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Abstract

If a signature scheme is secure in the sense that no forgery on any new message (i.e., a message that
has never been signed) is available for any computation restricted adversary, it is said weakly unforgeable
(wUF), in contrast to strongly unforgeable (sUF) meaning no new signature on any old message (i.e., a valid
signature on the message is already known) is available to such adversaries. sUF signatures are generally
considered advantageous over wUF ones because of preference for high level security. But the case may be
different when they are employed to construct group signatures.

wUF but not sUF signatures, called WoUF signatures in this paper, are investigated in this paper.
It is found that by applying a generic construction to WoUF signatures with indirectly-signability and
perfectly-unlinkability (also defined in this paper), we can regenerate many efficient group signatures in
literature.

We also propose improvements to the group signature schemes of CL04, NSN04, KY05, in line with our
generic construction.

Keywords: Digital Signature, Group Signature, Weakly Unforgeable Signature, Strongly Unforgeable
Signature.

1 Introduction

Suppose you are a digital signature user and have signed on many documents, you have sufficient reason
to worry that someone else might be able to forge a signature of yours on a new document you have never
seen although you have kept the secret signing key absolutely safe. What you worry is actually whether the
signature is existentially unforgeable against chosen message attacks (eUF) [GMR88].

You may be less bothered by someone else deriving a new signature on an old document you have already
signed, i.e., the signature is not strongly unforgeable against chosen message attacks (sUF) [ADR02]. But in
some cases, strong unforgeability of a signature is important, e.g., when the signature is used to construct a
chosen cipher-text secure cryptosystem where each cipher-text is appended with a signature on it [BSW06].

If a signature is sUF, then it is also eUF, but not vice versa. So existentially unforgeable signatures are
also called weakly unforgeable (wUF) ones in contrast to higher security of sUF. A sUF signature has been
considered advantageous over a wUF signature. If a signature is proved wUF, it is a satisfactory result; and
if it is also sUF, then it is a bonus. No one has ever thought that wUF might be advantageous over sUF in
some cases.

We will investigate a kind of signatures, called weakly only unforgeable (WoUF) signatures, that are
wUF but not sUF, and there exist efficient algorithms to derive new signatures from a given signature. We
show that WoUF signatures may be especially helpful in constructing group signatures, a primitive that has
been found useful in various applications, e.g., anonymous authentication, internet voting, electronic bidding,
trusted computing.

Group signature. The proposal of group signatures [CvH91] are motivated by enabling members of a
group to sign on behalf of the group without leaking their true identities; but the signer’s identity is able to
be opened, i.e., discovered by the group manager (GM) on disputes. The counterpart of a group signature
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in the real world is official seal, at the sight of which, anyone can be assured that it is made by some person
from the claimed authority, but have no idea of who that person is.

In brief, a group signature scheme is composed of the following steps: (1) GM, the group manager, chooses
the security parameters as well as a group secret key and a group public key. (2) Any group member candidate
is required to choose his member secret key, and run an interactive protocol with GM to join in the group,
during which GM generates a signature on the member secret key blindly, i.e., without knowing the secret key
value, the signature is also called member certificate. (3) Any group member can generate group signatures
using his member secret key and member certificate, called group signing key all together.

Generic Constructions of Group Signature. Any wUF signature can be used to construct secure
group signature [Pet97][BSZ05], but their generic constructions are not much efficient.

We will investigate the generic construction based on WoUF signatures following the line of [BSZ05], aiming
to get efficient schemes. What behind our idea is a linkage between randomization of WoUF signatures and
anonymity of group signatures. Essentially a group signature can be viewed as a proof of knowledge of a
signature signed by GM. If the signature is WoUF, then each member can derive a new signature, i.e., a new
member certificate, on his member secret. Because the new member certificate seems random, it is safe to be
published and be part of the generated group signature instead of being concealed and proved the correctness
of concealment as in [BSZ05].

In fact, ad hoc examples of group signatures consisting with the above idea have been proposed [CL04,
BBS04], but the generic method behind their observations has not been investigated and paid enough atten-
tion.

Our Contribution. We have given explicit definition of WoUF signatures, generalized and formalized
the method of constructing a group signature from a randomizable signature, and pointed out what kind of
such signatures can be adopted in this application: WoUF signature with indirectly-signability and perfectly-
unlinkability, the latter feature is firstly defined and identified in this paper.

Our generic construction resulted in group signatures with shorter signature length or simpler signature
generation. We propose improvements to the group signature schemes of [CL04], [NSN04], [KY05].

Organization. The definition of WoUF is given in Section 3, and some examples of WoUF are also
demonstrated in this section, those marked with “+” mean they are variants of the original schemes to fit
into our definition.

The generic construction of group signature based on a kind of WoUF signatures is shown in Section 4.1,
with detailed guideline of proofs in Appendix C. The security model of group signature which our generic
construction is based on is clarified in Appendix B. The examples of our generic construction are available in
Section 4.3.

2 Preliminary

2.1 Notation

x
$←− X denotes x is chosen uniformly at random from the set X. x

$←− A(., ., .) denotes x is generated from
executing algorithm A where random variables are chosen uniformly at random. Gk, (Z∗p)k denote a k tuple
from G and Z∗p respectively. 0k (1k) denotes the string of k zeros (ones). |M | denotes the binary length of
M . If (P, V ) is a non-interactive proof for relation ρ, P (x,w, R) denotes the operation of generating a proof
for (x,w) ∈ ρ under the common reference string R, V (x, π, R) denotes the operation of verifying a proof π.

ε(k) is a negligible function if ε(k) ≤ 1/P (k) for any polynomial P (k) and all sufficiently large k.

2.2 Definitions

Definition 1 (wUF-ATK[DK01]). A signature scheme DS is wUF-ATK secure (ATK ∈ {CMA, ACMA}),
i.e., weakly unforgeable against ATK attack, if for every probabilistic polynomial-time oracle machine A, it
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holds that

AdvwUF−ATK
DS,A = Pr[V er(pk, m, σ) = 1,m 6= mi, (m,σ)←A(mi, σi, pk),

(pk, sk)←Gen(k), (mi, σi)←Q
Sig(sk,.)
A , i = 1, ..., qsig] < ε(k)

where ε(k) is a negligible function, the probability is taken over the coin tosses of algorithms Gen, Sig and A.
Q

Sig(sk,.)
A denotes the finite set of queries to oracle Sig(sk, .) made by A.

Definition 2 (wUF). A signature scheme is wUF, if it is wUF-CMA secure or wUF-ACMA secure.

3 Weakly only Unforgeable (WoUF) Signature

The formal definitions of wUF and sUF are available in many textbooks, e.g., [DK01].

Definition 3 (WoUF Signature). A WoUF signature scheme is a wUF digital signature scheme that has a
efficient signature randomization algorithm Rnd besides algorithms (Gen,Sig,Ver):

• Gen: N→K: a probabilistic polynomial-time algorithm with input k (called security parameter), output
(pk, sk) ∈ K, where K is a finite set of possible keys; pk is called public key, sk is secret key kept to the
signer, i.e., the owner of the instance of the signature scheme.

• Sig: K×M→S: a probabilistic polynomial-time algorithm with input (sk, m), where sk is the same
output from K above, m ∈ M , M is a finite set of possible messages. Output is σ = (Υ,Σ) ∈ S, where
Υ is random chosen independent from m, Σ is calculated from Υ and m.

• Ver: K×M×S→{0, 1}: a deterministic polynomial-time algorithm with input (pk, m, σ), output 1 if σ
is valid, i.e., σ is really computed by the owner of the signature instance, output 0 otherwise.

• Rnd: M×S → S: a probabilistic polynomial-time algorithm with a random input and a signature (Υ,Σ)
on m, output a (Υ′,Σ′) 6= (Υ,Σ) that is also a signature on m.

The following concept of indirectly signable is a restatement of signatures on committed message [CL04].

Definition 4 (Indirectly Signable). A signature is indirectly signable if there exists a one way function f (as
defined in Chapter 9.2.4, [MvOV96] or more technically as in Chapter 2.2, [Gol01]) and an efficient algorithm
Sigf that Sig(sk, m) = Sigf (sk, f(m)).

Definition 5 (Perfectly Unlinkable). A WoUF signature wDS=(Gen,Sig,Ver,Rnd) is perfectly unlinkable

if for any two message signature pairs (mi,Υi,Σi)i=0,1, and a given Σ′ that (Υ′,Σ′) $←− Rnd(mφ,Υφ,Σφ),

φ
$←− {0, 1}, there exists a random value for each i that Σ′ is part of a randomization of (mi,Υi,Σi), i.e., it is

not possible to distinguish φ if only Σ′ is revealed.

Note that this feature is important to generate a secure group signature as shown in proof of Lemma 4.1.
Not all WoUF signatures admits such a characteristic. For example, Scheme A in [CL04] has a natural

randomization algorithm: (a, b, c)→ (ar, br, cr) for any random r. But this randomization does not satisfy
perfectly unlinkability, and adopting such randomization will result in insecure group signature. That may
explain the reason why (a, b, c)→ (ar, br, cr′) is adopted in the generated group signature in [CL04]. But the
feature of perfectly unlinkability is not identified there.

In the sequel, we demonstrate some examples of WoUF signatures with indirectly-signability and perfectly-
unlinkability, where CL02 and CL04+ are restatements of [CL02] and [CL04] in line with our definitions. The
examples are summarized in Table 1.

3.1 CL02

A CL02 signature on m with length lm is (e, s, v) that ve = ambsc mod n, where the lengths of e, s are
le, ls respectively and e is a prime number, v ∈ Zn. (See [CL02] for the notations.) It admits the following
randomization algorithm:
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Scheme Signature Randomization OWF Security
CL02 Υ = (e, s),Σ = (v) Υ′ = (e, s + re),Σ′ = (vbr) f(m) = am ACMA, PU
CL04+ Υ = (s),Σ = (a, b, c) Υ′ = (sr2),Σ′ = (ar1r2 , br1r2 , cr1) f(m) = gm

1 ACMA, PU
Wat05+ Υ = (s),Σ = (a, b) Υ′ = (sr1),Σ′ = (ar1gr2 , br1(u′

∏
mi=1 ui)r2) — ACMA, PU

BB04+ Υ = (s, t),Σ = (A) Υ′ = (s, rt),Σ′ = (Ar) — ACMA, PU
BBS04+ Υ = (s, t),Σ = (A) Υ′ = (s, rt),Σ′ = (Ar) f(m) = hm

1 CMA, PU
NSN04* Υ = (a, b, c),Σ = (A) Υ′ = (a, b + ra, c + r),Σ′ = (A + rPpub) f(m) = mP ACMA, PU
CL04* Υ = (s),Σ = (a, b) Υ′ = (sr1),Σ′ = (ar1gr2 , br1(XY m)r2) f(m) = gm ACMA, PU

Table 1: A Summary Table of Examples of WoUF Signatures (Note: PU denotes perfectly unlinkability).

• Rnd. On input pk = (n, a, b, c), message m, and a signature (Υ,Σ), where Υ = (e, s), Σ = (v), choose
random r with length lr = ls − le − 1, set Υ′ = (e, s + re), Σ′ = (vbr).

CL02 is ACMA secure (proved in standard model [CL02]); it is indirectly signable if we define f(m) = am;
obviously, it is also perfectly unlinkable because each randomized Σ′ only consists of one element that is
generated independently and randomly each time.

3.2 CL04+

The concept of WoUF has been adopted when signatures are applied in anonymous credential system, group
signature, e.g., Scheme A in [CL04] combining its randomization in forming a anonymous credential or group
signature scheme is actually WoUF, the following is a restatement of it according to definition 3 with an extra
algorithm Rnd, we call it CL04+.

CL04+. Let g be a p order cyclic group that exists a bilinear map e : G1×G2 → G3. G1 = 〈g〉, G2 = 〈g̃〉.
Gen. It chooses x

$←− Z∗p and y
$←− Z∗p , and sets sk = (x, y), pk = (p, g, g̃, G1, G2, e, X, Y ), where

X = g̃x and Y = g̃y.
Sig. On input message m, secret key sk = (x, y), and public key pk, choose a random d ∈ G1, and

a random s ∈ Z∗p , and output the signature (Υ,Σ) where Υ = (s), Σ = (ds, dsy, dx+mxy). Note
that (a1/s, b1/s, c) is a signature of m according to Scheme A in [CL04].

Ver. On input pk, message m, and purported signature (Υ,Σ) = (s, a, b, c), check that the following
verification equations hold: e(a, Y ) = e(b, g̃) and e(a,X)e(b,X)m = e(c, g̃)s.

Rnd. On input pk, message m, and a signature (Υ,Σ) = (s, a, b, c), choose random r1 ∈ Z∗p and
r2 ∈ Z∗p , output (Υ′,Σ′) where Υ′ = (s′) = (r2s), Σ′ = (a′, b′, c′) = (ar1r2 , br1r2 , cr1).

CL04+ is wUF-ACMA which can be proved similarly as Scheme A in [CL04]. Briefly, suppose A is an
adversary of CL04+, then an adversary B of LRSW assumption (defined in [CL04]) is available: when A
queries signature on m, B transfers the query to LRSW oracle Ox,y (defined in [CL04]); B will get a response

from LRSW oracle Ox,y, i.e., (a, b, c)=(a, ay, ax+mxy), then B sends (s, as, bs, c) (s $←− Z∗p) to A. If A outputs

a signature (s∗, a∗, b∗, c∗) on a message m∗ that it has never queried, then (m∗, a∗
1

s∗ , b∗
1

s∗ , c∗) is a resolution
to LRSW assumption, B wins.

CL04+ is indirectly signable if define f(m) = gm. It is perfectly unlinkable because of the following
reason. If (mi, si, ai, bi, ci)i=0,1 are two valid message signature pairs, suppose Σ′ = (a′, b′, c′) is from a
randomization of (mφ, sφ, aφ, bφ, cφ)φ∈{0,1}, i,e., a′ = ar1r2

φ , b′ = br1r2
φ , c′ = cr1

φ , then for i = φ, the random
value is (r1, r2) obviously, for i 6= φ, there exists random value (r̃1, r̃2) resolvable from r1r2 = αr̃1r̃2 and
r1s

−1
φ (x + mφxy) = αr̃1s

−1
i (x + mixy), where α = logai

aφ.
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3.3 Wat05+

Similarly the recently proposed signature in [Wat05], which is provable secure under CBDH assumption
(Computational Bilinear Diffie-Hellman assumption) without random oracle, is also a WoUF signature if only
we change a bit on it, see the following restatement with an extra algorithm Rnd.

Wat05+. Let G, G′ be two p order cyclic groups, and there exists a bilinear map e : G×G → G′. G = 〈g〉.
Gen. Set secret key sk = (x), pk = (e, g1, g2, u

′, ui, i = 0, .., l), where g1, g2, u
′, ui are all elements from

G, g1 = gx, l is the maximum binary length of a message to be signed.
Sig. Given a message m with length at most l, the signature (Υ,Σ) is Υ = (s), Σ = (a, b) =

(gr, gsx
2 (u′

∏
mi=1 ui)r), where s

$←− Z∗p . Note that (a1/s, b1/s) is a signature of m according to
Scheme [Wat05].

Ver. Given a message m and its signature (Υ,Σ) = (s, a, b), it is a valid signature on m if e(b, g) =
e(u′

∏
mi=1 ui, a)e(g2, g1)s.

Rnd. On input pk, message m, and a signature (Υ,Σ), where Υ = (s), Σ = (a, b), choose (r1, r2)
$←−

Z∗p × Z∗p , set Υ′ = (s′) = (sr1), Σ′ = (a′, b′) = (ar1gr2 , br1(u′
∏

mi=1 ui)r2). The new randomized
signature on m is (Υ′,Σ′).

Wat05+ is wUF-ACMA. Briefly, Suppose A is an adversary of Wat05+, then an adversary B of Wat05
is available: when A queries signature on m, B transfers the query to signature oracle of Wat05 obtaining
(a, b) = (gr, gx

2 (u′
∏

mi=1 ui)r), which is then modified by B into (s, as, bs) where s
$←− Z∗p ; the modification,

now a valid Wat05+ signature on m, is sent to A. If A outputs a signature (s∗, a∗, b∗) on a message m∗ that
it has never queried, then (a∗

1
s∗ , b∗

1
s∗ ) is a valid Wat05 signature on m∗ that B has not queried.

Wat05+ is not indirectly signable because m must be known to calculate the signature.
Wat05+ is perfectly unlinkable: if (mi, si, ai, bi)i=0,1 are two valid message signature pairs, suppose Σ′ =

(a′, b′) is from a randomization of (mφ, sφ, aφ, bφ)φ∈{0,1}, i,e., a′ = ar1
φ gr2 , b′ = br1

φ (u′
∏

mφj
=1 uj)r2 , then for

i = φ, the random value is (r1, r2) obviously, for i 6= φ, there exists random value (r̃1, r̃2) resolvable from αr̃1+
r̃2 = βr1 +r2 and r̃1six−r1sφx = γ(βr1 +r2), where α = logg ai, β = logg aφ, γ = logg (

∏
mφj

6=mij
uj

mφj
−mij ).

3.4 BB04+

Some proposed sUF signatures can be converted into WoUF signature, e.g., the following BB04+, which con-
tributes a lot in improving a group signature with concurrent joining (Section 4.8.1), is such a transformation
from the full scheme of [BB04].

BB04+. Let G1, G2 be two p order cyclic groups, and there exists a bilinear map e : G1 × G2 → G3.
G1 = 〈g〉, G2 = 〈g̃〉.

Gen. It chooses x
$←− Z∗p , y

$←− Z∗p , and sets sk = (x, y), pk = (p,G1, G2, g, g̃, X, Y, e), where X = g̃x,
Y = g̃y.

Sig. On input message m, secret key sk, and public key pk, choose (s, t) $←− Z∗p
2, compute A =

g
t

x+m+ys , output the signature (Υ,Σ) where Υ = (s, t), Σ = (A). Note that (s,A
1
t ) is a valid

[BB04] signature on m.
Ver. On input pk, message m, and purported signature (Υ,Σ) = (s, t, A), check that e(A,XY sg̃m) =

e(gt, g̃).
Rnd. On input pk, message m, and a signature (Υ,Σ) = (s, t, A), choose r

$←− Z∗p , output (Υ′,Σ′)
where Υ′ = (s′, t′) = (s, rt), Σ′ = (A′) = (Ar).

BB04+ can be proved wUF-ACMA similarly to the scheme [BB04]. Briefly, suppose A is an adversary
of BB04+, then an adversary B of [BB04] is available: when A queries signature on m, B transfers the
query to signature oracle of [BB04]; B will get a response from the signature oracle, i.e., (s,A), where
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e(A,XY sg̃m) = e(g, g̃), then B chooses t
$←− Z∗p , sends (s, t, At) to A. If A outputs a signature (s∗, t∗, A∗) on

a message m∗ that it has never queried, then (s∗, A∗
1
t∗ ) is a valid BB04+ signature on m∗, which B has never

queried.
Obviously, BB04+ is perfectly unlinkable because each randomized Σ′ only consists of one element that is

generated independently and randomly each time, but it is not indirectly signable because m must be known
to calculate a signature on it.

3.5 BBS04+

To compensate the drawback of non-directly signability of BB04+, the following BBS04+ is an indirectly
signable WoUF signature based on [BBS04], at the cost of weaker security.

BBS04+. Let G1, G2 be two p order cyclic groups, and there exists a bilinear map e : G1 × G2 → G3.
G1 = 〈g〉, G2 = 〈g̃〉.

Gen. It chooses x
$←− Z∗p , and sets sk = (x), pk = (p,G1, G2, g, g̃, h1, e, w), where w = g̃x, h1

$←− G1.

Sig. On input message m, secret key sk = (x), and public key pk, choose s
$←− Z∗p and t

$←− Z∗p ,

compute A = (hm
1 g)

t
x+s , output the signature (Υ,Σ) where Υ = (s, t), Σ = (A). Note that

(s,A
1
t ) is a valid [BBS04] signature on m.

Ver. On input pk, message m, and purported signature (Υ,Σ) = (s, t, A), check that e(A,wg̃s) =
e(hm

1 g, g̃t).
Rnd. On input pk, message m, and a signature (Υ,Σ) = (s, t, A), choose r

$←− Z∗p , output (Υ′,Σ′)
where Υ′ = (s, rt), Σ′ = (Ar).

BBS04+ can be proved wUF-CMA similarly to the scheme [BBS04]. Briefly, suppose A is an adversary
of BBS04+, then an adversary B of [BBS04] is available: when A queries signature on m, B transfers the
query to signature oracle of [BBS04]; B will get a response from the signature oracle, i.e., (s,A), where

e(A,wg̃s) = e(hm
1 g, g̃), then B chooses t

$←− Z∗p , sends (s, t, At) to A. If A outputs a signature (s∗, t∗, A∗) on a

message m∗ that it has never queried, then (s∗, A∗
1
t∗ ) is a valid BBS04+ signature on m∗, which B has never

queried.
BBS04+ is indirectly signable if we define f(m) = hm

1 . Obviously, BBS04+ is perfectly unlinkable because
each randomized Σ′ only consists of one element that is generated independently and randomly each time.

3.6 NSN04*

NSN04* is a new WoUF signatures based on [NSN04]. As we mentioned before, BB04+ is ACMA secure but
not indirectly signable, while BBS04+ is indirectly signable but only CMA secure, among the signatures that
their security can be reduced to q-SDH assumption. NSN04* has all the features.

NSN04*. Let G be a p order additive cyclic group (to consistent with [NSN04]), and there exists a bilinear
map e : G×G → G′. G = 〈P 〉.

Gen. It chooses γ
$←− Z∗p , and sets sk = (γ), pk = (p,G, G′, P, P0, Ppub, e), where Ppub = γP , P0

$←− G.

Sig. On input message m, secret key sk = (γ), and public key pk, choose (a, b, c) $←− Z∗p
3, compute

A = 1
γ+a [mP + (b + γc)Ppub + P0], output the signature (Υ,Σ) where Υ = (a, b, c), Σ = (A).

Note that (a,A) is a valid [NSN04] signature on m if b + γc = 0 mod p.
Ver. On input pk, message m, and purported signature (Υ,Σ) = (a, b, c, A), check that e(A,Ppub +

aP ) = e(mP + bPpub + P0, P )e(cPpub, Ppub).
Rnd. On input pk, message m, and a signature (Υ,Σ) = (a, b, c, A), choose r

$←− Z∗p , output (Υ′,Σ′)
where Υ′ = (a, b + ra, c + r), Σ′ = (A + rPpub). It can be checked that e(A′, Ppub + a′P ) =
e(mP + b′Ppub + P0, P )e(c′Ppub, Ppub), where A′ = A + rPpub, a′ = a, b′ = b + ra, c′ = c + r.
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The security if NSN04* is guaranteed by the following Lemma.

Lemma 3.1. NSN04* is wUF-ACMA if q-SDH problem in G is hard, where q is polynomial in |p|. See
Appendix A for the proof.

NSN04* is indirectly signable if we define f(m) = mP . Obviously, NSN04* is perfectly unlinkable because
each randomized Σ′ only consists of one element that is generated independently and randomly each time.

3.7 CL04*

CL04* is a new WoUF signature based on [CL04]. CL04* improves CL04+ by reducing the total signature
size and keeping ACMA secure, perfectly unlinkable, indirectly signable.

CL04*. Let G1 be a p order cyclic group that exists a bilinear map e : G1 × G2 → G3. G1 = 〈g〉,
G2 = 〈g̃〉.

Gen. Select (x, y) R←− Z∗p × Z∗p , set X = gx, Y = gy, X̃ = g̃x, Ỹ = g̃y. The secret key is sk = (x, y),
public key is pk = (X, Y, X̃, Ỹ , g, g̃, e, p).

Sig. Given a message m ∈ Z∗p , its signature is (Υ,Σ), where Υ = (s), Σ = (a, b) = (gr, gr(x+my)+sxy),

(r, s) $←− Z∗p × Z∗p .
Ver. Given a signature (Υ,Σ)=(s, a, b) of m, check if e(b, g̃) = e(a, X̃Ỹ m)e(X, Ỹ )s. If the equation

holds, then accept (Υ,Σ) as a valid signature of m, otherwise reject it as invalid.
Rnd. On input pk, message m, and a signature (Υ,Σ) = (s, a, b), choose random r1, r2 ∈ Z∗p × Z∗p ,

output (Υ′,Σ′) where Υ′ = (s′) = (r1s), Σ′ = (a′, b′) = (ar1gr2 , br1(XY m)r2).

The security of CL04* is based on the following assumption proposed in [ZL06b].

Assumption 1. Suppose G1, G2 be two p ordered cyclic group that exists a bilinear map e : G1 ×G2 → G3,
G1 = 〈g〉, G2 = 〈g̃〉. Let X = gx, Y = gy, X̃ = g̃x, Ỹ = g̃y, Ox,y(.) be an oracle that, on input a value
m ∈ Z∗p , outputs a pair (gr, gr(x+my)+xy) for a randomly chosen r ∈ Z∗p \ {1}. Then for any probabilistic
polynomial time bounded adversary A, the following probability is negligible:

Pr[(p,G1, G2, G3, e, g, g̃) ← Setup(1k);x R←− Z∗p ; y R←− Z∗p ;X = gx;Y = gy; X̃ = g̃x; Ỹ = g̃y;

(m,a, b) ← AOx,y(p, g, g̃, e, X, Y, X̃, Ỹ ) : m ∈ Z∗p\Q ∧
a = gr ∧ a /∈ {1G1 , g} ∧ b = gr(x+my)+xy] < ε,

where Q is the set of queries that A has made to Ox,y(.), 1G1 is the unit element of G1.

CL04* is wUF-ACMA under Assumption 1. Briefly, SupposeA is an adversary of CL04*, then an adversary
B of Assumption 1 is available: when A queries signature on m, B transfers the query to oracle Ox,y obtaining

(a, b) = (gr, gr(x+my)+xy), which is then modified by B into (s, as, bs) where s
$←− Z∗p ; the modification, now a

valid CL04* signature on m, is sent to A. If A outputs a signature (s∗, a∗, b∗) on a message m∗ that it has
never queried, then (a∗

1
s∗ , b∗

1
s∗ ) is a resolution to Assumption 1.

CL04* is indirectly signable if define f(m) = gm. It is also perfectly unlinkable: if (mi, si, ai, bi)i=0,1 are
two valid message signature pairs, suppose Σ′ = (a′, b′) is from a randomization of (mφ, sφ, aφ, bφ)φ∈{0,1}, i,e.,
a′ = ar1

φ gr2 , b′ = br1
φ (XY mφ)r2 , then for i = φ, the random value is (r1, r2) obviously, for i 6= φ, there exists

random value (r̃1, r̃2) resolvable from αr̃1 + r̃2 = βr1 + r2 and r̃1six − r1sφx = (βr1 + r2)(mφ −mi), where
α = logg ai, β = logg aφ.

4 Group Signature from WoUF Signature

Definition 6 ([BSZ05]). A group signature is a signature scheme composed of the following algorithms
between GM (including IA, issuing authority, and OA, opening authority), group members and verifiers.
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– Setup: an algorithm run by GM (IA and OA) to generate group public key gpk and group secret key gsk;

– Join: a probabilistic interactive protocol between GM (IA) and a group member candidate. If the protocol
finishes successfully, the candidate becomes a new group member with a group signing key gski including
member secret key mski and member certificate certi; and GM (IA) adds an entry for i (denoted as regi)
in its registration table reg storing the protocol transcript, e.g. certi. Sometimes the procedure is also
separated into Join and Iss, where Join emphasize the part run by group members as well as Iss denotes
the part run by IA.

– GSig: a probabilistic algorithm run by a group member, on input a message m and a group signing key
gski = (mski, certi), returns a group signature σ;

– GVer: a deterministic algorithm which, on input a message-signature pair (m,σ) and GM’s public key
gpk, returns 1 or 0 indicating the group signature is valid or invalid respectively;

– Open: a deterministic algorithm which, on input a message-signature pair (m,σ), secret key gsk of GM
(OA), returns identity of the group member who signed the signature, and a proof π.

– Judge: a deterministic algorithm with output of Open as input, returns 1 or 0, i.e., the output of OPEN
is valid or invalid.

4.1 Generic Construction of GS

Select a WoUF signature DS = (Ks, Sig, V er,Rnd) (Ks = Gen) which is indirectly signable with a one way
function f , and perfectly unlinkable, a probabilistic public encryption PE = (Ke, Enc,Dec).

Define the following relations:

ρ: (x,w) ∈ ρ iff x = f(w).
ρ1: ((pke, pks,m, C,Σ), (w, Υ, r)) ∈ ρ1 iff V er(pks, w, (Υ,Σ)) = 1

and C = Enc(pke, f(w), r) and (pks, ·) ← Ks, (pke, ·) ← Ke.
ρ2: ((pke, C, m), (w)) ∈ ρ2 iff Dec(pke, w, C) = m and (pke, ·) ← Ke.

Assume (P, V ), (P1, V1) and (P2, V2) are non-interactive proofs for relation ρ, ρ1 and ρ2, which have access
to common reference string R, R1 and R2 respectively. Let SIM , SIM1, SIM2 be their corresponding
simulation algorithm. The detailed definition of non-interactive proof is referred to [BSZ05].

(P, V ) is also defined to be with an online extractor (in the random oracle model), i.e., it has the following
features (let k be the security parameter) [Fis05]:

Completeness: For any random oracle H, any (x,w) ∈ ρ, and any π ← PH(x,w, R), it satisfies Pr[V H(x, π, R) =
1] ≥ 1− ε1(k), where ε1(k) is a negligible function.

Online Extractor: There exists a probabilistic polynomial time algorithm K, the online extractor, such
that the following holds for any algorithm A. Let H be a random oracle, QH(A) be the answer sequence H
to queries from A. Let w ← K(x, π, QH(A)), then as a function of k, Pr[(x,w) /∈ ρ, V H(x, π, R) = 1] < ε2(k),
where ε2(k) is a negligible function.

GS is constructed as follows, and the details are described in Table 2 and Table 3.
Setup. Select an instance of DS and PE, let secret key of DS be the secret key of IA, secret key of PE

be the secret key of OA.
Join. User i selects its member secret key ski in message space of DS, computes pki ← f(ski), generates

π, a non-interactive zero-knowledge proof of knowledge of ski for relation ρ. IA checks the correctness of
π and generates a DS signature on ski: certi = Sigf (sks, pki) = Sig(sks, ski), sets regi = pki. The group
signing key of i is gski = (certi, ski).

GSig. On input (gpk, gski,m), parse certi into (Υ,Σ), firstly derive a new certification (Υ′,Σ′) =
Rnd(gpk, ski,Υ,Σ); encrypt pki with PE: C ← Enc(pke, pki, ri), where ri is random; then generate π1,
a non-interactive zero-knowledge of proof of knowledge of (ski,Υ′, ri) for relation ρ1; in the end, transfer π1
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into a signature on m using any method of transferring a non-interactive zero-knowledge proof into a signa-
ture [FS87, BG90, CD95, CL06], we also use π1 to note the transferred signature for simplicity. The group
signature on m is σ = (C, Σ′, π1).

GVer. On input (gpk, m, σ), parse σ as (C, Σ′, π1), check the correctness of π1, return 1 if it is correct,
return 0 otherwise.

Open. On input (gpk, ok, reg, m, σ), parse σ as (C, Σ′, π1). OA firstly checks the validity of the group
signature σ on m, if it is not valid, stops; otherwise decrypts C to get M , and generates π2, a proof of
knowledge of decryption key ok for relation ρ2. If M = pki for some pki in reg, return the corresponding
index or identity and π2, else returns zero and π2.

Judge. Check the validity of the group signature and the output of Open.

User i Issue Authority
Select ski, pki ← f(ski),

π ← P (pki, ski, R) pki,π−−−→ If V (pki, π, R) = 1,
certi ← Sigf (sks, pki),

gski ← (pki, ski, certi)
certi←−−− regi = pki.

Table 2: Algorithm Join of GS.

Algorithm Setup(1k):

R
$←− {0, 1}P (k), R1

$←− {0, 1}P1(k),

R2
$←− {0, 1}P2(k), (pks, sks) ← Ks(1k),

(pke, ske) ← Ke(1k),
gpk = (R, R1, R2, pke, pks),
ok = (ske), ik = (sks).
return (gpk, ok, ik).
Algorithm GVer(gpk,m, σ):
Parse σ as (C, Σ′, π1),
Parse gpk as gpk = (R, R1, R2, pke, pks),
Return V1((pke, pks,m, C,Σ′), π1, R1).
Algorithm Judge(gpk, reg, m, σ, i, M, π2):
Parse gpk as gpk = (R, R1, R2, pke, pks),
Parse σ as (C, Σ′, π1),
If GV er(gpk, m, σ) = 0, return ⊥.
If i = 0, and M 6= Regj for all j,
return V2((pke, C, M), π2, R2),
else if M = regi,
return V2((pke, C, M), π2, R2).

Algorithm GSig(gpk, gski,m):
Parse certi as (Υ,Σ),
Parse gpk as (R, R1, R2, pke, pks),
(Υ′,Σ′) = Rnd(gpk, ski,Υ,Σ);
C ← Enc(pke, pki, ri), ri random;
π1 = P1((pke, pks,m, C,Σ′), (ski,Υ′, ri), R1).
σ = (C, Σ′, π1).
return σ.
Algorithm Open(gpk, ok, reg, m, σ):
Parse gpk as gpk = (R, R1, R2, pke, pks),
Parse σ as (C, Σ′, π1),
If GV er(gpk,m, σ) = 0, return ⊥.
M ← Dec(ske, C),
If M = regi, ∃i,
π2 = P2((pke, C, M), (ske), R2),
return (i, τ), where τ = (M, π2);
else return (0, τ), where τ = (M, π2).

Table 3: Algorithms Setup, GSig, GVer, Open, Judge of GS.

Comparison. Notice the difference between ours construction and the generic construction in [BSZ05]:
In [BSZ05], the group signature is σ = (C, π1) = (Enc(pke, < i, pki,Υ,Σ, s >, ri), π1), where s = S(ski,m)

and π1 is a proof of knowledge of (pki,Υ,Γ, s, ri) satisfying V er(pks, < i, pki >, (Υ,Σ)) = 1, C = Enc(pke, <
i, pki,Υ,Σ, s >, ri), and V (pki,m, s) = 1. (S, V ) is the signature generation and verification algorithms of an
independent signature scheme.

However in our construction, the group signature is σ = (C, Σ′, π1) = (Enc(pke, pki, ri), Σ′, π1), where π1

is a proof of knowledge of (ski,Υ′, ri) satisfying V er(pks, ski, (Υ′,Σ′)) = 1 and C = Enc(pke, f(ski), ri).
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Our construction is more efficient in that less items are to be encrypted in C, thus enabling efficient proof
of knowledge of encrypted context, which is more clear from the specific examples in Section 4.3.

4.2 Security Proofs

The correctness of GS is obvious. The following proofs follow [BSZ05], and the detailed guideline of proofs
are provided in Appendix C.1, C.2, C.3 respectively.

Lemma 4.1. GS is anonymous if PE is IND-CCA, (P1, V1) is a simulation sound, computational zero-
knowledge proof, (P2, V2) is a computational zero-knowledge proof.

Lemma 4.2. GS is traceable if DS is wUF-ACMA, (P1, V1), (P2, V2) are sound proofs of knowledge and
(P, V ) is a proof of knowledge with online extractor (in random oracle model).

Lemma 4.3. GS is non-frameable if f is one way function, (P, V ) is a computational zero-knowledge proof,
(P1, V1) and (P2, V2) are sound proofs of knowledge.

4.3 Examples

Many efficient group signatures have been proposed, e.g., [ACJT00], [CL04], [BBS04], [NSN04], [KY05]. We
will replace their underlying signature scheme with the WoUF signatures listed above, substitute the encrypted
content to f(ski), and make some necessary revision in their proof of knowledge (i.e., signature of knowledge,
denoted as SK [CS97]) to match the change. The outputs of SK{x1, ..., xn : g

xi1
i1

· · · gxik
ik

= Ai, {i1, ..., ik} ⊆
[1, n]}{m} in the sequel (except 4.4) are standard, i.e., π = (c, s1, ..., sn), where c = H(...‖gs11

11
···gs1k

1k
Ac

1‖...‖g
si1
i1
·

· · gsik
ik

Ac
i‖...‖m), so the length of the output is associated with the number of the items to be proved, thus we

do not have to go into the details of each SK to compare their group signature lengths and computations,
instead we can get a rough and enough comparison by counting the number of the items to be proved, since
in our cases each item has a similar size.

4.4 Group Signature from CL02

Applying the proposed construction to the WoUF signature CL02 is a new group signature GS(CL02) with
similar performance to [ACJT00], because they both have 7 items belonging to Z∗n. The signature generation
is more easier to realize, which is just a straightforward proof of knowledge of discrete logarithm, while more
artifice are needed in [ACJT00] because v is encrypted.

GS(CL02).
Member secret key: xi. Member certificate (Υ,Σ) = (e, s, v)
Relation: ve = axibsc mod n, 2le−1 < e < 2le , 2ls−1 < s < 2ls .
GSig.
1. Randomize his member certificate: Υ′ = (e′, s′), Σ′ = (v′)
2. Encrypt axi as in [ACJT00]: T1 = axiyr mod n, T2 = gr mod n; compute π = SK{s′, e, xi, r :
T1 = axiyr mod n, T2 = gr mod n, v′e

′
= axibs′c mod n, 2le−1 < e < 2le , 2ls−1 < s < 2ls}{m}.

3. The group signature is (T1, T2, v
′, π).

4.5 Group Signature from BBS04+

In the end of introduction part of [BBS04], a new group signature using the method of [CL04] was briefly
mentioned (“Their methodology can also be applied to the SDH assumption, yielding a different SDH-based
group signature.”).

We realize this new group signature GS(BBS04+) by applying the proposed construction to BBS04+
signature. The efficiency of GS(BBS04+) is almost the same as that of the one with strong exculpability
[BBS04], but the signature generation of GS(BBS04+) is more easier to realize, which is just a straightforward
proof of knowledge of discrete logarithm.
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GS(BBS04+).
Member secret key: xi. Member certificate (Υ,Σ) = (s, t, A)
Relation: e(A,wg̃s) = e(hxi

1 g, g̃t).
GSig.

1. Randomize his member certificate: Υ′ = (s, rt), Σ′ = (Ar), where r
$←− Z∗p

2. Encrypt hxi
1 as in [BBS04]: T1 = uα, T2 = vβ, T3 = g̃shα+β

3. Let S = Ar, compute π = SK{s, t, xi, α, β : T1 = uα, T2 = vβ, T3 = g̃shα+β, e(S,wg̃s) = e(hxi
1 g, g̃t)}{m}.

4. The group signature is (S, T1, T2, T3, π).

4.6 Group Signature from CL04+, CL04*

The group signature of [CL04] is in fact an application of the proposed construction to CL04+ signature, see
GS(CL04+) in the following table.

It can be improved in signature length by applying the construction to CL04*, the new group signature
GS(CL04*) has less items than GS(CL04+), i.e., 170 bits shorter under the same security parameters of
[NSN04, Ngu05].

GS(CL04+): Please refer to [CL04] for the notations.
Member secret key: k. Member certificate: a, b, c
Relation: e(a, Y ) = e(g, b), e(X, a)e(X, b)k = e(g, c)
GSig:
1. Encrypt ∆=e(gk, g): c1 = gu, c2 = hu, c3 = y1

u∆, c4 = yu
2y

uH(c1‖c2‖c3)
3

2. Randomize (a, b, c) → (ã, b̃, ĉ), compute π = SK{k, ρ, u : e(X, ã)e(X, b̃)k = e(g, ĉ)ρ, c1 = gu, c2 = hu,
c3 = y1

u∆, c4 = yu
2y

uH(c1‖c2‖c3)
3 }{m}.

3. The group signature is (ã, b̃, ĉ, c1, c2, c3, c4, π).
GS(CL04*):
Member secret key: k. Member certificate: s, a, b

Relation: e(b, g̃) = e(a, X̃Ỹ k)e(X, Ỹ )s

GSig:
1. Encrypt ∆=e(gk, g): c1 = gu, c2 = hu, c3 = y1

u∆, c4 = yu
2y

uH(c1‖c2‖c3)
3

2. Randomize (s, a, b) → (s′, a′, b′), compute π = SK{k, s′, u : e(b′, g̃) = e(a′, X̃Ỹ k)e(X, Ỹ )s′ , c1 = gu, c2 = hu,
c3 = y1

u∆, c4 = yu
2y

uH(c1‖c2‖c3)
3 }{m}.

3. The group signature is (a′, b′, c1, c2, c3, c4, π).

4.7 Group Signature from NSN04*

The efficient group signature of [NSN04] can be improved in signature length by applying the generic con-
struction to NSN04*, the new group signature GS(NSN04*) has less items than [NSN04], i.e., 170 bits shorter
under the same security parameters of [NSN04]1.

1This group signature can be further improved as described in Appendix D, which will be shorter than GS(NSN04*), but
GS(NSN04*) has an advantage of constant context to be encrypted if reversed dynamic accumulator, an efficient membership
revocation solution, is integrated with the plain group signature [ZL06a].
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[NSN04]: Please refer to [NSN04] for the notations.
Member secret key: xi. Member certificate: ai, Si

Relation: e(aiP + Ppub, Si) = e(P, xiP + P0)
GSig:
1. Encrypt ∆i=e(Si, P ): Ea = tG, Λa = ∆iΘt

a, Eb,Λb, ς
2. Set U1 = Si + r1H, R = r1G, compute π = (c, s1, s2, s3, s4, s5) = SK{t, r1, ai, r1ai, xi : Ea = tG,
R = r1G, 0 = r1aiG− aiR, e(P, U1)Λ−1

a = e(P, H)r1Θ−t
a , e(P, U1)aie(Ppub, U1) = e(P, P )xie(P, P0)

e(P, H)r1aie(Ppub,H)r1}{m}.
3. The group signature is (Ea,Λa, Eb,Λb, ς, U1, R, c, s1, s2, s3, s4, s5).
Note: SK of [NSN04, Ngu05] was found flawed [ZC05]. The SK here follows the modified version of
[Ngu05] excluding revocation.
GS(NSN04*):
Member secret key: xi. Member certificate: ai, bi, ci, Ai

Relation: e(aiP + Ppub, Ai) = e(P, xiP + biPpub + P0) e(ciPpub, Ppub)
GSig:
1. Encrypt ∆i=e(xiP, P ): Ea = tG, Λa = ∆iΘt

a, Eb,Λb, ς
2. Randomize (ai, bi, ci, Ai) → (a′i, b

′
i, c

′
i, A

′
i), compute π = (c, s1, s2, s3, s4, s5) = SK{t, a′i, b′i, c′i, xi :

Ea = tG, Λa = e(P, P )xiΘt
a, e(P, A′i)

aie(Ppub, A
′
i) = e(P, P )xie(P, Ppub)b′ie(P, P0)e(Ppub, Ppub)c′i}{m}.

3. The group signature is (Ea,Λa, Eb,Λb, ς, A
′
i, c, s1, s2, s3, s4, s5).

4.8 Other Group Signatures

The proposed generic construction can not be immediately applied to BB04+ signature because it is not
indirectly signable, but by replacing the [BB04] signature by BB04+ in the group signature with concurrent
join [KY05], we will get a more efficient scheme KY05+ (Section 4.8.1), with group signature length 1190 bits
shorter.

Because there does not exist a one way function in [Wat05]+ signature, and no other substitutions are
known in this case, the construction can not be applied to it right now.

4.8.1 Group Signature KY05+

Public parameters and algorithms Setup, Join (Table 4), Open are exactly as [KY05], except that key-setup
for linear ElGamal encryption is eliminated.

User Issue Authority

x = x1x2, where x ∈ $←− S′ and x1 ∈ $←− S′′, x−→ If x ∈ S′, r
$←− Z∗p , s

$←− Z∗p
e(σ,wgx

2vr)? = e(g1, g2)s (r,s,σ)←−−−− σ ← g
s

γ+x+δr

1

cert = (x, r, s, σ), msk = (x1, x2)

Table 4: Algorithms Join of [KY05].

GSig. A member firstly calculates (σ′, s′, W1, W2, C0, C1, C2), then generates a proof of knowledge π
of (θx, θx1 , θx2 , θy, θy′ , θyx2 , θt, θr, θs′) that satisfies some specified relations (Table 5). The generation method
is quite similar to GSig in [KY05] except that some witnesses and relations are different, e.g., σ′,W1,W2 are
newly introduced into KY05+, while C0, C1, C2 are inherited from [KY05]. A major difference is that the
number of witnesses that need proving is fewer than that of [KY05]. Thus a group signature of KY05+ is
(σ′,W1,W2, C0, C1, C2, π), about 7|p| = 1190 bits shorter than [KY05].

If we view x = x1x2 as a one way function since factoring of x is hard, KY05+ is an application of the
proposed generic construction on BB04+ except that a non-interactive zero-knowledge proof of knowledge with
online extractor is not adopted in Join. The security of it follows from that of proposed generic construction
and [KY05].
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σ′ = σr′ , s′ = r′s r′ $←− Z∗p in G1

W1 = gyfx1
1 y

$←− S(1, 2ln−2) in QR(n)

W2 = gy′fx2
2 f t

3 y′ $←− S(1, 2ln−2) in QR(n)

C0 = Gt t
$←− S(1, 2lN−2) in Z∗N2

C1 = Ht
1(1 + N)x in Z∗N2

C2 =‖ (H2H
H(hk,C0,C1)
3 )t ‖ in Z∗N2

gθyf
θx1
1 = W1, gθy′f

θx2
2 fθt

3 = W2,
W
−θx2
1 gθyx2fθx

1 = 1, e(σ′, wgθx
2 vθr) = e(g1, g2)θs′ ,

Gθt = C0, Hθt
1 (1 + N)θx = C1,

(H2H
H(hk,C0,C1)
3 )2θt = C2

2 , θx ∈ S′, θx′ ∈ S′′.

Table 5: Algorithm GSig of KY05+.

5 Conclusion

By the help of a kind of weakly unforgeable signatures, i.e., those that are not strongly unforgeable and
are indirectly signable, perfectly unlinkable (the latter important feature has not been identified before), we
have obtained group signatures with shorter signature length or simpler signature generation. We propose
improvements to the group signature schemes of CL04, NSN04, KY05.

WoUF signatures may be also advantageous in other cases, which may needs more investigation.
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A Proof of Lemma 3.1

Proof. Suppose there exists an adversary B to the signature, we now construct an adversary A to resolve
q-SDH problem ([BB04]) in G: to calculate (c, 1

z+cQ), c ∈ Z∗p given a random tuple (Q, zQ, ..., zqQ).
B should be given public key of the signature and access to oracle Sig answered byA, obtaining qsig(≤ q−1)

message-signature pairs (mi, ai, bi, ci, Ai), i = 1, ..., qsig, B wins by outputting a forgery, i.e., a new message-
signature (m∗, a∗, b∗, c∗, A∗) that m∗ /∈ {m1, ..., mqsig}. There may be two different types of forgeries. The first
type, a∗ 6= ai,∀i; the second type, a∗ = al,∃l ∈ [1, qsig]. A will choose a random bit from {1, 2} to indicate
its guess for the forgery type, and simulate accordingly. (Note that A = 1

γ+a [mP + (b + γc)Ppub + P0] =
1

γ+a [mP + (b− ac)Ppub + P0] + cPpub).
Type 1. a∗ 6= ai,∀i.
A selects ai

$←− Z∗p , i ∈ [1, qsig] that are not equal to each other, and s
$←− Z∗p , let f(y) =

∏qsig

i=1(y+ai), γ = z,
sets public key as P = f(z)Q, Ppub = zf(z)Q, P0 = sf(z)Q, which are computable from (Q, zQ, ..., zqQ).

When B queries about a signature on mi, A firstly selects bi, ci
$←− Z∗p , calculates Ai = 1

z+ai
[miP + (bi −

aici)Ppub + P0] + ciPpub, which is computable from (Q, zQ, ..., zqQ) since (z + ai)|f(z).
The forgery (m∗, a∗, b∗, c∗, A∗) satisfies A∗ = 1

z+a∗ [m
∗P +(b∗−a∗c∗)Ppub +P0]+ c∗Ppub, i.e., A∗− c∗Ppub =

1
z+a∗ [(m

∗+s+(b∗−a∗c∗)z)
∏qsig

i=1(z+ai)Q], the probability of m∗+s = (b∗−a∗c∗)a∗ is negligible otherwise B can
be invoked to solve discrete logarithm problem in G if z is chosen by A and sQ is given as a discrete logarithm
challenge. Then there exist g(z), r 6= 0 mod p that (m∗ + s + (b∗ − a∗c∗)z)

∏qsig

i=1(z + ai) = g(z)(z + a∗) + r,
so (a∗, 1

z+a∗Q), computable from A∗ and (Q, zQ, ..., zqQ), is a resolution to the q-SDH challenge.
Type 2. a∗ = al,∃l ∈ [1, qsig].

A selects ai
$←− Z∗p , i ∈ [1, qsig] that are not equal to each other, t

$←− Z∗p , and d
$←− Z∗p , let f(y) =∏qsig

i=1(y + ai), γ = z − al, sets public key as P = f(z−al)
z Q =

∏qsig

i=1,i6=l(z − al + ai)Q, Ppub = (z − al)P ,
P0 = tzP + dP = t

∏qsig

i=1(z − al + ai)Q + dP , which are computable from (Q, zQ, ..., zqQ).

When B queries about a signature on mi, i 6= l, A firstly selects bi, ci
$←− Z∗p , calculates Ai = 1

z−al+ai
[miP +

(bi − aici)Ppub + P0] + ciPpub, which is computable from (Q, zQ, ..., zqQ) since (z − al + ai)|f(z − al).
When B queries about a signature on ml, A firstly selects bl, cl, s ∈ Z∗p so that bl − alcl = (d + ml)a−1

l ,
and s = t + (d + ml)a−1

l , then it can be verified that mlP + (bl − alcl)Ppub + P0 = szP , so Al = 1
γ+al

[mlP +
(bl − alcl)Ppub + P0] + clPpub = sP + clPpub is computable.

The forgery (m∗, a∗, b∗, c∗, A∗) satisfies A∗ = 1
γ+a∗ [m

∗P +(b∗−a∗c∗)Ppub +P0]+c∗Ppub, i.e., A∗−c∗Ppub =
1
z [m∗−al(b∗−a∗c∗)+d+(b∗−a∗c∗+t)z]

∏qsig

i=1,i6=l(z−al+ai)Q, the probability of m∗−al(b∗−a∗c∗)+d = 0 mod p
is negligible otherwise B can be invoked to solve discrete logarithm problem in G if z is chosen by A and dQ is
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given as a discrete logarithm challenge. Then there exist g(z), r 6= 0 mod p that [m∗−al(b∗−a∗c∗)+d+(b∗−
a∗c∗+t)z]

∏qsig

i=1,i6=l(z−al+ai) = g(z)z+r, so (0, 1
zQ), computable from A∗ and (Q, zQ, ..., zqQ), is a resolution

to the q-SDH challenge. Note that any algorithm for 1
zQ can be used to calculate a (c 6= 0, 1

z+cQ).

B A Formal Model of Group Signature - A Variant of [BSZ05]

[BSZ05]’s model assumes that IA can not delete contents of the registration table Reg; OA is assumed only
partially corrupted in considering traceability, i.e., OA will abide by specified algorithm Open. The existence
of a secure (private and authentic) channel between any prospective group member and IA is also assumed.

For simplicity, we additionally assume that IA will not generate a new group signing key for an existing
member, nor will IA modify existing records in Reg; OA will not report an existing member to be non-existent
or another existing member after it has opened a group signature according to specified algorithms.

The additional assumption about IA can be guaranteed by introducing an additional trusted third author-
ity CA independent from IA as explicitly defined in the model of [BSZ05]: every member is given a user public
key from CA and a user secret key kept to himself; in Join, a member signed on whatever he has generated
and sent to IA; IA stores the signed transcript in registration table; execution of Open should reveal the signer
identity and stored transcript carrying a signature by the signer.

The additional assumption about OA can be guaranteed by granting accesses of reading/seaching Reg to
judgers (the executors of algorithm Judge).

We define the oracles similar to [BSZ05]. It is assumed that several global variables are maintained by
the oracles: HU , a set of honest users; CU , a set of corrupted users; GSet, a set of message signature pairs;
and Chlist, a set of challenged message signature pairs. Note that not all the oracles will be available to
adversaries in defining a certain security feature.

AddU (i): If i ∈ HU ∪ CU , the oracle returns ⊥, else adds i to HU , executes algorithm Join.
CrptU (i): If i ∈ HU ∪ CU , the oracle returns ⊥, else CU ← CU ∪ {i}, and awaits an oracle query to

SndToI.
SndToI (i,Min): If i /∈ CU , the oracle returns ⊥; else it plays the role of IA in algorithm Join replying to

Min.
SndToU (i,Min): If i ∈ HU ∪ CU , the oracle returns ⊥, else it plays the role of user i in algorithm Join,

HU ← HU ∪ {i}.
USK (i): If i ∈ HU , the oracle returns ski and gski, CU ← CU ∪ {i}, HU ← HU \ {i}; else returns ⊥.
RReg(i): The oracle returns regi.
WReg(i, s): The oracle sets regi = s if i has not been added in reg.
GSig(i, m): If i /∈ HU , the oracle returns ⊥, else returns a group signature σ on m by user i. GSet ←

GSet ∪ {(i,m, σ)}.
Ch(b, i0, i1, m): If i0 /∈ HU ∪ CU or i1 /∈ HU ∪ CU , the oracle returns ⊥, else generates a valid group

signature σ with ib being the signer. Chlist ← Chlist ∪ {(m,σ)}.
Open(m, σ): If (m,σ) ∈ Chlist, the oracle returns ⊥, else if (m,σ) is valid, the oracle returns Open(m,σ).
CrptIA: The oracle returns the secret key ik of IA.
CrptOA: The oracle returns the secret key ok of OA.
We say an oracle is over another oracle if availability of the oracle implies functions of another oracle. For

example, WReg is over RReg since the adversary can try to remember everything it has written to Reg; CrptIA
is over CrptU, SndToI since knowledge of ik enables the adversary answer the two oracles itself; CrptOA is
over Open. Note that we do not let CrptIA (CrptOA) over WReg (RReg) to provide flexibility when accesses
to the database Reg are granted by an independent DBA (database administrator).

Correctness. For any adversary that is not computationally restricted, a group signature generated by
an honest group member is always valid; algorithm Open will always correctly identify the signer given the
above group signature; the output of Open will always be accepted by algorithm Judge.

Anonymity. Imagine a polynomial time adversary A, whose goal is to distinguish the signer of a group
signature σ ← Ch(b, i0, i1,m) between i0, i1, where i0, i1,m are chosen by A itself.
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Experiment Expcorr
GS,A(k)

(gpk, ik, ok) $←− Setup(1k); HU ← ∅;

(i,m) $←− A(gpk : AddU,RReg),
If i /∈ HU , return 0;
σ ← GSig(gpk, gski,m); (j, τ) ← Open(gpk, ok, reg, m, σ),
If GVer(gpk, m, σ) = 0, or j 6= i, or Judge(gpk, i, reg,m, σ, τ) = 0,
then return 1 else return 0.

Table 6: Correctness.

Naturally the adversary A might want to get the group signing keys of i0, i1 or some other honest group
members (through oracle USK ); it might want to obtain some group signatures signed by i0, i1 (through oracle
GSig); it might want to see some outputs of OA (through oracle Open except (m,σ)); it might also try to
corrupt some group members by running Join with IA (through oracles CrptU and SndToI ); it might observe
the communication of some honest members joining in (through SndToU if IA is corrupted, not available
otherwise); it might want to write to, read from Reg (through oracles WReg, RReg); or A might corrupt IA
(through oracle CrptIA). Obviously A should not be allowed to corrupt OA.

A group signature GS=(Setup, Join, GSig, GVer, Open, Judge) is anonymous if the probability for any
polynomial time adversary to win is negligible, i.e., the value of Advanon

GS,A defined below is negligible.

Advanon
GS,A(k) = Pr[Expanon−1

GS,A (k) = 1]− Pr[Expanon−0
GS,A (k) = 1],

where experiments Expanon−b
GS,A (k) are defined as in the above description.

If {i0, i1} ⊆ HU , and CrptIA is not queried, the group signature is selfless anonymous [BS04].
If {i0, i1} ⊆ CU , and CrptIA is not queried, the group signature is anonymous in the sense of [KY04].
If {i0, i1} ⊆ HU , and CrptIA is queried, the group signature is anonymous in the sense of [BSZ05].
We define a group signature GS is anonymous if {i0, i1} ⊆ CU and CrptIA is queried in the above game,

(in this case GSig is implied if CrptIA is queried), i.e., the corresponding experiments are defined as in Table
7.

Experiment Expanon−b
GS,A (k), b ∈ {0, 1}

(gpk, ik, ok) $←− Setup(1k); CU ← ∅, HU ← ∅, Chlist ← ∅;

d
$←− A(gpk: CrptIA, Open, SndToU, USK, Ch(b, ., ., .), WReg),

Return d.

Table 7: Anonymity.

Traceability. Imagine a polynomial time adversary A, whose goal is to produce a valid group signature
(m,σ), the output of Open on which points to a non-existent member or an existing corrupted member but
can not pass Judge.

Naturally the adversary A might corrupt some group members by running Join with IA (through oracles
CrptU and SndToI ); it might want to see some outputs of OA (through oracle Open); it might want to read
from (through oracles RReg); or A might corrupt OA directly (through oracle CrptOA). Obviously A should
not be allowed to corrupt IA and query WReg. Note that A might not bother to query about honest group
members for they are of little help for it.

A group signature GS is traceable if the probability for any polynomial time adversary to win is negligible,
i.e., the value of Advtrace

GS,A defined below is negligible.

Advtrace
GS,A(k) = Pr[Exptrace

GS,A(k) = 1],
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where experiment Exptrace
GS,A(k) is defined as in the above description.

If CrptOA is not queried, the group signature is secure against misidentification attack [KY04].
If CrptOA is queried, the group signature is traceable in the sense of [BSZ05].
We define a group signature GS is traceable if CrptOA is queried in the above game, i.e., the corresponding

experiment is defined as in Table 8.

Experiment Exptrace
GS,A(k)

(gpk, ik, ok) $←− Setup(1k); CU ← ∅, HU ← ∅;

(m,σ) $←− A(gpk : CrptOA, CrptU, SndToI, RReg).
If GVer(gpk, m, σ) = 0, return 0,else (i, τ) ← Open(gpk, ok, Reg, m, σ).
If i = 0 or (Judge(gpk, reg, m, σ, τ) = 0 and i ∈ CU) then return 1, else return 0.

Table 8: Traceability.

Non-frameability. Imagine a polynomial time adversary A, whose goal is to produce a valid group
signature (m,σ), the output of Open on which points to an existing honest member ih and the result passes
Judge.

Naturally the adversary A might want to get the group signing keys of some group members (through
oracle USK); it might want to obtain some group signatures signed by some honest group members (through
oracle GSig); it might want to see some outputs of OA (through oracle Open); it might also try to corrupt
some group members by running Join with IA (through oracles CrptU and SndToI ); it might observe the
communication of some honest members joining in (through SndToU if CrptIA is queried, not available
otherwise); it might wait until more group members has joined in (through AddU ); it might want to write to,
read from, Reg (through oracles WReg, RReg); or A might corrupt OA or IA directly (through oracle CrptOA
and CrptIA). Obviously A should not be allowed to query CrptU (ih), SndToI (ih,.), USK (ih).

A group signature GS is non-frameable if the probability for any polynomial time adversary to win is
negligible, i.e., the value of Advnf

GS,A defined below is negligible.

Advnf
GS,A(k) = Pr[Expnf

GS,A(k) = 1],

where experiment Expnf
GS,A(k) is defined as in the above description.

If CrptIA and CrptOA are queried, the group signature is secure against framing attack [KY04] or non-
frameable [BSZ05].

We define a group signature GS is non-frameable if CrptIA, CrptOA are queried in the above game, and
the corresponding experiment is defined as in Table 9.

Experiment Expnf
GS,A(k)

(gpk, ik, ok) $←− Setup(1k); CU ← ∅, HU ← ∅, GSet ← ∅;

(m,σ, i, τ) $←− A(gpk : CrptIA, CrptOA, SndToU, GSig, USK, WReg).
If GVer(gpk,m, σ) = 0, return 0.
Else if i ∈ HU and Judge(gpk, reg, m, σ, τ) = 1
and (i,m, .) /∈ GSet, return 1, else return 0.

Table 9: Non-frameability.

Definition 7. A group signature scheme is secure if it is anonymous, traceable and non-frameable.
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C Security Proofs of the Generic Construction

C.1 Proof of Lemma 4.1

Note that the difference between ours construction 4.1 and the generic construction in [BSZ05] is that, our
ultimate group signature is σ = (C, Σ′, π1) = (Enc(pke, pki, ri), Σ′, π1), where π1 is a proof of knowledge of
(ski,Υ′, ri) satisfying V er(pks, ski, (Υ′,Σ′)) = 1 and C = Enc(pke, f(ski), ri); while the ultimate group signa-
ture of [BSZ05] is σ = (C, π1) = (Enc(pke, < i, pki,Υ,Σ, s >, ri), π1), where s = S(ski,m) and π1 is a proof of
knowledge of (pki,Υ,Γ, s, ri) satisfying V er(pks, < i, pki >, (Υ,Σ)) = 1, C = Enc(pke, < i, pki,Υ,Σ, s >, ri),
and V (pki,m, s) = 1. (S, V ) is the signature generation and verification algorithms of an independent signa-
ture scheme.

So we have more information to expose than [BSZ05], i.e., Σ′, because the signature we adopted is perfectly
unlinkable, it does not affect the anonymity of the generated group signature at all. Then we can follow the
proof of [BSZ05].

The proof follows [BSZ05]. Suppose B is an adversary to anonymity of GS, it can be invoked to construct
an adversary Ac, c ∈ {0, 1} to the public encryption scheme PE, an adversary As to simulation soundness of
(P1, V1), adversaries D1 and D2 to zero-knowledge of P1 and P2 respectively, these adversaries will answer the
oracle queries from B.

Description of Ac. Ac is given the public key pke and accesses to oracles ChPE(b, ., .) and Dec(ske, .).
Ac selects keys (pks, sks) for DS, chooses common reference strings (R, R1, R2) for proofs P, SIM1, SIM2.

Ac gives gpk = (pke, pks, R, R1, R2) to B. Ac answers oracle queries from B as follows:
CrptIA: returns sks.
Open(m, σ): If (m,σ) = (m,C, Σ′, π1) is valid and C is not returned by Ch(c, ., .), queries oracle

Dec(ske, .), and generates a simulation proof for ρ2.
SndToU (i,.): Runs algorithm Join, adds i to the honest member set HU .
USK (i): Returns (pki, ski,Υ,Σ), deletes i from HU and adds i to the corrupted member set CU .
Ch(c, i0, i1): If i0, i1 are existing members, runs algorithm GSig on input (gpk, gskic ,m) except that the

encryption is replaced by the response from a query to ChPE(b,M0,M1) (Mc = (pkic), Mc = (0|Mc|)), and
the proof for ρ1 is replaced by SIM1.

WReg(i, s): If i is a new member, sets regi = s.
Ac outputs what B outputs unless B has generated a new group signature (m, σ̂)=(m,C, Σ̂, π̂) from the

challenge (m,σ)=(m,C, Σ′, π1), in which case Ac outputs c.
Description of As. As is given the common reference string R1 of SIM1 and access to oracle SIM1.
As setups GS as in algorithm Setup except that P2 is replaced by its simulation SIM2.
As gives gpk = (pke, pks, R, R1, R2) to B. As answers oracle queries from B as follows:
CrptIA: returns sks.
Open(m, σ): If (m,σ) = (m,C, Σ′, π1), is valid and C is not returned by Ch(b, ., .), runs algorithm Open

since As knows ok(= ske), and generates a simulation proof for ρ2.
SndToU (i,.): Runs as algorithm Join, adds i to the honest member set HU .
USK (i): Returns (pki, ski,Υ,Σ), deletes i from HU and adds i to the corrupted member set CU .
Ch(b, i0, i1): If i0, i1 are existing members, runs algorithm GSig on input (gpk, gski1 ,m) except that always

encrypts M0 = (0|pk1|) no matter the value of b, and the proof for ρ1 is replaced by the response from a query
to SIM1, returns (C,Σ′, π1).

WReg(i, s): If i is a new member, sets regi = s.
As fails unless B has generated a new group signature (m, σ̂) = (m,C, Σ̂, π̂) from the challenge (m,σ) =

(m,C, Σ′, π1), in which case As outputs (pke, pks,m, C, Σ̂) and π̂.
Description of D1. D1 is given the common reference string R1, and access to oracle Prove1(.) which

may be P1 or SIM1.
D1 setups GS as in algorithm Setup except that P2 is replaced by a simulation SIM2.
D1 gives gpk = (pke, pks, R, R1, R2) to B and answers oracle queries from B as follows:
CrptIA: returns sks.
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Open(m, σ): If (m,σ) is valid, runs algorithm Open since D1 knows ok(= ske), and generates a simulation
proof for ρ2.

SndToU (i,.): Runs as algorithm Join, adds i to the honest member set HU .
USK (i): Returns (pki, ski,Υ,Σ), deletes i from HU and adds i to the corrupted member set CU .
Ch(b, i0, i1): If i0, i1 are existing members, runs algorithm GSig on input (gpk, gskib ,m) except that

generates π1 by querying oracle Prove1.
WReg(i, s): If i is a new member, sets regi = s.
D1 returns 1 if output of B equals b, returns 0 otherwise.
Description of D2. D2 is given the common reference string R2, and access to oracle Prove2(.) which

may be P2 or SIM2.
D2 setups GS as in algorithm Setup.
D2 gives gpk = (pke, pks, R, R1, R2) to B and answers oracle queries from B as follows:
CrptIA: returns sks.
Open(m, σ): If (m,σ) is valid, runs algorithm Open since D2 knows ok(= ske), and generates the proof

for ρ2 by querying oracle Prove2.
SndToU (i,.): Runs as algorithm Join, adds i to the honest member set HU .
USK (i): Returns (pki, ski,Υ,Σ), deletes i from HU and adds i to the corrupted member set CU .
Ch(b, i0, i1): If i0, i1 are existing members, runs algorithm GSig on input (gpk, gskib ,m).
WReg(i, s): If i is a new member, sets regi = s.
D2 returns 1 if output of B equals b, returns 0 otherwise.
It follows from the same analysis in [BSZ05] that

Advanon
GS,B(k) ≤Advind−cca

PE,A0
(k) + Advind−cca

PE,A1
(k) + Advss

SIM1,As
(k)

+ 2(Advzk
P1,SIM1,D1

(k) + Advzk
P2,SIM2,D2

(k)).

C.2 Proof of Lemma 4.2

The proof follows [BSZ05]. Suppose B is an adversary to traceability of GS, it can be invoked to construct
an adversary Ads to the digital signature scheme DS, the adversary will answer the oracle queries from B.

Description of Ads. Ads is given the public key pks and access to oracle Sig(sks, .).
Ads selects keys (pke, ske) for PE, chooses common reference strings R, R1, R2 for relation ρ, ρ1 and ρ2

respectively. Ads gives gpk = (pke, pks, R, R1, R2) to B. Ads answers oracle queries from B as follows:
CrptOA: returns ske.
CrptU (i): If i is not a group member yet, adds i to the corrupted members set CU .
SndToI (i,.): Parses the input into (pki, π) from which extracts ski using the online extractor algorithm

K of (P, V ) by manipulating the random oracle, queries oracle Sig(sks, ski).
RReg(i): If i exists in Reg, returns regi.
If B wins with non-negligible probability, i.e., outputs a valid group signature (m,σ) = (m,C, Σ′, π1) and

i = 0, where (i, τ) ← Open(ske,m, σ). Another case that i > 0 will not occur because of the correctness of
GS and the assumptions for GS in our model (Appendix B).

From generalized forking lemma [KY04], (GVer be the predicate), in random oracle model, there exist
(m,C, Σ′, c, s), (m,C, Σ′, c′, s′) from which (w, Υ′, r) can be extracted, (Υ′,Σ′) is a valid DS signature on w,
and w is not queried to Sig(sks, .).

It follows from the same analysis in [BSZ05] that

Advtrace
GS,B(k) ≤ 2−k + AdvwUF−acma

DS,Ads
(k).

C.3 Proof of Lemma 4.3

The proof follows [BSZ05]. Suppose B is an adversary to non-frameability of GS, it can be invoked to construct
an adversary Af to the one way function f , the adversary will answer the oracle queries from B.

Description of Af . Af is given y in the range of the one way function f .
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Af sets up GS as in algorithm Setup, selects a random variable ι ∈ [1, n(k)], n(k) is the maximum number
of queries from B.

Af gives gpk = (pke, pks, R, R1, R2) to B and answers oracle queries from B as follows:
CrptIA: returns sks.
CrptOA: returns ske.
SndToU (i,.): If i = ι, sets pki = y, and runs Join by simulating a proof for relation ρ; otherwise runs

exactly as algorithm Join. Then adds i to the honest member set HU .
USK (i): If i = ι, Af stops and restarts again; otherwise if i ∈ HU , returns (pki, ski,Υ,Σ), deletes i from

HU and adds i to the corrupted member set CU .
GSig(i, m): If i ∈ HU and i = ι, runs algorithm GSig except that replacing proof P1 by the simulation

SIM1; otherwise if i ∈ HU , runs GSig exactly. GSet ← GSet ∪ {(i,m, σ)}.
WReg(i, s): If i is a new member, sets regi = s.
Af returns 1 if B outputs a valid group signature that (ι,m, σ) /∈ GSet and Judge(gpk, reg, m,σ, τ) = 1

where (ι, τ) = Open(m,σ).
Parse (ι,m, σ) into (ι,m, C,Σ′, c, s), then there exist (ι,m, C,Σ′, c, s), (m,C, Σ′, c′, s′) in random oracle

model according to generalized forking lemma [KY04], (GVer be the predicate), so (w, Υ′, r) can be extracted,
where (Υ′,Σ′) is a valid DS signature on w, and f(w) = y.

It follows from a similar analysis in [BSZ05] that Advnf
GS,B(k) ≤ ε(k) + n(k)Advow

f,Af
(k), where ε(k) is

negligible.

D An Improvement to the Group Signature in [NSN04]

We present an improvement to [NSN04] by producing shorter group signature length while maintaining a
similar computation.

The improvement is based on the basic proof of knowledge: PK{X : e(X, Q) = e(P1, Q1)}, (e : G1×G1 →
GM , ord(GM ) = p,G1 = 〈P 〉), the pairing version of Schnorr’s identification scheme [Sch91], which has been
widely adopted in identification based signature schemes from pairings, e.g., [Hes03]. The details of the proof
of knowledge are as follows:

1. Prover generates RX ∈R G1, computes R = e(RX , Q),

2. Prover −→ Verifier: R.

3. Verifier ←− Prover: c ∈R Zp.

4. Prover computes in S = RX − cX.

5. Prover −→ Verifier: S.

6. Verifier verifies that if R = e(S,Q)e(P1, Q1)c.

Note that the scheme of [NSN04] were found flawed in [HSM05], so we compare our improvement with
[HSM05] and the scheme adopted from applying the modified version of [Ngu05]. We follow the the original
notations to facilitate the comparison.

To improve the group signature in [NSN04], we generate the following signature of knowledge:

SK{(ai, tai, xi, t, Si) :Λai
a Θ−tai

a e(Si, Ppub) = e(P, P )xie(P, P0),
Ea = tG, aiEa = taiG, Λa = e(Si, P )Θt

a}{m}
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The details: Select r1, r2, r3, r4 ∈R Zp, Rs ∈R G1, calculate

R1 = Λr1
a Θ−r2

a e(P, P )−r3e(Rs, Ppub),
R2 = t4G, R3 = r1Ea − r2G, R4 = e(Rs, P )Θr4

a ,

c = H2(P‖P0‖Ppub‖H‖G‖Θ‖Ea‖Λa‖EbΛb‖ς‖R1‖R2‖R3‖m),
s1 = r1 − cai, s2 = r2 − ctai, s3 = r3 − cxi,

s4 = r4 − ct, S = Rs − cSi.

The group signature of m is σ = (Ea,Λa, Eb,Λb, ς, s1, s2, s3, s4, S, c).
To verify the above group signature, check if

c =H2(P‖P0‖Ppub‖H‖G‖Θ‖Ea‖Λa‖EbΛb‖ς‖Λs1
a Θ−s2

a e(P, P )−s3e(S, Ppub)
e(P, P0)c‖s4G + cEa‖s1Ea − s2G‖e(S, P )Θs4

a Λc
a‖m).

Explanation for SK. Consider the underlying interactive proof of the above SK. Its zero-knowledge
is easy to see. Its soundness: By resetting Prover under the same random inputs, an honest verifier can get
(s1, s2, s3, s4, S, c) and (s′1, s

′
2, s

′
3, s

′
4, S

′, c′) where s′j 6= sj , j = 1, 2, 3, 4, S′ 6= S, c′ 6= c, then

Λs1
a Θ−s2

a e(P, P )−s3e(S, Ppub)e(P, P0)c = Λs′1
a Θ−s′2

a e(P, P )−s′3e(S′, Ppub)e(P, P0)c′ ,

s4G + cEa = s′4G + c′Ea, s1Ea − s2G = s′1Ea − s′2G,

e(S, P )Θs4
a Λc

a = e(S′, P )Θs′4
a Λc′

a .

Let ∆sj = sj − s′j , j = 1, 2, 3, 4, ∆S = S − S′, ∆c = c′ − c, then

Λ∆s1
a Θ−∆s2

a e(P, P )−∆s3e(∆S, Ppub) = e(P, P0)∆c,

∆s4G = ∆cEa = 0, ∆s1Ea −∆s2G = 0,

e(∆S, P )Θ∆s4
a = Λ∆c

a .

Set Si = 1
∆c∆S, t = ∆s4/∆c mod p, ai = ∆s1/∆c mod p, xi = ∆s3/∆c mod p, then ∆s2/∆c = tai mod p.

Efficiency Comparison. The length of the group signature σ is shorter compared with [HSM05] (σ =
(Ea,Λa, Eb,Λb, ς, U, V,W,X, Γ1,Γ2, s0, s1, s2, s3, s4, s5, c) there) or applying the modified version of [Ngu05] to
this group signature (see Section 4.7).
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