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Abstract

It is proved that a bent function has zero second derivative with respect to a,
b, a 6= b, if and only if it is affine on all the flats parallel to the two dimensional
subspace V = 〈a, b〉.

1 Introduction

Bent functions were first constructed by Dillon and Rothaus [6, 7, 9]. They introduced
two classes of bent functions namely Maiorana-McFarland class, M and partial spreads
class, PS. Carlet [3] constructed two new classes of bent functions. Another class of
bent functions is due to Dobbertin [8], in the same paper he introduced the notion of
non-normality of bent functions. Canteaut and Charpin [1] have proved that the Walsh-
Hadamard spectra of restrictions of a bent function f to the affine subspaces of codimension
2 can be explicitly derived from the Hamming weights of the second derivatives of the
dual function of f . It is observed that these restricted functions have high nonlinearity.
However restrictions of bent functions to affine subspaces of low dimensions, e.g., dimension
2 subspaces, can be affine functions. For example given anM type bent function, by lemma
33 of [2], it is possible to find a subspace V of dimension 2 such that the restriction of
the function to each flat parallel to V is affine. Let us denote the set of all bent functions
which are affine on all the flats parallel to a 2 dimensional subspace V by E . In this paper
primarily by using results of [1, 5] it is proved that a bent function is in E if and only if it
has a zero second derivative with respect to two distinct elements of its domain.

2 Preliminaries

Let F2 be the prime field of characteristic two. A function from Fn
2 into F2 is said to be a

Boolean function on n variables. The set of all such functions is denoted by Bn. Let the
cardinality of any set S be denoted by |S|. The function d : Bn × Bn −→ Z defined by
d(f, g) = |{x ∈ Fn

2 |f(x) 6= g(x)}|, for all f, g ∈ Bn, is called the Hamming distance between
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f and g. The inner product of two vectors u, v ∈ Fn
2 is denoted by 〈u, v〉. The dual, V ⊥,

of any subspace V ⊆ Fn
2 is defined by

V ⊥ = {x ∈ Fn
2 |∀y ∈ V, 〈x, y〉 = 0}.

A function l ∈ Bn is affine if and only if there exists u ∈ Fn
2 and ε ∈ F2 such that

f(x) = 〈u, x〉+ ε. Let An denote the set of affine functions in Bn. The minimum Hamming
distance of f ∈ Bn from the set An that is min{d(f, l)|l ∈ An} is called the nonlinearity of
f . The Walsh-Hadamard transform Wf (λ) of f ∈ Bn at λ ∈ Fn

2 is defined as

Wf (λ) =
∑
x∈Fn

2

(−1)f(x)+〈λ,x〉

and the multiset [Wf (λ) : λ ∈ Fn
2 ] is called the Walsh-Hadamard spectrum of f . The

nonlinearity, nl(f) of f is related to the Walsh-Hadamard spectrum of f by the following
expression:

nl(f) = 2n−1 − 1

2
max
λ∈Fn

2

|Wf (λ)|.

The derivative of f with respect to a ∈ Fn
2 is defined by

Daf(x) = f(x + a) + f(x).

Definition 1 A Boolean function f ∈ Bn, n even, is said to be bent if and only if its
nonlinearity is equal to 2n−1 − 2

n
2
−1. The Walsh-Hadamard transform of a bent function

consists of only two values namely ±2
n
2 .

The dual f̃ of a bent function f is again a bent function defined by the relation

Wf (x) = (−1)f̃(x)2
n
2

for all x ∈ Fn
2 .

Suppose U is a codimension 2 subspace of Fn
2 and let the four distinct flats parallel to

U be denoted by ai +U , where i = 0, 1, 2, 3. The 4-decomposition of g ∈ Bn is the sequence
of functions (g1, g2, g3, g4) where gi = g|ai+U , the restrictioin of g to ai +U , for i = 0, 1, 2, 3.
It is proved by Canteaut and Charpin [1] that if g ∈ Bn is bent then each gi is either
bent, three valued almost optimal or a Boolean function with five distinct values in the
Walsh-Hadamard spectrum belonging to the set {0,±2

n−2
2 ,±2

n
2 }. The weight distribution

of the Walsh-Hadamard spectrum of each gi is given below,

|Wgi
(u)| number of u ∈ Fn−2

2

0 3(2n−4 − 2−4λ)

2
n−2

2
λ
4

2
n
2 2n−4 − 2−4λ
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where λ = wt(DaDbg̃). For proof we refer to theorem 7 [1]. Charpin proved that a function
f ∈ Bn is affine on a coset c + V , where V is a subspace of Fn

2 , if and only if:

Ta,c =
∑

v∈V ⊥

(−1)〈c,v〉Wf (a + v) = ±2n (1)

for some a ∈ W where V ⊥×W = Fn
2 , lemma 3, [5]. We make use of this result in the next

section to prove the main result.

3 Main Result

In this section we prove the main result which characterizes bent functions which are affine
on all the flats parallel to a subspace of dimension 2.

Theorem 1 If f ∈ Bn is a bent function and V is a two dimensional subspace of Fn
2 then

f is affine on all the flats parallel to V if and only if f̃ has three valued almost optimal
4-decomposition with respect to V ⊥

Proof : If f ∈ Bn is bent then

Ta,c =
∑

v∈V ⊥

(−1)〈c,v〉Wf (a + v) =
∑

v∈V ⊥

(−1)〈c,v〉
∑
x∈Fn

2

(−1)f(x)+〈x,(a+v)〉

= 2
n
2

∑
v∈V ⊥

(−1)〈c,v〉(−1)f̃(a+v) = 2
n
2

∑
v∈V ⊥

(−1)f̃(a+v)+〈c,v〉 = 2
n
2 Wf̃ |

a+V⊥
(c).

Let the flats parallel to V ⊥ be denoted by ai + V ⊥ where i ∈ {0, 1, 2, 3}.
If f̃ has bent 4-decomposition with respect to V ⊥ then for all a and all c:

Ta,c = ±2
n
2 2

n−2
2 = ±2

2n−2
2 6= ±2n.

Thus the condition (1) is not satisfied. Hence by lemma 3 [5] f is not affine on any two
dimensional flat.

If f̃ has three valued almost optimal decomposition with respect to V ⊥ then for any ai

and c, ∑
v∈ai+V ⊥

(−1)f̃(v)+〈c,v〉 ∈ {0, 2
n
2 ,−2

n
2 }.

Since f̃ is bent: ∑
v∈a0+V ⊥

(−1)f̃(v)+〈c,v〉 +
∑

v∈a1+V ⊥

(−1)f̃(v)+〈c,v〉

+
∑

v∈a2+V ⊥

(−1)f̃(v)+〈c,v〉 +
∑

v∈a3+V ⊥

(−1)f̃(v)+〈c,v〉 = ±2
n
2 (2)
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Therefore given any c in order that (2) satisfied there has to exist at least one i ∈ {0, 1, 2, 3}
such that

Tai,c =
∑

v∈ai+V ⊥

(−1)f̃(v)+〈c,v〉 = ±2
n
2

which implies that f is affine on c + V . Since c can be arbitrarily chosen this means that
f is affine on all the cosets of the two dimensional subspace V .

Suppose f̃ |a+V ⊥ has Walsh-Hadamard spectrum with five values 0,±2
n−2

2 ,±2
n
2 for each

a ∈ Fn
2 .From (2) we obtain:

(−1)〈a0,c〉
∑

v∈V ⊥

(−1)f̃(a0+v)+〈c,v〉 + (−1)〈a1,c〉
∑

v∈V ⊥

(−1)f̃(a1+v)+〈c,v〉

+(−1)〈a2,c〉
∑

v∈V ⊥

(−1)f̃(a2+v)+〈c,v〉 + (−1)〈a3,c〉
∑

v∈V ⊥

(−1)f̃(a3+v)+〈c,v〉 = ±2
n
2 . (3)

For i = 0, 1, 2, 3, define gi(v) = f̃(ai + v) for all v ∈ V ⊥. Since V ⊥ is an n− 2 dimensional
subspace, if we restrict the linear function φc(x) = 〈c, x〉 to V ⊥ then there exists an element
c′ ∈ V ⊥ such that φc(v) = 〈c′, v〉 for all v ∈ V ⊥. The above sum can be written as

(−1)〈a0,c〉
∑

v∈V ⊥

(−1)g0(v)+〈c′,v〉 + (−1)〈a1,c〉
∑

v∈V ⊥

(−1)g1(v)+〈c′,v〉

+(−1)〈a2,c〉
∑

v∈V ⊥

(−1)g2(v)+〈c′,v〉 + (−1)〈a3,c〉
∑

v∈V ⊥

(−1)g3(v)+〈c′,v〉 = ±2
n
2

Consider
Si = {c′ ∈ V ⊥||Wgi

(c′)| = 2
n
2 }

where i = 0, 1, 2, 3. By theorem 7 [1] stated above

|Si| = 2n−4 − λ

24
.

Taking union over all Si we obtain

| ∪3
i=0 Si| ≤

3∑
i=0

|Si| = 22(2n−4 − λ

24
) = 2n−2 − λ

22
.

If λ 6= 0 then | ∪3
i=0 Si| < 2n−2. Therefore there exists c′ ∈ V ⊥ such that

|
∑

v∈V ⊥

(−1)gi(v)+〈c′,v〉| 6= 2
n
2 for all i = 0, 1, 2, 3.

Therefore, there exists c ∈ Fn
2 such that

|
∑

v∈V ⊥

(−1)f̃(ai+v)+〈c,v〉| 6= 2
n
2 for all i = 0, 1, 2, 3.
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Since Fn
2 = ∪3

i=0(ai + V ), there exists c ∈ Fn
2 such that

|
∑

v∈V ⊥

(−1)f̃(a+v)+〈c,v〉| 6= 2
n
2 for all a ∈ Fn

2 .

Hence there exist c ∈ Fn
2 such that Ta,c 6= ±2n for all a ∈ Fn

2 . Therefore f is not affine on
c + V i.e., there exists at least one flat parallel to V on which the function is not affine.

This proves that f ∈ Bn is a bent function and V is a two dimensional subspace of
Fn

2 then f is affine on all the cosets of V if and only if f̃ has three valued almost optimal
4-decomposition with respect to V ⊥

Corollary 1 If f ∈ Bn is a bent function and V is a two dimensional subspace of Fn
2 then

f is affine on all the cosets of V if and only if there exist a, b ∈ Fn
2 such that DaDbf = 0.

Proof : If f ∈ Bn is a bent function such that DaDbf = 0 for some a, b ∈ Fn
2 , a 6= b,

then by theorem 7 [1] with respect to V ⊥ = 〈a, b〉⊥, f̃ has three-valued almost optimal
4-decomposition which in turn by theorem 1 above implies that restrictions of f are affine
on all the flats parallel to the two dimensional subspace V = 〈a, b〉.

Conversely, suppose that the restriction of f are affine on all the flats parallel to the
two dimensional subspace V = 〈a, b〉. By theorem 1 f̃ has three valued almost optimal
4-decomposition with respect to V ⊥. Again by theorem 7, [1] DaDbf = 0.

Corollary 2 If f ∈ Bn is a cubic bent function then f ∈ E.

Proof : By corollary 5 [1], since f is cubic it must have a zero second derivative which
implies by corollary 1 that f ∈ E .

4 Conclusion

In this paper we have characterized the class E of bent functions which are affine of all
the flats corresponding to a given 2 dimensional subspace by using their second derivative.
It is to be noted that these are the functions that can be constructed by concatenating
2-variable affine functions. Further it is shown that all cubic bent functions are in this
class E as well as all the functions in M.
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