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Abstract

It is known that perfectly secure (1-round, n-channel) message
transmission (MT) schemes exist if and only if n ≥ 3t + 1, where t
is the number of channels that the adversary can corrupt. Then does
there exist an almost secure MT scheme for n = 2t + 1 ? In this
paper, we first sum up a number flaws of the previous almost secure
MT scheme presented at Crypto 2004 1. We next show an equivalence
between almost secure MT schemes and secret sharing schemes with
cheaters. By using our equivalence, we derive a lower bound on the
communication complexity of almost secure MT schemes. Finally, we
present a near optimum scheme which meets our bound approximately.
This is the first construction of provably secure almost secure (1-round,
n-channel) MT schemes for n = 2t + 1.

Keywords: Private and reliable transmission, information theoretic
security, communication efficiency

1 Introduction

1.1 Message Transmission Scheme

The model of (r-round, n-channel) message transmission schemes was in-
troduced by Dolev et al. [2]. In this model, there are n channels between a
sender and a receiver while they share no keys. The sender wishes to send
a secret s to the receiver in r-rounds securely and reliably. An adversary A
can observe and forge the messages sent through t out of n channels.

1The authors already noted in thier presentation at Crypto’2004 that their scheme was
flawed.
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We say that a (r-round, n-channel) message transmission scheme is per-
fectly t-secure if A learns no information on s (perfect privacy), and the
receiver can output ŝ = s correctly (perfect reliability) for any infinitely
powerful adversary A who can corrupt at most t channels (in information
theoretic sense). 2 Dolev et al. showed that [2]

• n ≥ 3t + 1 is necessary and sufficient for r = 1, and

• n ≥ 2t + 1 is necessary and sufficient for r = 2

to achieve perfect t-security.
A perfectly t-secure scheme with optimum communication complexity is

known for r = 1 and n = 3t + 1 [2, 6]. Based on the work of [5, 6], Agarwal
et al. showed an asymptotically optimum perfectly t-secure scheme for r = 2
and n = 2t + 1 [1].

1.2 Secret Sharing Scheme with Cheaters

Tompa and Woll introduced a problem of cheating in (k, n) threshold secret
sharing schemes [7]. In this problem k−1 malicious participants aim to cheat
an honest one by opening forged shares and causing the honest participant
to reconstruct the wrong secret.

Ogata et al. derived a tight lower bound on the size of shares |Vi| for
secret sharing schemes that protects against this type of attack: |Vi| ≥
(|S| − 1)/δ + 1, where Vi denotes the set of shares of participant Pi, S
denotes the set of secrets, and δ denotes the cheating probability [4]. 3

They also presented an optimum scheme, which meets the equality of
their bound by using “difference sets” [4].

1.3 Our Contribution

As we mentioned, it is known that perfectly secure (1-round, n-channel)
message transmission schemes exist if and only if n ≥ 3t + 1, where t is the
number of channels that adversary can corrupt. Then does there exist an
almost secure scheme for n = 2t + 1 ? At Crypto 2004, Srinathan et al. [6,
Sec.5] proposed an almost secure (1-round, n-channel) message transmission
scheme for n = 2t + 1. 4 However, the authors already noted in thier
presentation at Crypto’2004 that their scheme was flawed.

2Dolev et al. called it a perfectly secure message transmission scheme [2].
3|X | denotes the cardinality of a set X .
4They called it a Las Vegas scheme.
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In this paper, we first sum up a number of flaws of the above scheme.
(Actually, they showed two schemes in [6], a perfectly t-secure scheme and
an almost secure scheme. Agarwal et al. showed a flaw of the former one
[1].)

Table 1: Previous Work and Our Contribution

Perfectly t-secure Almost secure
r = 1 n ≥ 3t + 1 n = 2t + 1

This paper
r = 2 n ≥ 2t + 1 –

We next show an equivalence between almost secure (1-round, n-channel)
message transmission schemes with n = 2t + 1 and secret sharing schemes
with cheaters. By using our equivalence, we derive a lower bound on the
communication complexity of almost secure (1-round, n-channel) message
transmission schemes (in the above sense) such that

|Xi| ≥ (|S| − 1)/δ + 1,

where Xi denotes the set of messages sent through the ith channel and S
denotes the set of secrets which the sender wishes to send to the receiver.

We finally show a near optimum scheme which meets our bound approx-
imately. This is the first construction of almost secure (1-round, n-channel)
message transmission schemes for n = 2t + 1.

Our results imply that n ≥ 2t + 1 is necessary and sufficient for almost
secure (1-round, n-channel) message transmission schemes.

2 Flaw of the Previous Almost Secure MT Scheme

In this section, we sum up a number of flaws of the previous almost secure (1-
round, n-channel) message transmission scheme [6, Sec.5]. 5 Let n = 2t + 1
in what follows.

2.1 Previous Almost Secure Message Transmission Scheme

Their scheme [6, Sec.5] is described is as follows. For simplicity, let F be a
finite field GF (q) such that q is a prime, and assume that the sender wishes

5They called it a Las Vegas scheme. The authors already noted in thier presentation
at Crypto’2004 that their scheme was flawed.
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to send a secret s = (s1, . . . , st+1) to the receiver, where each si is an element
of F. 6

• Enc. The sender computes a ciphertext (x1, · · · , xn) from s = (s1, . . . , st+1)
as follows.

1. Randomly select n polynomials p1(x), · · · , pn(x) of degree at most
t over F such that

Q(1) = s1, · · · , Q(t + 1) = st+1, (1)

where 7 Q(x) = p1(0) + p2(0)x + p3(0)x2 + · · ·+ pn(0)xn−1.
2. For each (i, j) with i 6= j, randomly select one of the t points of

intersection of pi and pj so that rij 6= rji (denote the selected
point by rij).

3. For each i, let xi = (pi(x), rij for all j 6= i).
4. Output (x1, x2, . . . , xn).

• Dec. The receiver computes s = (s1, . . . , st+1) or⊥ from (x̂1, x̂2, . . . , x̂n)
as follows, where x̂i = (p̂i(x), r̂ij for all j 6= i).

1. Set Λ = {1, 2, . . . , n}.
2. We say that the i-th channel chi contradicts the j-th channel chj

if p̂i and p̂j do not intersect at r̂ij .
3. For each i, if chi is contradicted by at least t + 1 channels then

remove i from Λ.
4. If chi contradicts chj for some i, j ∈ Λ then output failure.
5. If |Λ| ≤ t, then output failure.
6. At this point, p̂i = pi for all i ∈ Λ and |Λ| ≥ t + 1.

Derive all the polynomials p1, . . . , pn from p̂i and r̂ij (i ∈ Λ).
7. Compute s as s = [Q(1), . . . , Q(t + 1)].

Srinathan et al. claimed the following lemmas for adversaries who can
corrupts at most t out of n channels [6, Sec.5].

Lemma 2.1 [6, Lemma 11] Reliability. The receiver will never output an
incorrect value.

Lemma 2.2 [6, Lemma 13] Perfect Privacy. The adversary gains no
information about the secret.

6In [6, Sec.5], the sender sends a message m = (m1, · · · , mt+1) to the receiver by
broadcasting y = m + s through all the channels.

7In [6, Sec.5], they wrote this as s = EXTRAND(p1(0), · · · , pn(0)).
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2.2 Flaws

We show that the above two lemmas do not hold. In the above scheme,
it is important to choose p1, · · · , pn randomly because otherwise we cannot
ensure the perfect privacy. However, if the sender chooses p1, · · · , pn ran-
domly, it has the following problems. For simplicity, suppose that t = 2
and n = 2t + 1 = 5. (It is easy to generalize the following argument to any
t ≥ 2.)

• Sender’s problem: Since the polynomials p1, . . . , p5 are randomly
chosen, it can happen that some pi and pj do not intersect or intersect
at one point. In these cases, the sender cannot execute Step 2 of Enc.

• Perfect Privacy: Suppose that the adversary A corrupts t = 2 chan-
nels 1 and 2. In most cases, A has no information on s1, s2, s3 because
eq.(1) has t + 1 = 3 equations and 3 unknown variables p3(0), p4(0)
and p5(0), where p3(0), p4(0) and p5(0) are randomly chosen.

However, with nonzero probability, it happens that p1(x) and p3(x)
intersect at x = 0 and hence r1,3 = 0. In this case, A can compute
p3(0), and she knows 3 values, p1(0), p2(0) and p3(0). Consequently,
A has only 2 unknown variables p4(0) and p5(0) in eq.(1). This means
that A can learn some information on s = (s1, s2, s3) with nonzero
probability. Therefore Lemma 2.2 (perfect privacy) does not hold.

• Reliability: Since the polynomials p1(x), . . . , p5(x) are all randomly
chosen, it can happen that

b1 = p1(a1) = · · · = p5(a1)
b2 = p1(a2) = · · · = p5(a2)

with nonzero probability. That is, all polynomials go through (a1, b1)
and (a2, b2). In this case, the sender will set rij = a1 and rji = a2 for
each pair i < j.

Now consider an adversary A who corrupts channel 1 and replaces
p1(x) with a random polynomial p′1(x). Then it can still happen that
p′1 passes through (a1, b1) and (a2, b2) with nonzero probability. In
this case, the receiver accepts p′1. Hence the receiver outputs ŝ 6= s
because p′1(0) 6= p1(0). After all, the receiver outputs ŝ 6= s with
nonzero probability. Therefore, Lemma 2.1 does not hold.

We cannot fix these flaws. To correct these flaws, Enc must choose
p1, · · · , p5 in such a way that
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• pi and pj intersect at at least two points,

• rij 6= 0,

• and all intersection points are distinct

for each pair of (i, j). However, if so, the perfect privacy does not hold
because p1, · · · , p5 are not random.

Suppose that the adversary A corrupts t = 2 channels 1 and 2. Then she
learns the values of p1(0), p2(0). Hence she knows that p3(0), . . . , p5(0) are
not elements of {p1(0), p2(0)}. That is, p3(0), . . . , p5(0) are not randomly
chosen from F. Hence she can learn some information on s from eq.(1).

3 Model

In this section, we define a model of Almost Secure (1-round, n-channel)
message transmission schemes formally. In the model, there are n channels
between a sender and a receiver. The sender wishes to send a secret s to
the receiver secretly and reliably in one-round without sharing any keys. An
adversary can observe and forge the messages sent through at most t out of
n channels.

A (1-round, n-channel) message transmission scheme consists of a pair
of algorithms (Enc,Dec) as follows. Let S denote the set of secrets.

• Enc is a probabilistic encryption algorithm which takes a secret s ∈ S
as an input, and outputs a ciphertext (x1, · · · , xn), where xi is the i-th
channel’s message.

• Dec is a deterministic decryption algorithm which takes an alleged
ciphertext (x̂1, · · · , x̂n) and outputs ŝ ∈ S or failure.

We require that Dec(Enc(s)) = s for any s ∈ S. We assume a certain
probability distribution over S, and let S denote the random variable. Let
Xi denote the random variable induced by xi, and Xi denote the possible
set of xi for 1 ≤ i ≤ n.

To define the security, we consider the following game among the sender,
the receiver and an adversary A, where A is a (infinitely powerful) proba-
bilistic Turing machine.

1. A chooses t channels, i1, · · · , it.
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2. The sender chooses s ∈ S according to the distribution over S, and uses
Enc to compute x1, · · · , xn. Then xi is sent to the receiver through
channel i for 1 ≤ i ≤ n.

3. A observes xi1 , · · · , xit , and forges them to x′i1 , · · · , x′it . We allow x′ij
to be the null string for 1 ≤ j ≤ t.

4. The receiver receives x̂i through channel i for 1 ≤ i ≤ n, and uses Dec
to compute

Dec(x̂1, · · · , x̂n) = ŝ or failure.

Definition 3.1 We say that a (1-round, n-channel) message transmission
scheme is (t, δ)-secure if the following conditions are satisfied for any adver-
sary A who can corrupt at most t out of n channels.

Privacy. A learns no information on s. More precisely,

Pr(S = s | Xi1 = xi1 , · · · , Xit = xit) = Pr(S = s)

for any s ∈ S and any possible xi1 , · · · , xit.

General Reliability. The receiver outputs ŝ = s or failure. (He never
outputs a wrong secret.)

Trivial Reliability. If the t forged messages x′i1 , · · · , x′it are all null strings,
then Dec outputs ŝ = s.

Failure.
Pr(Dec outputs failure) < δ. (2)

(The trivial reliability means that if t channel fail to deliver messages, then
Dec outputs ŝ = s. Hence this is a reasonable requirement.)

4 Secret Sharing Scheme with Cheaters

In the model of secret sharing schemes, there is a probabilistic Turing ma-
chine D called a dealer. S denotes a random variable distributed over a finite
set S, and s ∈ S is called a secret. On input s ∈ S, D outputs (v1, . . . , vn)
according to some fixed probability distribution. For 1 ≤ i ≤ n, each par-
ticipant Pi holds vi as his share. Vi denotes the random variable induced by
vi. Let Vi = {vi | Pr[Vi = vi] > 0}. Vi is the set of possible shares held by
Pi.
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Definition 4.1 We say that D is a (k, n) threshold secret sharing scheme
for S if the following two requirements hold:

(A1) Let j ≥ k. Then there exists a unique s ∈ S such that

Pr[S = s | Vi1 = vi1 , . . . , Vij = vij ] = 1

for any {i1, . . . , ij} ⊆ {1, . . . , n} and any (vi1 , . . . , vij ) with Pr[Vi1 =
vi1 , . . . , Vij = vij ] > 0.

(A2) Let j < k. Then for each s ∈ S,

Pr[S = s | Vi1 = vi1 , . . . , Vij = vij ] = Pr[S = s]

for any {i1, . . . , ij} ⊆ {1, . . . , n} and any (vi1 , . . . , vij ) with Pr[Vi1 =
vi1 , . . . , Vij = vij ] > 0.

Now we consider k−1 malicious participants who aim to cheat an honest
one by opening forged shares and causing the honest participant to recon-
struct the wrong secret.

Definition 4.2 For A = {i1, · · · , ik} and vi1 ∈ Vi1 , . . . , vik ∈ Vik , define

SecI(vi1 , . . . , vik) =

{
s if ∃s ∈ S s.t. Pr[S = s | Vi1 = vi1 , · · · , Vik = vik ] = 1,

⊥ otherwise.

That is, SecI(vi1 , . . . , vik) denotes the secret reconstructed from the k pos-
sible shares (vi1 , . . . , vik) associated with (Pi1 , . . . , Pik), respectively. The
symbol ⊥ is used to indicate when no secret can be reconstructed from the
k shares. We will often aggregate the first k − 1 arguments of SecI into a
vector, by defining b = (vi1 , . . . , vik−1

) and SecI(b, vik) = SecI(vi1 , . . . , vik).

Definition 4.3 Suppose that k − 1 cheaters Pi1 ,. . . ,Pik−1
possesses the list

of shares b = (vi1 ,. . . ,vik−1
). Let b′ = (v′i1 ,. . . ,v

′
ik−1

) 6= b be a list of k − 1
forged shares. Then we say that Pik is cheated by b′ if

SecI(b′, vik) 6∈ {SecI(b, vik),⊥}, (3)

where vik denotes the share of Pik .

To define a secure secret sharing scheme clearly, we consider the following
game.
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1. k − 1 cheaters and the target participant are fixed. That is, we fix
i1, . . . , ik−1 and ik.

2. The dealer picks s ∈ S according to distribution S, and uses D to
compute shares v1, . . . , vn for the n participants. vi is given to Pi for
i ∈ {1, . . . , n}.

3. Let b = (vi1 , . . . , vik−1
). The cheaters jointly use a probabilistic algo-

rithm A to compute forged shares b′ = (v′i1 , . . . , v
′
ik−1

) from b.

4. The cheaters open the forged shares b′. If Pik is cheated by b′ (as
defined above), then we say that the cheaters win the cheating game.

Definition 4.4 We say that a (k, n) threshold secret sharing scheme D is
a (k, n, δ) secure secret sharing scheme if

Pr(cheaters win) ≤ δ (4)

for any k−1 cheaters Pi1 , . . . , Pik−1
, any target Pik and any cheating strategy.

Ogata et al. derived a lower bound on |Vi| of (k, n, δ) secure secret sharing
schemes as follows [4].

Proposition 4.1 [4] In a (k, n, δ) secure secret sharing scheme,

|Vi| ≥
|S| − 1

δ
+ 1 (5)

for any i.

We say that a (k, n, δ) secure secret sharing scheme is optimal if the
above equality is satisfied for all i.

5 Equivalence

In this section, we show an equivalence between (t, δ)-secure (1-round, n-
channel) message transmission schemes and (t+1, n, δ) secure secret sharing
schemes.
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5.1 From Secret Sharing to Message Transmission

Theorem 5.1 Suppose that n ≥ 2t + 1. If there exists a (t + 1, n, δ) secure
secret sharing scheme D for S, then there exists a (t, ε)-secure (1-round,
n-channel) message transmission scheme (Enc,Dec) for the same S such
that

ε = (
(

n

t + 1

)
−

(
n− t

t + 1

)
)δ

Further it holds that Xi = Vi for 1 ≤ i ≤ n.

Proof . We construct (Enc,Dec) from D as follows. Enc is the same as
D. That is, on input s ∈ S, Enc runs D(s) to generate (x1, · · · , xn) =
(v1, · · · , vn).

Our Dec is constructed as follows. On input (x̂1, · · · , x̂n), Dec com-
putes SecI(x̂i1 , · · · , x̂it+1) for all I = (i1, · · · , it+1), where I is a subset of
{1, · · · , n}. If there exists some ŝ ∈ S such that

SecI(x̂i1 , · · · , x̂it+1) = ŝ or ⊥

for all I = (i1, · · · , it+1), then Dec outputs ŝ. Otherwise, Dec outputs
failure.

We prove that the conditions of Def. 3.1 are satisfied. The privacy
condition holds from (A1) of Def. 4.1.

Next note that
n− t ≥ (2t + 1)− t = t + 1. (6)

Therefore, the trivial reliability holds from (A2) of Def. 4.1. We next show
the general reliability. From eq.(6), there exists a J = {j1, · · · , jt+1} such
that x̂j1 = xj1 , · · · , x̂jt+1 = xjt+1 . For this J , it holds that

SecJ(x̂j1 , · · · , x̂jt+1) = s

from (A2) of Def. 4.1, where s is the original secret. Therefore, Dec outputs
failure if there exists some I = (i1, · · · , it+1) 6= J such that

SecI(x̂i1 , · · · , x̂it+1) = s′ ∈ S

with s′ 6= s. This means that if Dec does not output failure, then there is
no such I. Hence Dec outputs ŝ = s.

Finally we show

Pr(Dec outputs failure) <

((
n

t + 1

)
−

(
n− t

t + 1

))
δ.

For simplicity, suppose that an adversary A corrupts channels 1, · · · , t and
forges b′ = (x′1, · · · , x′t). Then the number of subsets I of size t + 1 such
that I ∩ {1, · · · , t} 6= ∅ is given by

(
n

t+1

)
−

(
n−t
t+1

)
.
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5.2 From Message Transmission to Secret Sharing

Suppose that there exists a (t, δ)-secure (1-round, n-channel) message trans-
mission scheme such that n = 2t + 1. Then n − t = (2t + 1) − t = t + 1.
Hence from the trivial reliability condition, we can define a function FI such
that

FI(x̂i1 , · · · , x̂it+1) = sI or ⊥ (7)

for each (t + 1)-subset I = (i1, · · · , it+1) ⊂ {1, · · · , n}, where sI ∈ S. We
say that a (t, δ)-secure (1-round, n-channel) message transmission scheme
with n = 2t + 1 is canonical if

Dec(x̂1, · · · , x̂n) =
{

ŝ if FI(x̂i1 , · · · , x̂it+1) = ŝ or ⊥ for each (t + 1)-subset I
failure otherwise

Theorem 5.2 If there exists a canonical (t, δ)-secure (1-round, n-channel)
message transmission scheme (Enc,Dec) with n = 2t + 1 for S, then there
exists a (t+1, n, δ) secure secret sharing scheme D for the same S. Further
it holds that Xi = Vi for 1 ≤ i ≤ n.

Proof . We construct D from (Enc,Dec) as D = Enc. That is, on input
s ∈ S, D runs Enc(s) to generate (v1, · · · , vn) = (x1, · · · , xn).

We prove that the conditions of Def. 4.1 are satisfied. (A1) holds from
the privacy condition of Def. 3.1. (A2) holds from the trivial reliability since
n− t = 2t + 1− t = t + 1.

We finally show eq.(4). Suppose that eq.(4) does not hold in the (t +
1, n, δ) secure secret sharing scheme. Then there exist some {i1, · · · , it}, a
target it+1 and some cheating strategy such that

SecI(b′, vik) 6∈ {SecI(b, vik),⊥}

with probability more than δ.
For simplicity, suppose that {i1, · · · , it} = {1, 2, · · · , t} and it+1 = t + 1.

Now in the attack game of the (t, δ)-secure (1-round, n-channel) message
transmission scheme, consider an adversary A which chooses the correspond-
ing t channels {1, 2, · · · , t} and forges x1, · · · , xt to x′1, · · · , x′t according to
the cheating strategy above. Then

SecI(x′1, · · · , x′t, xt+1) = s′ (8)

with probability more than δ for some s′ 6= s, where I = {1, · · · , t, t + 1}.
On the other hand, we have

SecJ(xt+1, · · · , x2t+1) = s (9)

11



for J = {t + 1, · · · , 2t + 1}. In this case, Dec outputs failure from our
definition of canonical. Hence

Pr(Dec outputs failure) > δ.

However, this is against eq.(2). Therefore, eq.(4) must hold.

5.3 Discussion

We show that canonical is a natural property that (t, δ)-secure (1-round,
n-channel) message transmission schemes with n = 2t + 1 should satisfy.
First from the proof of Theorem 5.1, we have the following corollary.

Corollary 5.1 In Theorem 5.1, if n = 2t+1, then the message transmission
scheme is canonical.

Next suppose that there exists a (t, δ)-secure (1-round, n-channel) mes-
sage transmission scheme with n = 2t + 1. Remember that the sender
sends a ciphertext (x1, · · · , x2t+1) for a secret s, and the receiver receives
X̂ = (x̂1, · · · , x̂n). For a (t+1)-subset I = (i1, · · · , it+1) ⊂ {1, · · · , n}, define

G(I, X̂) = FI(x̂i1 , · · · , x̂it+1).

(See eq.(7) for FI .)

Definition 5.1 We say that a (t + 1)-subset I is an acceptable (sub)set for
X̂ if G(I, X̂) 6= ⊥.

In a canonical scheme, it is easy to see that Dec outputs failure if
and only if there exist two acceptable (t + 1)-subsets I and J such that
G(I, X̂) 6= G(J, X̂). We will show that this is a natural property that (t, δ)-
secure (1-round, n-channel) message transmission schemes with n = 2t + 1
should satisfy.

Consider an adversary A who corrupts channels 1, · · · , t, and replaces
xi to a random x′i for 1 ≤ i ≤ t.

1. We first show that

• there are only two acceptable sets I and J , and G(I, X̂) 6= G(J, X̂)

12



with nonzero probability. In this case, the receiver cannot see if
G(I, X̂) = s or G(J, X̂) = s. Hence he must output failure to satisfy
the general reliability condition.

The proof is as follows. From the trivial reliability, it holds that

G(I, X̂) = s (10)

for I = {t+1, · · · , 2t+1}. Further there exists another acceptable set
J 6= I such that G(I, X̂) 6= G(J, X̂) with nonzero probability. Because
otherwise we have a perfectly t-secure (1-round, n-channel) message
transmission scheme with n = 2t + 1, which is a contradiction.

Finally, there exist no other acceptable sets with high probability be-
cause x′i is chosen randomly for 1 ≤ i ≤ t.

2. Next we show that there exists a case such that the majority vote
does not work. That is, we show that there exist acceptable sets I and
J1, · · · , J( 2t

t+1)
such that

• G(I, X̂) = s and
• G(J1, X̂) = · · · , G(J( 2t

t+1)
, X̂) = s′ 6= s

with nonzero probability. In this case, the receiver must output failure
too to satisfy the general reliability condition.

The proof is as follows. From the privacy condition, we have no in-
formation on s from (xt+1, · · · , x2t). Therefore for s′ 6= s, it holds
that

Pr[S = s′, Xt+1 = xt+1, · · · , X2t = x2t] > 0.

Hence there exist some b1, · · · , bt, c2t+1 such that

Pr[S = s′, X1 = b1, · · · , Xt = bt, Xt+1 = xt+1, · · · , X2t = x2t, X2t+1 = c2t+1] > 0.
(11)

Further it holds that x′i = bi for 1 ≤ i ≤ t with nonzero probability
because the adversary A chooses x′i randomly. In this case, we have

x̂1 = b1, · · · , x̂t = bt, x̂t+1 = xt+1, · · · , x̂2t = x2t, x̂2t+1 = x2t+1.

Therefore from eq.(11), for any (t + 1)-subset J ⊂ {1, · · · , 2t}, we
obtain that

G(J, X̂) = s′.

The number of such J is
(

2t
t+1

)
. Finally, it is clear that G(I, X̂) = s

for I = {t + 1, · · · , 2t + 1}.
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So the scheme must be canonical in the above two cases. Hence we
consider that canonical is a natural property for n = 2t + 1.

6 Lower Bound

In this section, we derive a lower bound on |Xi| of (t, δ)-secure (1-round, n-
channel) message transmission schemes with n = 2t+1 by using our equiva-
lence. Indeed, we obtain the following bound immediately from Proposition
4.1 and Theorem 5.2.

Corollary 6.1 In a canonical (t, δ)-secure (1-round, n-channel) message
transmission scheme with n = 2t + 1, it holds that

|Xi| ≥
|S| − 1

δ
+ 1 (12)

for any i.

7 Near Optimum Almost Secure MT Scheme

Ogata et al. showed a construction of optimum (k, n, δ) secure secret sharing
schemes by using ”planar difference sets” [4].

Proposition 7.1 [4, Corollary 4.5] Let q be a prime power that makes q2 +
q + 1 a prime. Then, there exists a (k, n, δ) secure secret sharing scheme
for a uniform distribution over S which meets the bound (5) such that |S| =
q + 1, δ = 1/(q + 1) and n < q2 + q + 1.

From the above proposition, Theorem 5.1 and Corollary 5.1, we can ob-
tain the following construction of (t, ε)-secure (1-round, n-channel) message
transmission schemes.

Corollary 7.1 Let q be a prime power that makes q2 + q + 1 a prime.
Then, there exists a (t, ε)-secure (1-round, n-channel) message transmission
scheme with n ≥ 2t + 1 for a uniform distribution over S such that |S| =
q + 1, δ = 1/(q + 1), 2t + 1 ≤ n < q2 + q + 1 and

|Xi| =
|S| − 1

δ
+ 1,

where

ε = (
(

n

t + 1

)
−

(
n− t

t + 1

)
)δ.

Further if n = 2t + 1, the message transmission scheme is canonical.
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Ogata et al. also showed another construction of optimum (k, n, δ) secure
secret sharing schemes by using general ”difference sets” [4].

Proposition 7.2 [4, Corollary 4.5] For a positive integer u such that 4u−1
is a prime power, there exists a (k, n, δ) secure secret sharing scheme which
meets the equality of our bound (5), such that |S| = 2u−1, δ = (u−1)/(2u−
1), n < 4u− 1.

From the above proposition, Theorem 5.1 and Corollary 5.1, we can
obtain another construction of (t, ε)-secure (1-round, n-channel) message
transmission schemes as follows.

Corollary 7.2 [4, Corollary 4.5] For a positive integer u such that 4u − 1
is a prime power, there exists (t, ε)-secure (1-round, n-channel) message
transmission scheme with n ≥ 2t + 1 for a uniform distribution over S such
that |S| = 2u− 1, δ = (u− 1)/(2u− 1), n < 4u− 1 and

|Xi| =
|S| − 1

δ
+ 1,

where

ε = (
(

n

t + 1

)
−

(
n− t

t + 1

)
)δ.

Further if n = 2t + 1, the message transmission scheme is canonical.

In these constructions, there is a gap of log2(
(

n
t+1

)
−

(
n−t
t+1

)
) bits from our

lower bound of Corollary 6.1. This gap is, however, small enough for small
t.

Our results imply that n ≥ 2t + 1 is necessary and sufficient for (t, ε)-
secure (1-round, n-channel) message transmission schemes.

Theorem 7.1 (t, ε)-secure (1-round, n-channel) message transmission schemes
exist if and only if n ≥ 2t + 1.

Proof . It is enough to prove that there exist no (t, ε)-secure (1-round, n-
channel) message transmission schemes for n ≤ 2t. Suppose that there exists
a (t, ε)-secure (1-round, n-channel) message transmission scheme with n ≤
2t. Consider an adversary A who replaces x1, · · · , xt with null strings. Then
the receiver receives n− t messages xt+1, · · · , xn, where n− t ≤ 2t− t = t.
Then from the privacy condition, the receiver obtains no information on s.
On the other hand, from the trivial reliability condition, he must output s.
This is a contradiction.
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8 Conclusion

In this paper, we first summed up a number of flaw of the previous almost
secure (1-round, n-channel) message transmission scheme for n = 2t + 1
which was presented at Crypto 2004. We next showed an equivalence be-
tween (t, δ)-secure (1-round, n-channel) message transmission scheme for
n = 2t + 1 and secret sharing schemes with cheaters. By using our equiva-
lence, we derived a lower bound on the communication complexity. Finally,
we presented a near optimum scheme which meets our bound approximately.
This is the first construction of provably secure (t, δ)-secure (1-round, n-
channel) message transmission schemes for n = 2t + 1.

Our results imply that n ≥ 2t + 1 is necessary and sufficient for (t, ε)-
secure (1-round, n-channel) message transmission schemes.
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