryption query for a valid ciphertext. Its first first k + 1 components form a

valid Lk tuple (u′1, . . . , u
′
k, u

′
0) = (gr′1

1 , . . . , g
r′k
k , g

Pk
i=1 r′i

0) for some r′1, . . . , r
′
k. From algorithm B’s

response, algorithm A will learn (
∏k

i=1 uzi
i) · uz0

0 ; but since (u′1, . . . , u
′
k, u

′
0) is an Lk tuple we have

log
(
(u′1)

z1(u′2)
z2(u′3)

z3
)

=
∑k

i=1(r
′
i)(wizi + w0z0), which is linearly dependent on the line equations

above and therefore gives A no new information.
Let the challenge ciphertext be ct∗ = (u1, . . . , uk, u0, e, v). The message Mb is blinded in e by

the value (
∏k

i=1 uzi
i) · uz0

0 whose discrete logarithm is

log
((k∏

i=1

uzi
i

)
· uz0

0

)
=

(k∑
i=1

riwizi

)
+ r0w0z0 = (∆r)(w0z0) +

k∑
i=1

(ri)(wizi + w0z0) ,

where ∆r = r0−
∑k

i=1 ri is nonzero with overwhelming probability. Thus to an adversary who has
received decryption queries only for valid ciphertexts this value —and therefore b — is independent
of its view.

We now show that, given that through query i the decryption oracle has not accepted an invalid
ciphertext, the probability that it accepts an invalid one at query i + 1 is negligible. Suppose
that A submits a decryption query (u′1, . . . , u

′
k, u

′
0, e

′, v′). Here (u′1, u
′
2, u

′
3) = (gr′1

1 , . . . , g
r′k
k , g

r′0
0),

with r′0 6=
∑k

i=1 r′i. Let α = H(u1, . . . , uk, u0, e) and α′ = H(u′1, . . . , u
′
k, u

′
0, e

′). There are three
possibilities:

Case 1. (u1, . . . , uk, u0, e) = (u′1, . . . , u
′
k, u

′
0, e

′), but v 6= v′. In this case, the decryption oracle
will reject, since v as calculated in generating ct∗ is the only correct checksum value for
(u1, . . . , uk, u0, e).

Case 2. (u1, . . . , uk, u0, e) 6= (u′1, . . . , u
′
k, u

′
0, e

′), yet α = α′. In this case, the adversary has gener-
ated a hash collision. We can reduce this case to a break of the UOWHF security of HFk

just as in the proof of Theorem 3.1.

Case 3. (u1, . . . , uk, u0, e) 6= (u′1, . . . , u
′
k, u

′
0, e

′), and α 6= α′.

In this third case, we ask: What is the probability, given the adversary’s view, that v′ is cor-
rectly chosen, so that the decryption algorithm accepts it? We can write the equation expressing
this, along with the equations expressing the constraints imposed by {ci}ki=1 and {di}ki=1 and the
constraint on the value v in ct∗ in matrix form as

log c1
...

log ck

log d1
...

log dk

log v
log v′

=

w1 · · · 0 w0 0 · · · 0 0
...

. . .
...

...
...

. . .
...

...
0 · · · wk w0 0 · · · 0 0
0 · · · 0 0 w1 · · · 0 w0
...

. . .
...

...
...

. . .
...

...
0 · · · 0 0 0 · · · wk w0

r1w1 · · · rkwk r0w0 αr1w1 · · · αrkwk αr0w0

r′1w1 · · · r′kwk r′0w0 α′r′1w1 · · · α′r′kwk α′r′0w0

·

x1
...

xk

x0

y1
...

yk

y0

.

What we wish to show is that the last line is independent of the others, so that the correct
checksum v′ is independent of the adversary’s view. But, denoting the (2k + 2)× (2k + 2) matrix

22

by Mk, we observe that

det Mk = (−1)k+1
(
w2

0

∏k

i=1
w2

i

)(
α− α′

)(
r0 −

∑k

i=1
ri

)(
r′0 −

∑k

i=1
r′i

)
6= 0 ,

so the equations are indeed independent.

23

	Introduction
	Preliminaries
	The Linear Assumption
	Linear Encryption

	DDH Cramer-Shoup

	Linear Cramer-Shoup
	Comparison to Kiltz Tag Encryption
	Application: Fully-Anonymous Group Signatures

	Generalizations of the Linear Assumption
	Cramer-Shoup from Generalized Linear

	Bibliography
	Projective Hashing from the Linear Language
	Generic Group Results for Generalized Linear
	Security of Generalized Linear Cramer-Shoup

