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Abstract. Secure function evaluation (SFE) allows a set of players to compute an arbitrary agreed function of
their private inputs, even if an adversary may corrupt some of the players. Secure multi-party computation (MPC)
is a generalization allowing to perform an arbitrary on-going (also called reactive or stateful) computation during
which players can receive outputs and provide new inputs at intermediate stages. In both cases, the functionality is
described by an algebraic circuit over a finite field.
Three types of corruptions are usually considered: active, passive, and fail corruptions. The adversary’s corruption
power is characterized by a constraint on which players he can potentially corrupt in which way. One is interested
in the exact condition for which SFE and MPC are possible. So far, only restricted settings were considered where
either the condition is a threshold condition or where not all three corruption types were considered at the same
time. For all these models, the exact conditions are identical for SFE and MPC.
In this paper we prove the exact conditions for perfectly secure SFE and MPC for the natural general adversary
model allowing active, passive, and fail corruptions of players. Surprisingly, these two conditions are distinct, i.e.,
there exist adversaries against which secure SFE is possible, but secure MPC is not possible.
Keywords. Secure Multi-Party Computation, Secure Function Evaluation, General Adversaries, Fail-Corruption,
Perfect Security, Separation.

1 Introduction

1.1 Secure Function Evaluation and Secure Multi-Party Computation

Secure function evaluation (SFE) allows a setP = {p1, . . . , pn} of n players to compute an arbitrary agreed
function f of their inputsx1, . . . , xn in a secure way. Security means that dishonest players can neither
falsify the output of the computation, nor can obtain information about the honest players’ inputs (except
what they can derive from their own inputs). (Reactive) secure multi-party computation (MPC) is a slight
generalization of SFE. Here, the function to be computed is reactive, meaning that players can give inputs
and get outputs several times during the course of the computation, and every output can depend on all
inputs given so far.

A bit more formally, SFE and MPC can be best described by considering a hypothetical trusted party
which performs the specified task on behalf of the players. In SFE, the trusted party is non-reactive: it takes
inputs from the players, evaluates the function, and announces the outputs (and disappears). In MPC, the
trusted party is reactive: it countinously interacts with the players, taking inputs and sending outputs. It
maintains an internal state which is updated with every input, and every output is computed based on this
state. The goal of SFE and MPC is tosimulatethis trusted party among the setP of players. The potential



dishonesty of players is modeled by a central adversary corrupting players, where players can be actively
corrupted (the adversary takes full control over them), passively corrupted (the adversary can read their
internal state), or fail-corrupted (the adversary can make them crash at any suitable time). A crashed player
stops sending any messages, but the adversary cannot read the internal state of the player (unless he is
actively or passively corrupted at the same time).

Typical examples of SFE include e-voting, i.e., the computation of the sum of the players’ secret votes,
or the double-agent problem, i.e., the identification of identical entries in several confidential databases. An
example of MPC is the simulation of a fair stock market, where inputs (e.g. new trading orders) are given
and outputs (e.g. current stock prices) are provided while the computation proceeds.

SFE (and MPC) was introduced by Yao [Yao82]. The first general solutions were given by Goldre-
ich, Micali, and Wigderson [GMW87]; these protocols are secure under some intractability assumptions.
Later solutions [BGW88,CCD88,RB89,Bea91b] provide information-theoretic security. Note that so far, all
known protocols realizing SFE in principle also realize MPC.

1.2 Summary of Known Results

In the seminal papers solving the general SFE and MPC problems, the adversary is specified by a single
corruption type (active or passive) and a thresholdt on the tolerated number of corrupted players. Gol-
dreich, Micali, and Wigderson [GMW87] proved that, based on cryptographic intractability assumptions,
general secure MPC is possible if and only ift < n/2 players are actively corrupted, or, alternatively, if
and only ift < n players are passively corrupted. In the information-theoretic model, Ben-Or, Goldwasser,
and Wigderson [BGW88] and independently Chaum, Crépeau, and Damgård [CCD88] proved that uncon-
ditional security is possible if and only ift < n/3 for active corruption, and for passive corruption if and
only if t < n/2.

These results were unified and extended by fail-corruption in [FHM98] by proving that perfectly secure
MPC is achievable if and only if3ta + 2tp + tf < n, whereta, tp, andtf denote the upper bounds on the
number of actively, passively and fail corrupted players, respectively.

Another line of generalization is concerned with so-called general adversaries: Here, the adversary is
not characterized by a threshold, but rather by an enumeration of the possible subsets of players that the
adversary can corrupt.1 In [HM97] it was proved that perfect security is possible if and only if no two cor-
ruptible subsets cover the full players set (passive adversary), respectively no three corruptible subsets cover
the full player set (active case). These results naturally generalize the threshold results of2t < n, respec-
tively 3t < n. These results were unified to a mixed general adversary in [FHM99], where the adversary is
characterized by an enumeration of classes, each class consisting of an actively corruptible subset of players
and of a passively corruptible subset of the players. Fail-corruption was not considered. The bounds on the
existence of perfectly secure MPC are a natural combination of the bounds in the threshold model.

A similar development of generalizations can be observed in the area of Byzantine agreement proto-
cols [LSP82,DS82,LF82,MP91,GP92,FM98,AFM99].

1 This allows to model non-symmetric settings where not every player’s potential dishonesty is modeled in exactly the same way.
Some coalitions of colluding players might be more likely than others, and some players might have a higher level of dishonesty
than others.
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1.3 Contributions of this Paper

The original motivation for this paper was to determine the exact conditions for SFE and MPC in the
natural and most general adversary model where all corruption types can occur. We characterize the ad-
versary’s corruption capability by anadversary structureZ = {(A1, E1, F1), . . . , (Am, Em, Fm)}, where
Ak, Ek, Fk ⊆ P andAk ⊆ Ek andAk ⊆ Fk. The adversary can (secretly) choose an arbitraryadversary
classZk = (Ak, Ek, Fk) ∈ Z and actively corrupt the players inAk, passively corrupt the players inEk,
and fail-corrupt the players inFk. In the technical sections of this paper, we present and prove exact con-
ditions on the adversary structure to allow perfectly secure MPC and perfectly secure SFE. This unifies all
previously considered models, where either not all three types of corruption were considered, or where the
corruption capability was specified in terms of thresholds.

Interestingly, the conditions for SFE and MPC are different. This is surprising since the same tools and
protocols work for both SFE and MPC, and since, as mentioned above, for all known results on robust SFE
and MPC the same exact conditions hold.2

This separation is an indication that the most general adversary model proposed here is both natural and
appropriate since all restricted models hide the fact that SFE and MPC separate.

We describe a simple example of an adversary structure which separates, i.e., for which SFE with
perfect security is possible but MPC is not. LetP = {p1, p2, p3, p4} andZ = {Z1, Z2, Z3}, where
Z1 = (∅, {p1}, ∅), Z2 = ({p2}, {p2}, {p2, p4}), andZ3 = ({p3}, {p3}, {p3, p4}).

In other words, the adversary can either corruptp1 passively, or corruptp2 actively and fail-corruptp4,
or corruptp3 actively and fail-corruptp4.

A protocol for SFE works as follows: First usep4 as the trusted party with the constraint thatp4 sends
the output of the function first top1 and then top2 andp3. If p4 crashes, then restart the protocol usingp1

as trusted party (the crashing ofp4 guarantees that the adversary did not chooseZ1 ∈ Z and hence that
p1 is uncorrupted). Ifp1 has received the output fromp4 beforep4 crashed, then he forwards it top2 and
p3, otherwise he evaluates the function on the inputs received byp2 andp3 and sends them the output. The
security of this protocol is trivial to verify. The impossibility of MPC for this example follows from the
observation that if some intermediate valuev — part of the state of an MPC protocol — is not known top1,
then there is no protocol that always reveals it to him. Indeed, if in such a protocol the adversary crashes
p4 and forcesp2 or p3 to send random messages whenever he is instructed to send something (he can do
so by choosingZ2 or Z3), then with non-zero probability,p1 will not be able to decide whetherp2 or p3 is
misbehaving and will accept a value different thanv, contradicting perfect security.

2 The Model

We consider the standard secure-channels model introduced in [BGW88,CCD88]: The playersp1, . . . , pn

are connected by a complete network of bilateral synchronous secure channels. The computation is described
as an arithmetic circuit over some finite fieldF, consisting of addition (or linear) gates and multiplication
gates.

2 For non-robust protocols witht < n, a separation between SFE and reactive MPC is known [IKLP06].
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The security of our protocols is information-theoretic without error probability, which is calledperfect
security and is the strongest possible security notion. A protocol is defined to be secure if it realizes a
trusted functionality (computing the functionf ), where the term “realize” is defined via the simulation
paradigm [Can00,MR91,Bea91a,DM00,PW01] which, in a nutshell, guarantees that whatever the adversary
can achieve in the real world where the protocol is executed, he could also achieve in the ideal setting with
the trusted functionality.3 This security notion implies in particular that the adversary cannot obtain any
information about the players’ inputs beyond what is implied by the outputs (secrecy), and that he cannot
influence the outputs other than by choosing the inputs of the corrupted players (correctness).

The adversary’s corruption capability is characterized by an adversary structureZ = {(A1, E1, F1), . . .,
(Am, Em, Fm)} (for somem). The adversary chooses a triple inZ non-adaptively,4 i.e., before the begin-
ning of the protocol; this triple is denoted asZ? = (A?, E?, F ?) and is called theactual adversary class
or simply the actual adversary. The players inA?, E?, andF ? are actively, passively and fail-corrupted,
respectively. Note thatZ? is not known to the honest players and appears only in the security analysis. A
protocol is calledZ-secureif it is secure against an adversary with corruption power characterized byZ.

For notational simplicity we assume thatA ⊆ E andA ⊆ F for any(A,E, F ) ∈ Z (anyway, an actively
corrupted player can behave as being passively or fail-corrupted). Furthermore, as most constructions only
need to consider the maximal classes of a structure, we define the maximal structureZ =

{
(A,E, F ) ∈ Z :

6 ∃(A′, E′, F ′) ∈ Z with (A,E, F ) 6= (A′, E′, F ′) andA ⊆ A′, E ⊆ E′, F ⊆ F ′}.
To simplify the description, we adopt the following convention: Whenever a player does not receive

a message (when expecting one), or receives a message outside of the expected range, then the special
symbol⊥6∈ F is taken for this message. Note that after a player has been crashed, he only sends⊥. If a
player has followed the protocol instructions correctly up to a certain point, he is calledcorrectat that point,
independently of whether he is actually corrupted. A player who has deviated from the protocol (e.g., has
crashed or has sent inconsistent messages) is calledincorrect.

3 Tools (Sub-protocols)

In this section we present some protocols that will be used as building blocks in the main sections. Several
of these protocols are non-robust, i.e., they might abort when faults occur. In case of abortion, all (correct)
players agree on a non-empty setB ⊆ P of incorrect players; we say then thatthe protocol aborts withB.

3.1 Broadcast and Consensus

A broadcast protocolallows a senderp with input valuev to distributev among a setP of players, where it
is guaranteed that all correct players inP output the same valuev′ (consistency), and thatv′ = v when the

3 While our protocols can be proven secure in any of these simulation-based frameworks, with perfect indistinguishability of the
real and the ideal world, we will in this paper not give full-fledged simulation-based security proofs; this is consistent with the
previous literature on secure SFE and MPC.

4 In contrast, anadaptiveadversary can corrupt more and more players during the protocol execution, subject only to the constraint
that the corrupted sets are within one of the triples inZ. We do not consider the adaptive setting in this paper, but our results
could be generalized to it.
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sender is correct during the execution of the protocol (correctness). Similarly, aconsensus protocolallows
a setP of players, each holding an input valuevi, to reach agreement, such that every correct player inP
outputs the same valuev′ (consistency), and thatv′ = v if all (correct) players hold as inputv (correctness).

In [AFM99] a tight condition on the existence of perfectly-secure broadcast and consensus is given for
the model with active and fail-corruption. The presented protocols assume pairwise authenticated (but not
necessarily private) channels, hence they remain secure even when the adversary is allowed to passively
corrupt any number of players. Therefore these conditions immediately translate to our model:

Lemma 1. In the secure channels model, perfectlyZ-secure broadcast and consensus among a setP of
players is possible if and only ifCBC(P,Z) holds, where

CBC(P,Z)⇐⇒ ∀(A1, E1, F1), (A2, E2, F2), (A3, E3, F3) ∈ Z : A1 ∪A2 ∪A3 ∪ (F1 ∩ F2 ∩ F3) 6= P.

We denote the broadcast and the consensus protocol of [AFM99] byBroadcast andConsensus, respec-
tively.

3.2 Crash Detection

We present a protocol which allows the players inP to commonly detect whether a specific playerp ∈ P is
alive or has crashed. Such a decision cannot be sharp, as an actively corrupted player can always behave as
having crashed, i.e., not send any messages during the execution of the sub-protocol. However, we require
that correct players are always identified as “alive”, and crashed players are always identified as “crashed”.

Protocol CDP(P, Z, p)
1. p sends a1-bit to everypj ∈ P.
2. Everypj ∈ P setsbj = 1 if he received a1-bit, andbj = 0 otherwise.
3. The players inP invokeConsensus on inputsb1, . . . , bn.
4. Everypj ∈ P outputs “alive” when the output of the consensus protocol is1, and “crashed” otherwise.

Lemma 2. If CBC(P,Z) holds, then the protocolCDP(P,Z, p) has the following properties: Consistency:
The (correct) players agree on the output. Correctness: Ifp is correct until the end ofCDP, then every
(correct) player outputs “alive” and ifp has crashedbeforethe invocation ofCDP, then every (correct)
player outputs “crashed”.5

3.3 Strong Broadcast

Intuitively, a fail-corrupted player never sends a “wrong” message; in the worst case, he sends no message
at all. This intuition does not apply to broadcast (according to the standard definition): When the sender
of a broadcast protocol crashes, only consistency of the output is guaranteed. But the output value can be
arbitrary.6

5 Note that in any case the adversary learns the output ofCDP.
6 In [AFM99], the output of broadcast can even be chosen by the adversary, when the sender crashes.
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We lift the intuition that fail-corrupted players never send “wrong” messages to broadcast by introducing
the notion ofstrong broadcast: A protocol with senderp, holding inputv, achieves strong broadcast when
it achieves broadcast and additionally ensures that the output is in{v,⊥} when the sender is not actively-
corrupted. We show how to construct a protocol forp to strongly broadcastv, given a protocol for broadcast
(e.g.,Broadcast) andCDP.

Protocol StrongBroadcast(P, Z, p, v)
1. InvokeBroadcast to havep broadcast his inputv. For eachpj ∈ P, let vj denotepj ’s output in

Broadcast.
2. InvokeCDP to detect whetherp is alive or has crashed.
3. Everypj ∈ P outputsvj whenp is alive, and⊥ whenp has crashed.

Lemma 3. If CBC(P,Z) holds, then the protocolStrongBroadcast(P,Z, p, v) has the following proper-
ties: Consistency: All (correct) players output the same valuev′. Correctness: If the senderp is correct, then
v′ = v; if p crashedbeforethe invocation of the protocol, thenv′ =⊥; if p crashes during the protocol, then
v′ ∈ {v,⊥}.

3.4 Secret Sharing

A secret-sharing scheme allows a player (called the dealer) to distribute a secret, in such a way that only
qualified sets of players can reconstruct it. As secret-sharing scheme, we employ a sum sharing (i.e., the
secret is split into summands that add up to the secret), folded with a replication sharing (i.e., every summand
is given to a subset of the players): Such a sharing is characterized by asharing specificationS , which is
a vector of subsets of the player setP. A value s is sharedwith respect to a sharing specificationS =
(S1, . . . , Sm), when there exist summandss1, . . . , sm with s =

∑
sk, andsk is given to everypi ∈ Sk. For

a playerpi ∈ P, we consider the vector(si1 , . . . , si`) of summands held bypi to bepi’s shareof s, denoted
as〈s〉i. The vector of all shares, denoted as〈s〉 =

(
〈s〉1, 〈s〉2, . . . , 〈s〉n

)
, is asharingof s. We say that〈s〉

is a (consistent) sharing ofs according to(P,S), if for eachSi ∈ S all (correct) players inSi have the same
view onsi ands =

∑m
i=1 si.

For an adversary structureZ, we say that a sharing specificationS is Z-private if for any sharing〈s〉
according toS and for any adversary inZ, there exists a summandsk which this adversary does not know.
Formally,S is Z-private if ∀(A,E, F) ∈ Z ∃S ∈ S : S ∩ E = ∅. For an adversary structureZ with
maximal classesZ =

{
(·, E1, ·), . . . , (·, Em, ·)

}
, we denote the naturalZ-private sharing specification by

SZ =
(
P\E1, . . . ,P\Em

)
.

The following protocol allows a dealerp to share a values among the players inP according to a
sharing specificationS. The protocol is a modification of the sharing protocol from [Mau02] to tolerate
fail-corruption. It may abort whenp is incorrect.
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Protocol Share(P, Z, S, p, s)
1. Dealerp chooses the summandss2, . . . , s|S| randomly and setss1 = s−

∑|S|
k=2 sk.

2. Execute the following steps fork = 1, . . . , |S|:
(a) p sendssk to everypi ∈ Sk, who denotes the received value ass

(i)
k (⊥ when no value is received).

(b) Everypi ∈ Sk sendss(i)
k to everypj ∈ Sk, who denotes the received value ass

(i,j)
k .

(c) For eachpj ∈ Sk StrongBroadcast is invoked to havepj broadcast a complaint bitbk,j , where

bk,j = 1 whens
(j)
k =⊥ or s

(i,j)
k /∈ {s(j)

k ,⊥} for somei, andbk,j = 0 otherwise.
(d) If a complaint was reported (i.e.,bk,j = 1 for somej), thenStrongBroadcast is invoked to havep

broadcastsk, and everypj ∈ Sk setss(j)
k to the broadcasted value.

3. If p broadcasts⊥ in Step 2d, thenShare aborts withB = {p}.

Lemma 4. If CBC(P,Z) holds andS is a Z-private sharing specification, then the protocolShare
(P,Z,S, p, s) has the following properties. Correctness:Share either outputs a consistent sharing of some
s′, wheres′ = s unless the dealer is actively corrupted, or it aborts withB = {p}; it does not abort ifp is
correct. Secrecy: No information ons leaks to the adversary.

Reconstructing a shared value towards a player is straight-forward: All players send the summands
they know (i.e., their share) to the output player, who tries to find the correct value for each summand and
computes the secret as the sum of the summands. However, finding the correct value of a summand is not
always possible when corrupted players send wrong values or no value to the output player, so we need an
extra condition on the adversary structure to ensure that the output player can always decide on the value of
every summand. We can slightly relax this condition when a sharing is reconstructed publicly (rather than
towards a dedicated output player): In this case, the players can decide depending on the published values
whether a summand is uniquely defined or not, and if not, agree on a setB ⊆ P of incorrect players.

In the sequel, we present the protocolsAnnounce andReconstruct to announce a summand, respectively
reconstruct a sharing, towards a dedicated player, and the protocolsPublicAnnounce andPublicReconstruct
to announce a summand, respectively to reconstruct a sharing, towards all players. The latter protocols are
non-robust; they might abort with a non-empty setB ⊆ P of incorrect players. The abortion of the protocol
PublicAnnounce will allow to derive information on the actual adversary class, which will be helpful in the
output protocol of SFE.

Protocol Announce(P, Z, Sk, sk, p)
1. Everypi ∈ Sk sendssk to p, who denotes the received value ass

(i)
k (⊥ when no value is received).

2. LetV ⊆ F denote the set of valuesv that are “explainable” with some adversary inZ, i.e., for which
there is an adversary class(A,E, F ) ∈ Z, such that{pi ∈ Sk : s

(i)
k =⊥} ⊆ F and{pi ∈ Sk : s

(i)
k /∈

{v,⊥}} ⊆ A.
3. p setssk to be the smallest element inV .

Lemma 5. If ∀(A1, E1, F1), (A2, E2, F2) ∈ Z: Sk 6⊆ A1 ∪ A2 ∪ (F1 ∩ F2), then the protocolAnnounce
robustly announcessk to p.
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Proof. We have to prove that (i) the setV contains the correct summandsk and (ii) the setV contains
no other values. (i) Observe that the summandss

(i)
k received byp satisfy that{pi ∈ Sk : s

(i)
k =⊥} ⊆

F ? and{pi ∈ Sk : s
(i)
k /∈ {sk,⊥}} ⊆ A?, where(A?, E?, F ?) denotes the actual adversary class. As

(A?, E?, F ?) ∈ Z, it follows thatsk ∈ V . (ii) Consider any valuev ∈ V . There exists an adversary class

(A,E, F ) ∈ Z such that{pi ∈ Sk : s
(i)
k =⊥} ⊆ F and{pi ∈ Sk : s

(i)
k /∈ {v,⊥}} ⊆ A. By assumption we

know thatSk 6⊆ A∪A? ∪ (F ∩F ?), hence there exists a playerpi ∈ Sk with s
(i)
k 6=⊥, pi /∈ A andpi /∈ A?.

This implies thatv = s
(i)
k = sk. ut

Protocol Reconstruct(P, Z, S, 〈s〉, p)
1. For everySk ∈ S, Announce is invoked to have the correct summandsk announced towardsp.
2. p computess =

∑|S|
k=1 sk and outputss.

Lemma 6. If ∀k = 1, . . . , |S|, ∀(A1, E1, F1), (A2, E2, F2) ∈ Z: Sk 6⊆ A1 ∪ A2 ∪ (F1 ∩ F2), then the
protocolReconstruct robustly reconstructss towardsp.

The proof follows immediately from Lemma 5.

Protocol PublicAnnounce(P, Z, Sk, sk)
1. Everypi ∈ Sk publishes his value forsk (denoted ass(i)

k ) usingStrongBroadcast.
2. Everypj ∈ P: determine the setV ⊆ F of values that are “explainable” with some adversary inZ (see

protocolAnnounce).
3. Everypj ∈ P: outputsk ∈ V if |V | = 1, otherwise abort withB = {pi ⊆ Sk : s

(i)
k =⊥}.

Lemma 7. If CBC(P,Z) holds and∀(A1, ·, ·), (A2, ·, ·) ∈ Z: Sk 6⊆ A1 ∪ A2, then the protocol
PublicAnnounce either publicly announcessk, or aborts with a non-empty setB ⊆ P of incorrect players.
When it aborts, then there exists an adversary class(A,E, F ) ∈ Z such thatSk ⊆ A? ∪A ∪ (F ? ∩ F ).

Proof. As V contains at least the correct summandsk (see proof of Lemma 5), it is clear that
PublicAnnounce either outputssk or aborts. It remains to be shown that when it aborts withB, then|B| > 0
and there exists an adversary class(A,E, F ) ∈ Z such thatSk ⊆ A? ∪ A ∪ (F ? ∩ F ). Note thatsk ∈ V ,
hencePublicAnnounce aborts only when there exists a valuev 6= sk with v ∈ V . This implies that there is
an adversary class(A,E, F ) ∈ Z with {pi ∈ Sk : s

(i)
k =⊥} ⊆ F and{pi ∈ Sk : s

(i)
k /∈ {v,⊥}} ⊆ A.

Becausev 6= sk, we need{pi ∈ Sk : s
(i)
k 6=⊥} ⊆ A ∪ A?, which implies thatSk ⊆ A? ∪ A ∪ (F ? ∩ F ).

Furthermore,B must be non-empty, because otherwiseSk ⊆ (A? ∪ A) would hold, contradicting the as-
sumption in the Lemma. ut

Protocol PublicReconstruct(P, Z, S, 〈s〉)
1. For everySk ∈ S, PublicAnnounce is invoked to have the correct summandsk announced. If an

invocation ofPublicAnnounce aborts withB, then alsoPublicReconstruct aborts withB.
2. Everypj ∈ P computess =

∑|S|
k=1 sk and outputss.
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Lemma 8. If CBC(P,Z) holds and∀k = 1, . . . , |S|, ∀(A1, ·, ·), (A2, ·, ·) ∈ Z: Sk 6⊆ A1 ∪ A2, then the
protocol PublicReconstruct either publicly reconstructss, or aborts with a non-empty setB of incorrect
players.

The proof follows immediately from Lemma 7.

3.5 Multiplication

We present a protocol for securely computing a sharing of the product of two shared values. The protocol is
a variation of the multiplication protocol of [Mau02], capturing fail-corruptions. The multiplication protocol
may abort when faults occur, with outputting a setB ⊆ P of incorrect players.

The idea of the protocol is the following: Ass andt are shared according toS, we can use the summands
s1, . . . , s|S| andt1, . . . , t|S| to compute the productst asst =

∑|S|
k,`=1 skt`. To do so, each termxk,` = skt`

of this sum is shared by every player knowing bothsk andt`. Then the players perform consistency checks
on the shared summands, and compute the sum of the shared termsxk,`, which results in a sharing ofst.

Protocol Mult(P, Z, S, 〈s〉, 〈t〉)
1. For every(Sk, S`) ∈ S × S, the following steps are executed:

(a) Everypi ∈ (Sk ∩ S`) computes the productsxk,` = skt` and invokesShare(P,Z,S, pi, xk,`);
denote the resulting sharing as〈x(i)

k,`〉.
(b) Letpi denote the player with the smallest index in(Sk∩S`). For everypj ∈ (Sk∩S`), the difference

〈x(j)
k,`〉 − 〈x

(i)
k,`〉 is computed and, by invokingPublicReconstruct, reconstructed.

(c) If all differences are0, then the sharing〈x(i)
k,`〉 of pi is adopted as sharing ofxk,`, i.e., 〈xk,`〉 =

〈x(i)
k,`〉. Otherwise (i.e., some difference is non-zero),PublicAnnounce is invoked to have bothsk

andt` announced, and a default sharing〈xk,`〉 of xk,` = skt` is created (e.g., the first summand is
set toxk,` and the other summands are set to0).

2. Each player inP (locally) computes his share of the productst as the sum of his shares of all terms
xk,`.

3. If any of the invoked sub-protocols aborts withB, then alsoMult aborts withB.

Lemma 9. Assuming thatS is aZ-private sharing specification,〈s〉 and〈t〉 are consistent sharings accord-
ing toS, CBC(P,Z) holds,∀Sk, S` ∈ S,∀(A, ·, ·) ∈ Z : Sk∩S` 6⊆ A, and∀Sk ∈ S,∀(A1, ·, ·), (A2, ·, ·) ∈
Z : Sk 6⊆ A1 ∪A2, the protocolMult(P,Z,S, 〈s〉, 〈t〉) has the following properties. Correctness: It either
outputs a sharing ofst according to(P,S) or it aborts with a non-empty setB ⊆ P of incorrect players.
Secrecy: No information on the inputs (i.e., on〈s〉 and〈t〉) leaks to the adversary.

Proof. Correctness: The conditions in the lemma are sufficient for all the invoked sub-protocols
(Share,PublicReconstruct,PublicAnnounce). The condition∀Sk, S` ∈ S,∀(A, ·, ·) ∈ Z : Sk ∩ S` 6⊆ A en-
sures that everyxk,` is known to at least one playerpi who is not actively corrupted; hence if no invocation
of Share aborts and all differences are zero, then the shared values are correct. Privacy: Due to the security
of Share, the invocations ofShare do not leak information to the adversary. Furthermore,PublicAnnounce
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is only invoked on summandssk, t` when two players inSk ∩ S` contradict each other; at least one of these
players is actively corrupted, hence the adversary already knowssk, t` beforePublicAnnounce is invoked.

ut

3.6 Resharing

In the context of MPC, we will need to reshare shared values according to a different sharing specification.
The key idea is to have every summandsi in the original sharing being reshared according to the new
sharing specification, and then distributively add the sharings of the summand, resulting in a new sharing of
the original value. Due to space restrictions, the protocolReshare(P,Z,S,S ′, 〈s〉) is given in full detail in
Appendix A. The following lemma, proved in Appendix A, states the achieved security.

Lemma 10. Assuming thatS ′ is aZ-private sharing specification,〈s〉 is a consistent sharing according to
S, CBC(P,Z) holds, and∀Sk ∈ S, S′

k ∈ S ′, (A1, ·, ·), (A2, ·, ·) ∈ Z : (Sk 6⊆ A1 ∪A2)∧ (S′
k 6⊆ A1 ∪A2),

the protocolReshare(P,Z,S,S ′, 〈s〉) has the following properties. Correctness: It either outputs a sharing
of s according to(P,S ′) or it aborts with a non-empty setB ⊆ P of incorrect players. Secrecy: No
information on the inputs (i.e., on〈s〉) leaks to the adversary.

4 (Reactive) Multi-Party Computation

In this section we prove the sufficient and necessary condition on the adversary structureZ for the existence
of perfectlyZ-secure multi-party computation protocols. The sufficiency of the condition is proven by
constructing an MPC protocol. The necessity is proven by an impossibility argument.

Theorem 1. A set P of players can perfectlyZ-securely compute any (reactive) computation when
CMULT(P,Z) andCREC(P,Z) hold, where

CMULT(P,Z)⇐⇒ ∀(A1, E1, F1), (A2, E2, F2), (A3, E3, F3) ∈ Z : E1 ∪ E2 ∪A3 ∪ (F1 ∩ F2 ∩ F3) 6= P
CREC(P,Z)⇐⇒ ∀(A1, E1, F1), (A2, E2, F2), (A3, E3, F3) ∈ Z : E1 ∪A2 ∪A3 ∪ (F2 ∩ F3) 6= P

The conditionCMULT is needed for (non-robust) multiplication. The conditionCREC is needed for
robust reconstruction.

4.1 The MPC Protocol

The circuitC to be computed consists of input, addition, multiplication and output gates.7 The reactiveness
of the computation is modeled by assigning to each gate a point in time when it should be evaluated.

The circuit is evaluated in a gate-by-gate fashion, where for input, multiplication and output gates, the
corresponding sub-protocolShare, Mult, andReconstruct, respectively, is invoked. Due to the linearity of
the sharing, addition (or linear) gates can be evaluated locally by the players.

7 This does not exclude probabilistic circuits, as a random gate can be simulated by having each player input a random value and
take the sum of those values as the output.
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The non-robustness of the used sub-protocols is addressed differently depending on the type of the gate:
When in an input gate the input player does not share his input, the players just pick a default sharing of
some pre-agreed default value. The reconstruction protocol of the output gate is robust under the necessary
condition for MPC. The multiplication of shared values can abort (with a setB ⊆ P of incorrect players).
If this happens, the multiplication is retried in a smaller setting, namely with the player setP ′ = P \B and
the adversary structureZ ′ which contains only those adversary classes which are compatible with the fact
that the players inB are incorrect. More precisely, first both factors are re-shared to the new setting withP ′

andZ ′, then the multiplication sub-protocol is invoked within this setting, and upon success, the resulting
sharing of the product is re-shared to the original setting withP andZ. This process is repeated until the
multiplication succeeds, and with each repetition, the active player setP ′ becomes smaller.

For the sake of clarity, we introduce two operators on adversary structures: For a setB ⊆ P, we denote
by Z|B⊆F the sub-structure ofZ that contains only adversaries who can fail-corrupt all the players inB,
i.e.,Z|B⊆F = {(A,E, F ) ∈ Z : B ⊆ F}. Furthermore, for a setP ′ ⊆ P, we denote byZ|P′ the adversary
structure with all classes inZ restricted to the player setP ′, i.e.,Z|P′ = {(A ∩ P ′, E ∩ P ′, F ∩ P ′) :
(A,E, F ) ∈ Z}. As syntactic sugar, we writeZ|B⊆F

P′ for
(
Z|B⊆F

)
|P′ .

It immediately follows from the above definitions that when the players inB have been detected to be
incorrect, then the actual adversaryZ? is in Z|B⊆F . Furthermore, we exclude the players inB from the
multiplication protocol, and the new setting isP ′ = P \ B andZ ′ = Z|B⊆F

P\B . One can easily verify that
the conditionsCBC, CMULT, andCREC hold in (P \ B,Z|B⊆F

P\B ) when they hold in(P,Z), for an arbitrary
B ⊆ P. This results in the following MPC protocol:

Protocol MPC(P, Z, C)
1. Initialize the set of detected as incorrect players toP⊥ = ∅. Set the default sharing specification
S = SZ .

2. For every gate to be evaluated, do the following:
– Input gate forp: InvokeShare to havep share his input according to(P,S). If Share aborts, then a

default sharing of some pre-agreed default value is taken.
– Addition gate:Everypi ∈ P locally computes the sum of his respective shares.
– Multiplication gate:Denote the sharings of the factors as〈s〉 and〈t〉, respectively, and denote the

set of active players asP ′ = P \ P⊥ and the adversary structure compatible withP⊥ being in-
correct asZ ′ = Z|P⊥⊆F

P\P⊥
, and the corresponding (Z ′-private) sharing specification asS ′ = SZ′ .

Invoke Reshare(P ′,Z ′,S,S ′, 〈s〉) andReshare(P ′,Z ′,S,S ′, 〈t〉) to obtain the sharings〈s〉′ and
〈t〉′ for (P ′,S ′), respectively. InvokeMult(P ′,Z ′, 〈s〉′, 〈t〉′) to obtain a sharing〈st〉′ of the prod-
uct, according to(P ′,S ′). InvokeReshare(P ′,Z ′,S ′,S, 〈st〉′) to reshare this product according to
(P,S).a If any of the sub-protocols aborts with setB then setP⊥ = P⊥ ∪B and repeat the gate.

– Output gate forp: InvokeReconstruct to have the output reconstructed towardsp.

a Reshare outputs a sharing according to(P ′,S), which is trivially also a sharing according to(P,S) since all players inP \P ′

are incorrect.

Lemma 11. The above MPC protocol is perfectlyZ-secure ifCMULT(P,Z) andCREC(P,Z) hold.
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Proof (sketch).One can easily verify that the conditions in the lemma imply all conditions required in the
sub-protocols, hence the security of the MPC protocol follows from the security of the sub-protocols.ut

4.2 Impossibility of MPC

In this section we prove that perfectly secure (reactive) MPC is not possible for some circuits when
CMULT(P,Z) or CREC(P,Z) is violated. We first prove that whenCMULT(P,Z) is violated, then
even non-reactive computations cannot be securely evaluated (Lemma 12). Secondly, we prove that when
CREC(P,Z) is violated, then the players inP cannot hold a secret joint state, which excludes the evaluation
of (non-trivial) reactive circuit (Lemma 13).

Lemma 12. If CMULT(P,Z) is violated, then there exist (even non-reactive) circuits which cannot be eval-
uated perfectlyZ-securely.

Proof. ConsiderP andZ with CMULT(P,Z) violated, and assume for the sake of contradiction, that for
every circuitC, a perfectlyZ-secure protocol exists. There exist(A1, E1, F1), (A2, E2, F2), (A3, E3, F3) ∈
Z with E1 ∪ E2 ∪ A3 ∪ (F1 ∩ F2 ∩ F3) = P. Let F = F1 ∩ F2 ∩ F3, P ′ = P \ F , and fori = 1, 2, 3,
let A′

i = Ai \ F andE′
i = Ei \ F . The alleged protocol must also be perfectly secure for the player setP ′

and the adversary structure (with only active and passive corruption)Z ′ = {(A′
1, E

′
1), (A

′
2, E

′
2), (A

′
3, E

′
3)},

because one particular strategy of the adversary is to fail-corrupt the players inF and make them crash at
the very beginning of the protocol. However, for(P ′,Z ′) perfectly secure (non-reactive) MPC protocols do
not exist for all circuits, as proven in [FHM99, Thm. 1]. ut

Lemma 13. If CREC(P,Z) is violated, then the players cannot hold a secret joint state with perfect secu-
rity.

Proof. ConsiderP and Z with CREC(P,Z) violated, hence there exist(A1, E1, F1), (A2, E2, F2),
(A3, E3, F3) ∈ Z with E1 ∪ A2 ∪ A3 ∪ (F2 ∩ F3) 6= P. Wlog assume thatE1 = {p1}, A2 = {p2},
A3 = {p3}, andF2 = F3 = {p4}. We denote the view ofpi asvi. For the sake of contradiction, assume that
these views define a secret joint statev. Privacy requires thatv1 does not determinev, hence there exists a
different statev′ 6= v which could be represented by the views(v1, v

′
2, v

′
3, v

′
4). Now consider the following

two cases: (i) The secret state isv, and the adversary corrupts(A2, E2, F2) and makesp4 crash andp2 take
a random view, which (with perhaps negligible probability) could bev′2. (ii) The secret state isv′, and the
adversary corrupts(A3, E3, F3) and makesp4 crash andp3 take a random view, which (with perhaps negli-
gible probability) could bev3. In both cases, the views of the players are(v1, v

′
2, v3,⊥), but the joint state is

oncev and oncev′ 6= v, contradicting perfect security. ut

5 Secure Function Evaluation

In this section we prove the sufficient and necessary condition on the adversary structureZ for the existence
of perfectlyZ-secure function evaluation protocols. The sufficiency of the condition is proven by construct-
ing an SFE protocol, and necessity is proven by an impossibility argument. Note that the condition for SFE
is weaker than the condition for MPC.
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Theorem 2. A setP of players can perfectlyZ-securely compute any function if and only ifCMULT(P,Z)
andCNREC hold, where

CMULT(P,Z)⇐⇒ ∀(A1, E1, F1), (A2, E2, F2), (A3, E3, F3) ∈ Z : E1 ∪ E2 ∪A3 ∪ (F1 ∩ F2 ∩ F3) 6= P,

CNREC(P,Z)⇐⇒ there exists an ordering
(
(A1, E1, F1), . . . , (Am, Em, Fm)) ofZ s.t.8

∀i, j, k ∈ {1, . . . ,m}, i ≤ k : Ek ∪Ai ∪Aj ∪ (Fi ∩ Fj) 6= P.

The conditionCMULT is needed for (non-robust) multiplication. The conditionCNREC is needed for
non-robust reconstruction. Essentially, the latter condition allows for a reconstruction protocol in which the
actual adversary gets information on the output only once it cannot disturb the protocol anymore.

5.1 The SFE Protocol

Our SFE protocol follows the standard approach of SFE protocols, namely to first secret-share all inputs, then
to evaluate the circuit gate by gate, then to reconstruct the output. However, the protocol employs sharings
which are not robustly reconstructible. This means that the adversary can break down the computation in
such a way that all sharings are lost. As the circuit is non-reactive, we can handle such an abortion by
repeating the whole protocol, including the input stage. The correct players will give the same inputs in
every iteration, but the adversary might give different inputs. However, in a failed iteration, the adversary
does not get any information about any secrets (more precisely, the adversary could perfectly simulate all
messages received within a failed iteration already beforehand), so the inputs chosen by the adversary in the
successful iteration are independent of the other players’ inputs.

Termination is guaranteed by the fact that whenever an iteration aborts, then a non-empty setB ⊆ P of
incorrect players is identified, and the next iteration will proceed without these players. Hence the number
of iterations is bounded byn.

The delicate task is the output protocol. For simplicity, we describe the protocol only for a single public
outputs; however, it naturally extends to a vector~s of several public outputs, which then can be extended to
capture private outputs with standard techniques (the output player inputs a one-time pad used for perfectly
blinding the private element of the output vector).

The intuition of the output protocol is as follows: First observe that in our sharing, the privacy
against each adversary is protected by a particular summand. More precisely, for every adversary class
(Ak, Ek, Fk) ∈ Z there exists a summandsk which is given only to the players inSk ∈ S with Sk∩Ek = ∅
(we even haveSk = P \Ek). As long as this summand is not published, an adversary of class(Ak, Ek, Fk)
does not obtain information about the output (from the point of view of the adversary,sk is a perfect blinding
of the output, and all other summandssi are either known to the adversary or are distributed uniformly).
Second, observe that whenever the publishing of some summandsk fails (i.e. the protocolPublicAnnounce
aborts), then a setB ⊆ P of incorrect players is identified. The information that the players inB are incor-
rect leaks information about the actual adversary(A?, E?, F ?), namely thatB ⊆ F ?. The key idea of the
output protocol is to publish the summands in such an order that wheneverPublicAnnounce aborts withB,

8 Remember thatZ denotes the maximum classes inZ. One can verify that such an ordering exists forZ exactly if it exists for
Z.
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then the information that the players inB are incorrect excludes the possibility that the actual adversary is
from a class whose summand has already being published. In other words: Whenever an adversary of class
(Ai, Ei, Fi) could potentially abort the announcing of the summandsk associated with the adversary class
(Ak, Ek, Fk), then the summandsk must be announced strictly before the summandsi is announced.

Let
(
(A1, E1, F1), . . . , (Am, Em, Fm)) denote an ordering of the maximum structureZ satisfying

∀1 ≤ i, j, k ≤ m, i ≤ k : Ek ∪Ai ∪Aj ∪ (Fi ∩ Fj) 6= P,

and letS denote the induced sharing specificationS = (S1, . . . , Sm) with Sk = P \Ek. Then the following
protocol perfectlyZ-securely publicly reconstructs a sharing〈s〉 according toS, or aborts with a non-
empty setB ⊆ P of incorrect players. Privacy of the protocol is guaranteed under the assumption that
those summands of〈s〉 that are unknown to the adversary are uniformly distributed. This is the case for all
sharings in our protocols.

Protocol OutputGeneration(P, Z, S = (S1, . . . , Sm), 〈s〉)
1. Fork = 1, . . . ,m, the following steps are executedsequentially:

(a) PublicAnnounce(P,Z, Sk, sk) is invoked to have the correct summandsk published.
(b) If PublicAnnounce aborts withB, thenOutputGeneration immediatelyaborts withB.

2. Everypj ∈ P (locally) computess =
∑m

k=1 sk and outputss.

Lemma 14. Assuming thatS is a Z-private sharing specification constructed as explained,CBC(P,Z)
holds, and∀Sk ∈ S, (A1, ·, ·), (A2, ·, ·) ∈ Z : Sk 6⊆ A1 ∪ A2, and〈s〉 is a consistent sharing according
to S with the property that those summands that are unknown to the adversary are randomly chosen, then
the protocolOutputGeneration either publicly reconstructss, or it aborts with a non-empty setB ⊆ P of
incorrect players. IfOutputGeneration aborts, then the protocol does not leak any information ons to the
actual adversary.

Proof. First observe that the pre-conditions ofPublicAnnounce are satisfied. Second, observe that by con-
struction ofS, we have∀i, j, k ∈ {1, . . . ,m}, i ≤ k : (P \ Sk) ∪ Ai ∪ Aj ∪ (Fi ∩ Fj) 6= P. Now
assume that the invocation ofPublicAnnounce(P,Z, Sk, sk) aborts withB ⊆ P. It follows from Lemma 7
that the actual adversary(A?, E?, F ?) satisfies the property that there exists(Aj , Ej , Fj) ∈ Z such that
Sk ⊆ A? ∪Aj ∪ (F ? ∩ Fj). By the construction ofS, no adversary class(Ai, Ei, Fi) ∈ Z with i ≤ k satis-
fies this condition, hence the summand associated with actual adversary has not yet been announced.ut

With this protocol, the SFE protocol can be constructed easily:
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Protocol SFE(P, Z, C)
0. LetS = (P \ E1, . . . ,P \ Em) for the assumed ordering

(
(A1, E1, F1), . . . , (Am, Em, Fm)

)
of Z.

1. Input stage:For every input gate inC, Share is invoked to have the input playerpi share his inputxi

according toS.a

2. Computation stage:The gates inC are evaluated as follows:
– Addition gate:Everypi ∈ P locally computes the sum of his respective shares.
– Multiplication gate:InvokeMult to compute a sharing of the product according toS.

3. Output stage:InvokeOutputGeneration(P,Z,S, 〈s〉) for the sharing〈s〉 of the public output.
4. If any of the subprotocols aborts withB, then setP ← P \ B, and setZ to the adversary structure

which is compatible withB being incorrect, i.e.,Z ← Z|B⊆F

P′ , and go to Step 1.

a If in a later iteration a playerpi /∈ P should give input, then the players inP pick the default sharing of a default value.

Lemma 15. The above SFE protocol is perfectlyZ-secure ifCMULT(P,Z) andCNREC(P,Z) hold.

Proof (sketch).One can easily verify that the conditions in the lemma imply all conditions required in the
sub-protocols, hence the security of the SFE protocol follows from the security of the sub-protocols.
Special care needs to be taken for the fact that the adversary can abort the protocol and provoke repeti-
tions. Termination of this process is obvious, as in every repetition the player set shrinks. Also correctness
is straight-forward. Privacy is argued as follows: The adversary can perfectly simulate his view in every
iteration which aborts (even without knowing the public output), hence his capability to abort an iteration
does not give him any additional power. ut

5.2 Impossibility of SFE

In this section we prove that perfectlyZ-secure SFE is not possible for some circuits whenCMULT(P,Z) or
CNREC(P,Z) is violated. The necessity forCMULT(P,Z) follows immediately from Lemma 12. It remains
to show thatCNREC(P,Z) is necessary:

Lemma 16. If CNREC(P,Z) is violated, then there exist functions which cannot be evaluated perfectly
Z-securely.

Proof. Consider P and Z with CNREC(P,Z) violated, i.e., for every ordering(
(A1, E1, F1), . . . , (Am, Em, Fm)) of Z there existsi, j, k ∈ {1, . . . ,m} such that i ≤ k and

Ek ∪ Ai ∪ Aj ∪ (Fi ∩ Fj) = P. Consider the identity function, where every playerpi ∈ P inputs
some valuexi, and the public output is the vector(x1, . . . , xn). For the sake of contradiction, assume that
there exists a perfectlyZ-secure SFE protocol for this function. This protocol implicitly defines for every
setL ⊆ P the protocol round in which the players inL obtain full joint information about the output.
We denote the index of this round asφ(L), i.e., the joint view of the players inL in roundφ(L) gives
full information on (x1, . . . , xn), but their joint view in roundφ(L) − 1 does not give full information.
The functionφ implies an ordering

(
(A1, E1, F1), . . . , (Am, Em, Fm)

)
on the adversary classes inZ such

that for every1 ≤ i ≤ k ≤ m : φ(Ei) ≤ φ(Ek). Denote byi, j, k those indices that satisfyi ≤ k and
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Ek ∪ Ai ∪ Aj ∪ (Fi ∩ Fj) = P (which are assumed to exist for contradiction). The adversary corrupts
(Ai, Ei, Fi) and behaves as follows: Up to roundφ(Ei)− 1, the adversary lets the corrupted players behave
correctly. In roundφ(Ei), the adversary crashes the players inFi ∩Fj , and has the players inAi \ (Fi ∩Fj)
send random values (also in all subsequent rounds). Still, the adversary obtains full information on the
output in roundφ(Ei) (he knows all correct messages that were sent, respectively should have been sent to
the players inEi). However, the players inEk do not have full informationbeforeroundφ(Ek) ≥ φ(Ei).
Hence these players cannot with certainty distinguish the current situation from the situation when the
output vector would be different, the players in class(Aj , Ej , Fj) would be corrupted, those inFj ∩ Fi

would be crashed, and those inAj \ (Fj ∩ Fi) would send random messages. Hence the adversary has
obtained full information about the output vector, but some uncorrupted players do not, contradicting
perfect security. ut

6 Separation and Conclusions

We have considered an adversary whose corruption capability is restricted by a collectionZ of adversary
classes(A,E, F ), where the adversary may actively corrupt the players inA, passively corrupt the players
in E, and fail-corrupt the players inF . All adversary models considered in the literature are special cases
of this model, either in terms that not all corruption types were considered, or in terms that only threshold
corruption was considered.

For this general adversary model, we have derived exact conditions for the existence of perfectly secure
multi-party computation (MPC) and secure function evaluation (SFE). It turned out that the condition for
SFE is strictly weaker than the condition for MPC. In fact, there are adversary structures for which per-
fectly secure SFE is possible, but perfectly secure MPC and verifiable secret sharing are not possible. This
separation does not show up in the restricted models considered so far. The following theorem states this
separation. It follows immediately from the separating example in the introduction withP = {p1, p2, p3, p4}
andZ =

{
(∅, {p1}, ∅), ({p2}, {p2}, {p2, p4}), ({p3}, {p3}, {p3, p4}).

Theorem 3. For every (large enough) player setP, there exist adversary structuresZ such that perfectly
Z-secure SFE is possible but perfectlyZ-secure MPC is not possible.

All presented protocols in this paper only consider perfect security. The exact conditions for protocols
with error probabilities or even for cryptographic security are not elaborated. It is an open problem whether
in other security models, MPC and SFE separate or collapse.
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Appendix

A Protocol Reshare

The following protocol allows the players inP toZ-securely reshare a sharing of〈v〉 according to sharing
specificationS to the new sharing specificationS ′.

Protocol Reshare(P, Z, S, S′, 〈s〉)
1. For everySk ∈ S, the following steps are executed:

(a) Everypi ∈ Sk invokesShare(P,Z,S ′, pi, sk); denote the resulting sharing as〈s(i)
k 〉.

(b) Let pi denote the player with the smallest index inSk. For everypj ∈ Sk, the difference〈s(j)
k 〉 −

〈s(i)
k 〉 is computed and, by invokingPublicReconstruct, publicly reconstructed.

(c) If all differences are0, then the sharing〈s(i)
k 〉 of pi is adopted as sharing ofsk, i.e.,〈sk〉 = 〈s(i)

k 〉.
Otherwise (i.e., some difference is non-zero),PublicAnnounce is invoked to havesk announced,
and a default sharing〈sk〉 of sk according toS ′ is created.

2. Everypi ∈ P (locally) computes the sum of his shares of all summandssk.
3. If any of the invoked sub-protocols aborts withB, then alsoReshare aborts withB.

Lemma 10. Assuming thatS ′ is aZ-private sharing specification,〈s〉 is a consistent sharing according to
S, CBC(P,Z) holds, and∀Sk ∈ S, S′

k ∈ S ′, (A1, ·, ·), (A2, ·, ·) ∈ Z : (Sk 6⊆ A1 ∪A2)∧ (S′
k 6⊆ A1 ∪A2),

the protocolReshare(P,Z,S,S ′, 〈s〉) has the following properties. Correctness: It either outputs a sharing
of s according to(P,S ′) or it aborts with a non-empty setB ⊆ P of incorrect players. Secrecy: No
information on the inputs (i.e., on〈s〉) leaks to the adversary.

Proof. Correctness: The conditions in the lemma are sufficient for all the invoked sub-protocols
(Share,PublicReconstruct,PublicAnnounce). The condition∀Sk ∈ S,∀(A1, ·, ·), (A2, ·, ·) ∈ Z : Sk 6⊆
A1∪A2 implies that∀Sk ∈ S,∀(A, ·, ·) ∈ Z : Sk 6⊆ A, which ensures that everysk is known to at least one
playerpi who is not actively corrupted; hence if no invocation ofShare aborts and all differences are zero,
then the shared values are correct. Privacy: Due to the security ofShare, the invocations ofShare do not leak
information to the adversary. Furthermore,PublicAnnounce is only invoked on the summandsk when two
players inSk contradict each other; at least one of these players is actively corrupted, hence the adversary
already knowssk beforePublicAnnounce is invoked. ut

B Proofs of Lemmata

Lemma 2 (Crash Detection).If CBC(P,Z) holds, then the protocolCDP(P,Z, p) has the following prop-
erties: Consistency: The (correct) players agree on the output. Correctness: Ifp is correct until the end of
CDP, then every (correct) player outputs “alive” and ifp has crashedbeforethe invocation ofCDP, then
every (correct) player outputs “crashed”.
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Proof. Correctness: Whenp is correct, then every (correct)pj ∈ P setsbj = 1, and by definition of
consensus, all correct players decide on1 and output “alive”. Whenp has crashed beforeCDP is invoked,
then every correctpj ∈ P setsbj = 0, and hence all correct players output “crashed”. Consistency: As the
output is decided by using consensus, the output of all correct players is identical. ut

Lemma 3 (Strong Broadcast).If CBC(P,Z) holds, then the protocolStrongBroadcast(P,Z, p, v) has
the following properties: Consistency: All (correct) players output the same valuev′. Correctness: If the
senderp is correct, thenv′ = v; if p crashedbeforethe invocation of the protocol, thenv′ =⊥; if p crashes
during the protocol, thenv′ ∈ {v,⊥}.

Proof. Consistency follows immediately from the consistency property ofBroadcast and the consistency
property ofCDP. For correctness we consider 3 cases: (a)If the senderp is correct through the whole
protocol, then the consistency property ofBroadcast implies that for all correctpj ’s, vj = v and the
correctness property ofCDP implies that all correct players will output “alive” inCDP, hence they will all
outputv in StrongBroadcast. (b) If p has already crashedbeforethe invocation ofStrongBroadcast, then
this is detected in Step 2 (byCDP) and the protocol outputs⊥. (c) If p crashes during the protocol but is
correct up to that point, then either this is detected in Step 2 and the protocol outputs⊥, or p is still alive at
the beginning of Step 2 and has correctly broadcast his inputv. Since, whenp is not actively-corrupted one
of the above 3 cases must hold, the output ofStrongBroadcast for such ap is always in{v,⊥}. ut

Lemma 4 (Share).If CBC(P,Z) holds andS is aZ-private sharing specification, then the protocolShare
(P,Z,S, p, s) has the following properties. Correctness:Share either outputs a consistent sharing of some
s′, wheres′ = s unless the dealer is actively corrupted, or it aborts withB = {p}; it does not abort ifp is
correct. Secrecy: No information ons leaks to the adversary.

Proof. Correctness:Share only aborts Correctness: The consistency of the sharing is guaranteed because
correct players either hold the same value for a common summand, or they complain and get a consistent
value for the summand by strong broadcast. Because all sent and broadcasted summands aresk such that
s =

∑
sk it is clear that the shared value iss when the dealer is correct. Lastly, the protocol only aborts

then the dealer is incorrect in an invocation of strong broadcast. Secrecy: BecauseS is Z-private we know
that the summands of corrupted players do not reveal information ons. On the other hand, the dealer only
broadcasts summands for which a complaint is broadcast, i.e., two players (claim to) have different values
for that summand. This only happens when the dealer or one of the disputing players is actively corrupted,
or when the dealer has crashed. In the first case, the adversary is entitled to know the summand, and in the
second case, the summand will not be broadcasted (the dealer is crashed). ut
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C Implications Among the Conditions

The following figure summarizes the implications between the conditions: An arrow from Condition 1 to
Condition 2 means that 1 implies 2; an erased arrow means that there is an example (i.e., an adversary
structureZ) that strictly separates the two conditions.
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