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Abstract

At Eurocrypt 2005, Boneh, Boyen and Goh presented a constant size ciphertext hierarchical
identity based encryption (HIBE) protocol. Our main contribution is to present a variant of the
BBG-HIBE. The new HIBE is proved to be secure (without any degradation) in an extension of the
sID model (denoted the s+-ID model) and the components of the identities are from Zp, where p is a
suitable large prime. The BBG-HIBE is proved to be secure in the selective-ID (sID) security model
and the components of the identities are from Z∗

p. In the s+-ID model the adversary is allowed to
vary the length of the challenge identity whereas this is not allowed in the sID model. The new HIBE
shares all the good features of the BBG-HIBE. The drawback is that the public parameters and the
private key are longer than that of the BBG-HIBE. We also provide two more extensions of the basic
constant size ciphertext HIBE. The first is a constant size ciphertext HIBE secure in the generalised
selective-ID model M2. The second one is a product construction composed of two HIBEs and a
trade-off is possible between the private key size and the ciphertext size.

1 Introduction

An identity based encryption (IBE) protocol offers certain flexibility over usual public key encryption
protocol by allowing the public key to be any binary string. This notion was introduced by Shamir [17]
and the first efficient implementation with a proof of security in an appropriate security model was
given by Boneh and Franklin [5]. In an IBE, the private key corresponding to an identity is generated
by a private key generator (PKG) and is securely transmitted to the appropriate entity. Encryption is
done using the identity and the public parameters of the PKG whereas decryption requires the private
key of the identity under which the message has been encrypted.

The role of the PKG is to distribute private keys. A generalization of IBE is the notion of a
hierarchical IBE (HIBE) [16, 15], which allows the task of generating private keys to be delegated to
lower levels. Several constructions of HIBE are known [15, 2, 4]. The constructions in [15, 2] have
the property that the length of the ciphertexts, the size of the private keys and consequently, the time
required for encryption and decryption grow linearly with the number of levels in the HIBE.

In a recent work, a very interesting construction of HIBE was presented by Boneh, Boyen and
Goh [4], which we call BBG-HIBE. The main novelty of the BBG-HIBE is that the size of the ciphertext
is independent of the depth of the HIBE. This also improves the efficiency of encryption and decryption.
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Perhaps more importantly, the constant size ciphertext BBG-HIBE leads to improved constructions of
forward secure encryption and public-key broadcast encryption protocols.

The full security model for IBE was introduced in [5] and later extended to HIBE in [15]. A weaker
security model was introduced in [9, 10] and is called the selective-ID model (sID model in short). The
selective-ID differs from the full model by restricting the adversary to commit to the challenge identity
even before setting up the protocol. The HIBE proposed by Boneh-Boyen [2], which we call BB-HIBE,
and the BBG-HIBE [4] are the only known HIBE protocols secure in the selective-ID model. The
selective-ID security model was generalised in [11] to two new models, M1 and M2, and the authors
proposed two HIBEs H1 and H2 secure in the respective models. The BBG-HIBE has been extended
to model M2 in [12] and the authors also proposed a construction secure in the full model.

Our Contributions: We modify the BBG-HIBE to obtain a new constant size ciphertext HIBE,
G1. A constant size ciphertext HIBE is an interesting primitive in its own right. Several important
applications of such a HIBE has been described in [4]. We believe that the importance of constant size
ciphertext HIBE makes studying variants of the BBG-HIBE an interesting problem in itself.

Compared to the BBG-HIBE, the new HIBE G1 has the following advantages – it is secure (without
any degradation) in an extension of the sID model (see below) and the components of the identity tuples
are from Zp, where p is a suitable large prime. On the other hand, the disadvantage is that the size of
the public parameters and the private key is longer than that of the BBG-HIBE. Note that even though
the size of the private key is longer, the size of the decryption subkey is same as that of BBG-HIBE.
Since for decryption, only the decryption subkey needs to be loaded onto a smart card, to a certain
extent this mitigates the disadvantage of the private key being longer.

In the sID model, the adversary commits to an identity tuple v∗ = (v∗1, . . . , v
∗
m) and in the challenge

phase obtains an encryption under v∗. In particular, the length m of the challenge identity is fixed by
the adversary in the commit stage itself. In the augmented version of the selective-ID model, which we
call selective+-ID model, in the challenge phase, the adversary is allowed to ask for an encryption under
v+ = (v∗1, . . . , v

∗
m′), where 1 ≤ m′ ≤ m. This provides the adversary additional flexibility in choosing

the target identity.
In the sID model, the adversary is restricted from making private key queries for any prefix of v∗.

Consequently, a “natural” intuition is that the adversary be allowed to choose any prefix of v∗ as a
challenge identity. Unfortunately, the sID model does not allow this flexibility to the adversary. In the
s+ID model, this flexibility is introduced and the challenge identity is allowed to be any prefix of v∗.
Clearly, any protocol secure in the s+ID model is also secure in the sID model, though the converse is
not necessarily true.

We show that the security reduction for BB-HIBE [2] satisfies the notion of s+ID security. On the
other hand, the security proof of the BBG-HIBE given in [4] does not go through in the s+ID model. A
simple modification of this proof gives a proof of security for the BBG-HIBE in the s+ID model. But
this proof yields a multplicative security degradation by a factor of h, where h is the maximum number
of levels in the HIBE.

Our idea of modifying the proof of the BBG-HIBE protocol can be utilised to show that any protocol
secure in the s+-ID model is also secure in the sID model with a security degradation by a factor of
h. Admittedly, a security degradation by a factor of h is not much. However, the sID and the s+ID
models are really restrictive models and hence one would like to obtain a protocol without any security
degradation.
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We next modify this construction to obtain a constant size ciphertext HIBE, G2 which is proved to
be secure in model M2 augmented in the line of s+ID model.

Our third construction is a product construction, in the sense that the constructed HIBE can be
seen to be a “product” of two individual HIBEs. A product construction combining the BB-HIBE and
the BBG-HIBE has been presented earlier in [4].

We consider the product of H1 of [11] with G2 to obtain a new HIBE G3. This HIBE is secure in
model M1 and reduces the size of the ciphertext in H1 by a factor of h, where h is the number of levels
in G2. The decryption subkey (i.e., the part of the private key required for decryption) for both G1 and
G2 are equal to that of BBG-HIBE. While in G3 the size of the decryption subkey is reduced by a factor
of h over the size of the decryption subkeys in H1.

2 Definitions

2.1 Cryptographic Bilinear Map

Let G1 and G2 be cyclic groups of same prime order p and G1 = 〈P 〉, where we write G1 additively and
G2 multiplicatively. A mapping e : G1 × G1 → G2 is called a cryptographic bilinear map if it satisfies
the following properties:

• Bilinearity: e(aP, bQ) = e(P,Q)ab for all P,Q ∈ G1 and a, b ∈ Zp.

• Non-degeneracy: If G1 = 〈P 〉, then G2 = 〈e(P, P )〉.

• Computability: There exists an efficient algorithm to compute e(P,Q) for all P,Q ∈ G1.

Since e(aP, bP ) = e(P, P )ab = e(bP, aP ), the map e() also satisfies the symmetry property. The modified
Weil pairing [5] and the Tate pairing [1, 14] are examples of cryptographic bilinear maps.

Known examples of e() have G1 to be a group of Elliptic Curve (EC) points and G2 to be a
subgroup of a multiplicative group of a finite field. Hence, in papers on pairing implementations [1, 14],
it is customary to write G1 additively and G2 multiplicatively. On the other hand, some “pure” protocol
papers [5, 2, 3, 18] write both G1 and G2 multiplicatively though this is not true of the initial protocol
papers [5, 15]. Here we follow the first convention as it is closer to the known examples.

2.2 HIBE Protocol

Following [16, 15] a hierarchical identity based encryption (HIBE) scheme is specified by four algorithms:
Setup, Key Generation, Encryption and Decryption. Note that, for a HIBE of height h (henceforth
denoted as h-HIBE) any identity v is a tuple (v1, . . . , vτ ) where 1 ≤ τ ≤ h.

Setup: It takes as input a security parameter and returns the system parameters together with the
master key. The system parameters include a description of the message space, the ciphertext space
and the identity space. These are publicly known while the master key is known only to the private key
generator (PKG).

Key Generation It takes as input an identity v = (v1, . . . , vτ ) and the private key dv|τ−1 for the
identity (v1, . . . , vτ−1) and returns a private key dv for v. The identity v is used as the public key while
dv is the corresponding private key.

3



Encrypt: It takes as input the identity v and a message from the message space and produces a
ciphertext in the cipher space.

Decrypt: It takes as input the ciphertext and a private key dv of the corresponding identity v and
returns the message or bad if the ciphertext is not valid.

2.3 Hardness Assumption

Security of our HIBE scheme is based on the so called decisional weak bilinear Diffie-Hellman inversion
problem (h-wDBDHI∗) introduced by Boneh-Boyen-Goh in [4]. An instance of the h-wDBDHI∗ problem
over 〈G1, G2, e()〉 consists of the tuple (P,Q, aP, a2P, . . . , ahP,Z) for some a ∈ Zp and the task is to
decide whether Z = e(P,Q)ah+1

or Z is random.
The advantage of a probabilistic algorithm B that outputs a bit in solving this decision problem is

defined as
Advh-wDBDHI∗

B =
∣∣∣Pr[B(P,Q,

−→
Y , e(P,Q)ah+1

) = 1]− Pr[B(P,Q,
−→
Y , Z) = 1]

∣∣∣
where −→Y = (aP, a2P, . . . ahP ), and Z is a random element of G2. The probability is calculated over the
random choices of a ∈ Zp and Z ∈ G2 and also the random bits used by B. The quantity Advh-wDBDHI∗(t)
denotes the maximum of Advh-wDBDHI∗

B where the maximum is taken over all algorithms running in time
at most t.

3 Previous HIBE Constructions

We briefly describe the BB-HIBE and the BBG-HIBE. Let G1, G2 and e() be as defined in Section 2.

3.1 BB-HIBE

Identities of depth u are of the form (v1, . . . , vu) where each vi ∈ Zp. Messages are elements of G2.

Setup: Select a random generator P ∈ G∗
1, a random x ∈ Zp and set P1 = xP . Also pick random

elements Q1, . . . , Qh, P2 ∈ G1. The public parameters are

(P, P1, P2, Q1, . . . , Qh)

whereas the master secret key is xP2. The maximum height of the HIBE is h. Define publicly computable
family of functions Fj : Zp → G1 for j ∈ {1, . . . , h}: Fj(α) = αP1 + Qj .

Key Generation: Given an identity v = (v1, . . . , vj) of depth j ≤ h, pick random r1, . . . , rj ∈ Zp and
compute

dv =

(
xP2 +

j∑
i=1

riFi(vi), r1P, . . . , rjP

)
dv can also be generated given the private key dv|j−1 of v|j−1 = (v1, . . . , vj−1).
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Encrypt: Encrypt M ∈ G2 for v = (v1, . . . , |Ij) as

C = (e(P1, P2)s ×M, sP, sF1(v1), . . . , sFj(vj))

where s is a random element of Zp.

Decrypt: Decrypt C = 〈A,B, C1, . . . , Cj〉 using the private key dv = (d0, d1, . . . , dj as

A×
∏j

i=1 e(Ci, di)
e(B, d0)

= M

3.2 BBG-HIBE

In this case, identities of depth u are of the form (v1, . . . , vu) where each vi ∈ Z∗
p. (In contrast, recall

that, in BB-HIBE identity components are elements of Zp). Messages are elements of G2.

Setup: Choose a random α ∈ Zp and set P1 = αP . Choose random elements P2, P3, Q1, . . . , Qh ∈ G1.
Set the public parameter as (P, P1, P2, P3, Q1, . . . , Qh) while the master key is P4 = αP2.

Key Generation: Given an identity v = (v1, . . . , vk) of depth k ≤ h, pick a random r ∈ Zp and
output

dv = (αP2 + r(v1Q1, . . . , vkQk + P3), rP, rQk+1, . . . , rQh).

Encrypt: To encrypt M ∈ G2 under the identity v = (v1, . . . , vk), pick a random s ∈ Zp and output

CT = (e(P1, P2)s ×M, sP, s(v1Q1 + . . . + vkQk + P3)) .

Decrypt: To decrypt CT = (A,B, C) using the private key dv = (a0, a1, bk+1, . . . , bh), compute

A× e(a1, C)
e(B, a0)

= M.

4 Security Models

The relevant definitions of cryptographic bilinear map, HIBE protocol and hardness assumption are
given in Appendix 2. Here, we discuss about the variants of the selective-ID security models.

The security of a HIBE protocol is defined in terms of a game between an adversary and a simulator.
The full security model for IBE was introduced in [5] and the extension to HIBE was given in [15]. The
weaker selective-ID model was introduced in [9, 10]. We define the selective identity, chosen ciphertext
security (IND-sID-CCA) of a HIBE of maximum height h, in terms of the following game.

4.1 Selective-ID Model

Initialization: The adversary outputs a target identity v∗ = (v∗1, . . . , v
∗
u) with u ≤ h, on which it

wishes to be challenged.
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Setup: The challenger sets up the HIBE and provides the adversary with the system public parame-
ters.

Phase 1: Adversary A makes a finite number of queries where each query is addressed either to the
decryption oracle or to the key-extraction oracle. In a query to the decryption oracle it provides the
ciphertext as well as the identity under which it wants the decryption. Similarly, in a query to the key-
extraction oracle, it asks for the private key of the identity it provides. Further, A is allowed to make
these queries adaptively, i.e., any query may depend on the previous queries as well as their answers.
The only restriction is that it cannot ask for the private key of v∗ or any of its prefixes.

Challenge: At this stage A outputs two equal length messages M0,M1 and gets a ciphertext C∗

which is an encryption of Mγ under v∗, where γ is chosen uniformly at random from {0, 1}.

Phase 2: A now issues additional queries just like Phase 1, with the (obvious) restriction that it
cannot ask the decryption oracle for the decryption of C∗ under v∗ nor the key-extraction oracle for the
private key of any prefix of v∗.

Guess: A outputs a guess γ′ of γ.
The advantage of the adversary A in attacking the HIBE scheme is defined as:

AdvHIBE
A =

∣∣Pr[(γ = γ′)]− 1/2
∣∣ .

The quantity AdvHIBE(t, qID, qC) denotes the maximum of AdvHIBE
A where the maximum is taken over all

adversaries running in time at most t and making at most qC queries to the decryption oracle and qID

queries to the key-extraction oracle. Any HIBE scheme secure against such an adversary is said to be
secure against chosen ciphertext attack (in short, IND-sID-CCA-secure ). We may restrict the adversary
from making any query to the decryption oracle. A HIBE protocol secure against such an adversary is
said to be secure against chosen plaintext attacks (in short, IND-sID-CPA-secure). AdvHIBE(t, q) in this
context denotes the maximum advantage where the maximum is taken over all adversaries running in
time at most t and making at most q queries to the key-extraction oracle.

There are generic [10, 6] as well as non-generic [7] techniques for converting a CPA-secure HIBE to
a CCA-secure HIBE. In view of this, it is more convenient to initially construct a CPA-secure HIBE
and then convert it into a CCA-secure one.

4.2 Generalised Selective-ID Model

Two new security models, M1 and M2 have recently been introduced in [11]. Here we briefly describe
these two models.

In M1 the adversary fixes a set of target identities I∗ before the protocol is set up where |I∗| = n.
In Phase 1 and 2 the adversary cannot make any query to the key extraction oracle for the private key
of an identity tuple v all of whose components are in I∗. On the other hand, in the Challenge stage
it must ask for encryption under an identity tuple v∗ all of whose components are in I∗. This model
is parametrised by the maximum height h of the HIBE and n. This is explicitly written as (h, n)-M1

model.
M2 generalises sID model in the following manner. Before the set-up of the protocol, the adversary

commits to sets of identities I∗1 , . . . , I∗τ , where 1 ≤ τ ≤ h and h is the maximum number of levels of the
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HIBE. Let |I∗i | = ni. The adversary’s commitment fixes the length of the challenge identity to be τ .
Also, the set I∗i corresponds to the set of committed identities for the ith level of the HIBE.

In Phases 1 and 2, the adversary is not allowed to query the key extraction oracle on any identity
(v1, . . . , vj) such that j ≤ τ and vi ∈ I∗i for all 1 ≤ i ≤ j. The challenge identity is a tuple (v∗1, . . . , v

∗
τ )

where v∗i ∈ I∗i for all 1 ≤ i ≤ τ .
The model M2 is parametrized by h and a tuple (n1, . . . , nh) of positive integers. This is explictly

written as (h, n1, . . . , nh)-M2 model. This model is a generalization of the sID-model which can be
seen by fixing all the I∗i s to be singleton sets. More specifically, (h, 1, . . . , 1)-M2 is the sID-model.

4.3 Selective+-ID Model

We modify the challenge phase of the selective-ID model to give more power to the adversary.

Challenge: A outputs two equal length messages M0,M1 and an identity v+ where v+ is either v∗ or
any of its prefixes. In response it receives an encryption of Mγ under v+, where γ is chosen uniformly
at random from {0, 1}.

We refer to this new model as selective+-ID model (s+ID model in short). This model is more
general than the sID model because now the adversary is allowed to ask for a challenge ciphertext not
only on v∗ but also on any of its prefixes. In case of IBE both the models are same as we have only
one level. For HIBE, a protocol secure in the selective+-ID model is obviously secure in the selective-ID
model.

5 Constant Size Ciphertext HIBE Secure in Selective+-ID Model

We augment the BBG-HIBE to obtain a new constant size ciphertext HIBE secure in the selective+-ID
model without any security degradation. We call this new protocol G∞. The basic idea is to replace P3

in BBG-HIBE by a vector −→P 3 = (P3,1, . . . , P3,h) where P3,i corresponds to the ith level of the HIBE.
It is this feature that allows identity components to be elements of Zp and a proof (without security
degradation) in the s+-ID model. Also, it is this feature which increases the size of the public parameters
and the private key.

Let G1, G2 and e() be as defined in Section 2. Let the maximum height of the HIBE be h. The
identities at a depth u ≤ h are of the form v = (v1, . . . , vu) where each vi ∈ Zp. Note that, unlike the
BBG-HIBE, we allow 0 as a valid identity component. Messages are elements of G2.

Setup: Choose a random α ∈ Zp and set P1 = αP . Choose a random element P2 ∈ G1 and two
random h length vectors −→P 3,

−→
Q where −→P 3 = (P3,1, . . . , P3,h) and −→

Q = (Q1, . . . , Qh). Set the public
parameters to be (P, P1, P2,

−→
P 3,

−→
Q) while the master key is P4 = αP2. Instead of P1, P2, e(P1, P2) can

also be kept as part of PP. This avoids the pairing computation during encryption.

Key Generation: Given an identity v = (v1, . . . , vk) of depth k ≤ h, pick a random r ∈ Zp and
output

dv =

αP2 + r

k∑
j=1

Vj , rP, rP3,k+1, . . . , rP3,h, rQk+1, . . . , rQh
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where Vj = P3,j + vjQj . The private key at level k consists of 2(h − k + 1) elements of G1. Among
these 2(h−k+1) elements only the first two are required in decryption, the rest are used to generate the
private key for the next level as follows: Let the secret key corresponding to the identity (v1, . . . , vk−1)
be (A0, A1, Bk, . . . , Bh, Ck, . . . , Ch), where A0 = αP2 + r′

∑k−1
j=1 Vj , A1 = r′P , and for k ≤ j ≤ h,

Bj = r′P3,j , Cj = r′Qj . Pick a random r∗ ∈ Zp and compute

dv = (A0 + Bk + vkCk + r∗
∑k

j=1 Vk, A1 + r∗P,

Bk+1 + r∗P3,k+1, . . . , Bh + r∗P3,h,
Ck+1 + r∗Qk+1, . . . , Ch + r∗Qh).

If we put r = r′ + r∗, then dv is a proper private key for v = (v1, . . . , vk).

Encrypt: To encrypt M ∈ G2 under the identity (v1, . . . , vk), pick a random s ∈ Zp and output

CT =

e(P1, P2)s ×M, sP, s

 k∑
j=1

Vj


where Vj is as defined in Key Generation.

Decrypt: To decrypt CT = (A,B, C) using the private key dv = (d0, d1, . . .), compute

A× e(d1, C)
e(B, d0)

= e(P1, P2)s ×M ×
e
(
rP, s

∑k
j=1 Vj

)
e
(
sP, αP2 + r

∑k
j=1 Vj

) = M.

5.1 Discussion

The protocol G1 is a modification of the BBG-HIBE with a different P3,i for each level of the HIBE. This
is required to get a proof of security in the augmented s+ID model without any security degradation
as is shown in the next section. Additionally, it allows identities to be elements of Zp, instead of Z∗

p

as in BBG-HIBE. On the other hand, this modification only affects the efficiency of the BBG-HIBE
in a small way. The first thing to note is the size of the ciphertext is still constant (three elements).
Secondly, the size of the public parameter as well as private key is linear in the length of the HIBE
and decreases as we “go down” the HIBE. These two properties ensure that the applications mentioned
in [4] also hold for the new HIBE described above. In particular, it is possible to combine the new HIBE
with the BB-HIBE of [2] to get an intermediate HIBE with controllable trade-off between the size of the
ciphertext and the size of the private key. Further, the application to the construction of forward secure
encryption protocol mentioned in [4] can also be done with the new HIBE. The resulting protocols will
be secure in the augmented selective+-ID model. However, the actual details for these applications will
be a little different from what is mentioned in [4].

A comparison of the features of G1 with the BB-HIBE and the BBG-HIBE is given in Table 1 for
h-level HIBEs. Here the column “decryption subkey size” denotes the number of elements of the private
key which is actually required for decryption. The entire private key is required for key delegation,
which is a relatively infrequent activity. As mentioned above, the BBG-HIBE has many applications.
The modified protocol G1 can be used for all such applications.
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Table 1: Comparison of HIBE protocols Secure in sID/s+ID Model.
protocol security id public max pvt decryption

model comp parameter key size subkey size
G1 s+ID Zp 3 + 2h 2h 2

BBG s+ID Z∗
p 4 + h h + 1 2

BBG sID Z∗
p 4 + h h + 1 2

BB s+ID Zp 3 + h h + 2 h + 2
protocol ciphertext encryption decryption Security

expansion efficiency efficiency degradation
G1 2 h + 2 2 Nil

BBG in s+ID 2 h + 2 2 h

BBG in sID 2 h + 2 2 Nil
BB h + 1 2h + 1 h + 1 Nil

For a HIBE of maximum height h, the columns for public parameter, max pvt key size, decryption
subkey size and ciphertext expansion denote the number of elements of G1, encryption efficiency denotes
the number of scalar multiplications in G1 and decryption efficiency denotes the number of pairing
computations.

6 Security

Semantic security (i.e., (CPA-security) of the above scheme in the s+ID model is proved under the
h-wDBDHI∗ assumption.

Theorem 6.1. For t ≥ 1, q ≥ 1;AdvG1(t, q) ≤ Advh-wDBDHI∗(t+O(τq)), where τ is the time for a scalar
multiplication in G1.

Proof : Suppose A is a (t, q)-CPA adversary for the G1, then we construct an algorithm B that solves
the h-wDBDHI∗ problem. B takes as input a tuple (P,Q, Y1, . . . , Yh, Z) where Yi = αiP for some
random α ∈ Z∗

p and Z is either equal to e(P,Q)αh+1
or a random element of G2. We define the s+ID

game between B and A as follows.

Initialization: A outputs an identity tuple v∗ = (v∗1, . . . , v
∗
u) ∈ Zu

p for any u ≤ h. The restriction
on A is that it cannot ask for the private key of v∗ or any of its prefix and in challenge it asks for an
encryption under v∗ or any of its prefix. In case u < h, B chooses random v∗u+1, . . . , v

∗
h from Zp and

keeps these extra elements to itself. (Note that B is not augmenting the target identity to create a new
target identity.)

Setup: B picks random β, β1, . . . , βh and c1, . . . , ch in Zp. It then sets

P1 = Y1 = αP ;P2 = Yh + βP = (αh + β)P ;

and

for 1 ≤ j ≤ u, Qj = βjP − Yh−j+1; P3,j = cjP + v∗jYh−j+1;
for u < j ≤ h, Qj = βjP ; P3,j = cjP + v∗jYh−j+1.
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The public parameters are (P, P1, P2,
−→
P 3,

−→
Q), where −→

Q = (Q1, . . . , Qh), −→P 3 = (P3,1, . . . , P3,h). The
corresponding master key αP2 = Yh+1 + βY1 is unknown to B. B defines the functions Fj = v∗j − vj for
1 ≤ j ≤ u and Fj = v∗j for u < j ≤ h and Jj = cj + βjvj for 1 ≤ j ≤ h.

Phase 1: Suppose A asks for the private key corresponding to an identity v = (v1, . . . , vτ ) for τ ≤ h.
Note that for any j ≤ u,

Vj = P3,j + vjQj

= cjP + v∗jYh−j+1 + vj(βjP − Yh−j+1)
= (v∗j − vj)Yh−j+1 + (cj + βjvj)P
= FjYh−j+1 + JjP.

Similarly, for u < j ≤ h

Vj = P3,j + vjQj = cjP + v∗jYh−j+1 + vjβjP = FjYh−j+1 + JjP.

Hence, Vj for 1 ≤ j ≤ h is computable from what is known to B.
Recall that u is the length of v∗ that the adversary committed to before the set-up phase. If τ ≤ u,

then there must be a k ≤ τ such that Fk 6= 0, as otherwise the queried identity is a prefix of the target
identity. In case τ > u, it is possible that F1 = · · · = Fu = 0. Then by construction, Fu+1 6= 0. We now
proceed under the assumption that there is a k such that Fk 6= 0 and k is the smallest such index. B
picks a random r ∈ Zp and assigns d0|k = (−Jk/Fk)Yk + βY1 + rVk and d1 = (−1/Fk)Yk + rP. Now,

d0|k = −Jk

Fk
Yk + βY1 + αkYh−k+1 − αk Fk

Fk
Yh−k+1 + rVk = αP2 + r̃Vk

where r̃ = (r − αk

Fk
). Also d1 = − 1

Fk
Yk + rP = −αk

Fk
P + rP = r̃P . For any j ∈ {1, . . . , τ} \ {k} we have

r̃Vj = (r − αk

Fk
)(FjYh−j+1 + JjP )

= r(FjYh−j+1 + JjP )− 1
Fk

(FjYh+k−j+1 + JjYk).

For j < k, Fj = 0, so B can compute all these r̃Vjs from what it has. It forms

d0 = d0|k +
∑

j∈{1,...,τ}\{k}

r̃Vj = αP2 + r̃
τ∑

j=1

Vj .

To form a valid private key B also needs to compute r̃P3,j and r̃Qj for τ < j ≤ h. Now,

r̃P3,j =
(

r − αk

Fk

)
(cjP + v∗jYh−j+1)

= r(cjP + v∗jYh−j+1)−
1
Fk

(
cjYk + v∗jYh+k−j+1

)
;

For j ≤ u,

r̃Qj =
(

r − αk

Fk

)
(βjP − Yh−j+1) = r(βjP − Yh−j+1)−

1
Fk

(βjYk − Yh+k−j+1)
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and for u < j ≤ h,

r̃Qj =
(

r − αk

Fk

)
βjP = rβjP − 1

Fk
βjYk.

All these values are computable from what is known to B. Hence, B forms the private key as:

dv = (d0, d1, r̃P3,τ+1, . . . , r̃P3,h, r̃Qτ+1, . . . , r̃Qh)

and provides it to A.

Challenge: After completion of Phase 1, A outputs two messages M0,M1 ∈ G2 and the challenge
identity v+ = v∗1, . . . , v

∗
u′ where u′ ≤ u ≤ h. B picks a random b ∈ {0, 1} and provides A the challenge

ciphertext

CT =

Mb × T × e(Y1, βQ), Q,

 u′∑
j=1

(cj + βjv
∗
j )

×Q

 .

Suppose, Q = γP for some unknown γ ∈ Zp. Then u′∑
j=1

cj + βjv
∗
j

×Q = γ

 u′∑
j=1

cj + βjv
∗
j

P

= γ

u′∑
j=1

(
cjP + v∗jYh−j+1 + v∗j (βjP − Yh−j+1)

)
= γ

u′∑
j=1

(
P3,j + v∗jQj

)

= γ

 u′∑
j=1

Vj

 .

If the input provided to B is a true h-wDBDHI∗ tuple, i.e., Z = e(P,Q)(α
h+1), then

Z × e(Y1, βQ) = e(P,Q)(α
h+1) × e(Y1, βQ) = e(Yh + βP, Q)α = e(P1, P2)γ .

So, the challenge ciphertext is

CT =

Mb × e(P1, P2)γ , γP, γ

 u′∑
j=1

Vj

 .

CT is a valid encryption of Mb under v+ = (v∗1, . . . , v
∗
u′). On the other hand, when Z is random, CT is

random from the view point of A.

Phase 2: This is similar to Phase 1. Note that A places at most q queries in Phase 1 and 2 together.

11



Guess: Finally, A outputs its guess b′ ∈ {0, 1}. B outputs 1⊕ b⊕ b′.
A’s view in the above simulation is identical to that in a real attack. This gives us the required

bound on the advantage of the adversary in breaking the HIBE protocol.

7 More on the Selective+-ID Model

We analyse the BB-HIBE and the BBG-HIBE with respect to the s+-ID model. It is easy to show that
the BB-HIBE is secure in the s+-ID model without any security degradation. The details are given in
Section A. The case of BBG-HIBE is more interesting and is discussed below.

7.1 The Case of Boneh-Boyen-Goh HIBE

The BBG-HIBE is proved to be secure in the sID model (Theorem 3.1 of [4]). We first argue that the
given proof is not sufficient for the s+ID model. Using the intuition developed in the argument, we later
sketch a proof of security for the BBG-HIBE in the s+ID model, though with a multiplicative security
degradation by a factor of h.

In the sID model, an adversary declares an identity v∗ that it intends to attack before the system is
set up. Suppose v∗ = (v∗1, . . . , v

∗
m) where m ≤ h. In the reduction given in [4], the following is done. If

m < h then the simulator appends (h −m) zeros to v∗ so that v∗ is a vector of length h. Recall that,
in the protocol, individual comonents of an identity are elements of Z∗

p so the adversary is restricted
from making a query where one or more components of the identity is 0. (BB-HIBE does not have this
restriction.) The reduction in [4] crucially depends on this step.

In the protocol, a single element of G1 (i.e. Qi) is associated with the ith level of the HIBE and we
have another element, namely P3 which is required for the security reduction.

The simulator B is given as input a random tuple (P,Q, Y1, . . . , Yh, T ) where Yi = αiP s for 1 ≤ i ≤ h

for some unknown α. The task of B is to decide whether T = e(P,Q)αh+1
or T is a random element of

G2.
We now reproduce the relevant steps of the reduction in Theorem 3.1 in [4].

Setup: B picks a random γ ∈ Zp and sets P1 = Y1 = αP and P2 = Yh + γP . Next, B picks random
γ1, . . . , γh ∈ Zp and sets Qj = γjP − Yh−j+1 for j = 1, . . . , h. B also picks a random δ ∈ Zp and sets
P3 = δP +

∑h
j=1 v∗jYh−j+1. B gives A the public parameters (P, P1, P2, P3, Q1, . . . , Qh).

Note that, the effect of v∗ = (v∗1, . . . , v
∗
m) is assimilated in P3. In case, m (the depth of the challenge

identity tuple v∗) is less than h, we have v∗m+1 = · · · = v∗h = 0, so v∗jYh−j+1 for m < j ≤ h has no effect
on P3. The Qjs in the public parameter are independent of the target identity and depend only on the
Yjs after suitable randomization. In contrast, in case of the BB-HIBE, each Qj depends on v∗j i.e., the
component corresponding to level j in target identity v∗.

Given this setup, Boneh, Boyen and Goh show that all the private key queries of A can be answered
(see Phase 1 in the proof of Theorem 3.1 in [4] for details).

Now, suppose in the challenge phase A asks the encryption under v+ which is a prefix of v∗, i.e.,
v+ = (v∗1, . . . , v

∗
µ), µ ≤ m. If µ = m, then the original reduction goes through and we get a proper

encryption of Mb provided the input instance is a true h-wDBDHI∗ instance. However, if µ < h, then the
original reduction in [4] does not give a proper encryption of Mb even if the input is a true h-wDBDHI∗

instance as we show below.
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Let Q = cP for some unknown c ∈ Zp, then the third component of the challenge ciphertext is

C =

δ +
h∑

j=1

v∗jγj

Q = c

 h∑
j=1

v∗j (γjP − Yh−j+1) + δP +
h∑

j=1

v∗jYh−j+1


= c(v∗1Q1 + . . . , v∗mQm + P3) since v∗m+1 = · · · = v∗h = 0

However, this corresponds to an encryption under v∗ and not v+. To get a valid encryption under
v+ = v∗1, . . . , v

∗
µ, the third component of the ciphertext should be of the form

C ′ = c(v∗1Q1 + · · ·+ v∗µQµ + P3)

= c

 µ∑
j=1

v∗j (γjP − Yh−j+1) + δP +
h∑

j=1

v∗jYh−j+1


= c

 µ∑
j=1

v∗jγjP + δP +
m∑

j=µ+1

v∗jYh−j+1


=

δ +
µ∑

j=1

v∗jγj

Q + c

m∑
j=µ+1

v∗jYh−j+1

This C ′ cannot be computed by B without the knowledge of c.
A difference in the BB-HIBE and the BBG-HIBE is that in the former, components of identities

are elements of Zp, whereas in the later the identity components are elements of Z∗
p. It is an easy

observation that if zero is allowed to be an identity component, then the BBG-HIBE is not secure.
A sketch of the argument is as follows. In the sID game, an adversary has to commit to an identity
before the HIBE is set-up. Let adersary A commit to an identity v∗ = (v∗1, . . . , v

∗
k) for some k with

1 ≤ k < h. In the query phase, A issues a private key query for the identity v = (v∗1, . . . , v
∗
k, 0) which

is a valid query if 0 is allowed. In return, A is provided the private key of dv = (d0, d1, . . .). Then
d0 = αP2 + r(v∗1Q1, . . . , v

∗
kQk + 0 · Qk+1 + P3) and d1 = rP for some random r ∈ Zp. Using (d0, d1),

A can decrypt any message encrypted for v∗. Removing 0 from the identity space avoids this situation
and allows a proof of the BBG-HIBE in the sID model.

7.1.1 Modified Security Reduction for the BBG-HIBE.

We modify the security reduction of BBG-HIBE in the following way. Suppose, as before that the
adversary committed to an identity tuple v∗ = (v∗1, . . . , v

∗
m) in the commitment stage. During setup, B

choses a random µ from {1, . . . ,m} and forms the public parameters as in the original reduction given
in [4] assuming that v+ = (v∗1, . . . v

∗
µ) will be the target identity in challenge stage. This means that

during setup, the simulator augments v+ by appending zeros and forming a tuple of length h.
The above change does not affect the simulator’s ability to answer key-extraction queries. During

the challenge phase, the simulator can form a proper encryption only if the target identity tuple is v+.
The actual target identity submitted by the adversary has to be a prefix of v∗. If this is not equal to v+,
the simulator aborts the game and outputs one with probability half. Otherwise, it returns a proper
challenge ciphertext as in the original reduction in [4].
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Since, 1 ≤ µ ≤ m ≤ h and µ is chosen uniformly at random, we have Pr[abort] ≥ 1/h. This leads
to a multiplicative degradation by a factor of h, i.e., ε ≤ hε′, where ε is the maximum advantage of
attacking the BBG-HIBE and ε′ is the maximum advantage of solving h-wDBDHI∗.

7.1.2 Passing From sID model to the s+-ID model.

It is not difficult to see that the idea of modifying the proof of the BBG-HIBE protocol to attain
security in the s+-ID model is quite general. This idea does not depend upon the particular algebraic
construction of the BBG-HIBE and hence can be applied to any HIBE which is secure in the sID model.
Thus, any HIBE which is secure in the sID model is also secure in the s+-ID model but with a security
degradation by a factor of h. Though small, in certain cases this can be avoided, e.g., the BB-HIBE
and G1 as shown earlier. The other issue is that the sID and the s+-ID models are really restrictive
security models and it would be nice to obtain tight security reductions in these models.

8 Augmenting to M+
2

Like the augmentation of the selective-ID model to selective+-ID model, we can augment M2 proposed
in [11] in an obvious way to M+

2 . Suppose the adversary of an h-HIBE has committed to a set of target
identities, I∗1 , . . . , I∗u where u ≤ h. Then in the challenge phase it outputs a target identity v∗1, . . . , v

∗
u′

where 1 ≤ u′ ≤ u and each v∗j ∈ I∗j .
The HIBE H2 proposed in [11] is also secure in M+

2 . ccHIBE of [12] secure in M2 can be proved
to be secure in M+

2 with a multiplicative security degradation of h. Here, we show how G1 can be
augmented to M+

2 .

8.1 Construction

We augment G1 to obtain security in model M+
2 and call this new protocol (h, n1, . . . , nh)-G2 or simply

G2.
The maximum height of the HIBE be h. The identities at a depth u ≤ h are of the form v =

(v1, . . . , vu) ∈ (Zp)u. Messages are elements of G2.

Setup: Let 〈P 〉 = G1. Choose a random α ∈ Zp and set P1 = αP . Choose a random element
P2 ∈ G1 and a random h length vector −→P 3 = (P3,1, . . . , P3,h), where each P3,i ∈ G1. Also choose
random vectors −→Q1, . . . ,

−→
Qh where each −→

Q i consists of ni elements of G1. Set the public parameter as
PP = (P, P1, P2,

−→
P 3,

−→
Q1, . . . ,

−→
Qh) while the master key is P4 = αP2. Instead of P1, P2, e(P1, P2) can

also be kept as part of PP. This avoids the pairing computation during encryption.
Note that, while the original BBG scheme and ccHIBE of [12] had a single element P3 in the public

parameter, we have a vector −→P 3 of length h.

Key-Gen: Let, V (i, y) = yniQi,ni + · · ·+yQi,1 for any y ∈ Zp. Given an identity v = (v1, . . . , vk) ∈ Zk
p

of depth k ≤ h, pick a random r ∈ Zp and output

dv =

αP2 + r
k∑

j=1

Vj , rP, rP3,k+1, . . . , rP3,h, r
−→
Qk+1, . . . , r

−→
Qh
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where Vj = P3,j + V (j, vj) . The private key at level k consists of (2 + h− k +
∑h

i=k+1 ni) elements of
G1. Among these, only the first two are required in decryption, the rest are used to generate the private
key for the next level as follows:
Let the secret key corresponding to the identity v|k−1 = (v1, . . . , vk−1) be

dv|k−1
= (A0, A1, Bk, . . . , Bh,

−→
C k, . . . ,

−→
C h)

where A0 = αP2 + r′
∑k−1

j=1 Vj , A1 = r′P , and for k ≤ j ≤ h, Bj = r′P3,j ,
−→
C j = r′Qj,1, . . . , r

′Qj,nj =
〈Cj,nj 〉 Pick a random r∗ ∈ Zp and compute

dv = (A0 + Bk +
∑nk

i=1 vi
kCk,i + r∗

∑k
j=1 Vj , A1 + r∗P,

Bk+1 + r∗P3,k+1, . . . , Bh + r∗P3,h,
−→
C k+1 + r∗

−→
Qk+1, . . . ,

−→
C h + r∗

−→
Qh).

If we put r = r′ + r∗, then dv is a proper private key for v = (v1, . . . , vk).

Encrypt: To encrypt M ∈ G2 under the identity (v1, . . . , vk) ∈ (Zp)k, pick a random s ∈ Zp and
output

CT =

e(P1, P2)s ×M, sP, s

 k∑
j=1

Vj


where Vj is as defined in Key Generation.

Decrypt: To decrypt CT = (A,B, C) using the private key dv = (d0, d1, . . .) of v = (v1, . . . , vk),
compute

A× e(d1, C)
e(B, d0)

= e(P1, P2)s ×M ×
e
(
rP, s

∑k
j=1 Vj

)
e
(
sP, αP2 + r

∑k
j=1 Vj

) = M.

8.2 Security

Semantic security (i.e., CPA-security) of the above scheme in model M+
2 is proved under the h-

wDBDHI∗ assumption. Note that, the additional flexibility in terms of choosing the target identity
that we allowed to the adversary in the s+ID model is also applicable here.

Theorem 8.1. Let n1, . . . , nh, q and n′1, . . . , n
′
h be two sets of positive integers with n′i ≤ ni for 1 ≤ i ≤

h. Then for t ≥ 1, q ≥ 1

Adv
(h,n1,...,nh)-G2

(h,n′
1,...,n′

h)-M+
2

(t, q) ≤ Advh-wDBDHI∗(t + O(τnq))

where n =
∑h

i=1 ni.

Proof : Suppose A is a (t, q)-CPA adversary for G2, then we construct an algorithm B that solves the
h-wDBDHI∗ problem. B takes as input a tuple 〈P,Q, Y1, . . . , Yh, T 〉 where Yi = αiP for some random
α ∈ Z∗

p and T is either equal to e(P,Q)αh+1
or a random element of G2. We define the modified M+

2

game between B and A as follows.
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Initialization: A outputs sets of target identities for each level of the HIBE as (I∗1 , . . . , I∗u) where
each I∗i is a set of cardinality n′i for any u ≤ h.

Setup: B defines polynomials F1(x), . . . , Fh(x) where for 1 ≤ i ≤ u,

Fi(x) =
∏
v∈I∗i

(x− v)

= xn′
i + ai,n′

i−1x
n′

i−1 + . . . + ai,1x + ai,0

For u < i ≤ h, define Fi(x) = ai,0 where ai,0 is a random element of Z∗
p. For 1 ≤ i ≤ u, let ai,n′

i
= 1 and

ai,ni = · · · = ai,n′
i+1 = 0. For u < i ≤ h we set n′i = 0 and ai,ni = · · · = ai,1 = 0. For 1 ≤ i ≤ h define

Ji(x) = bi,nix
ni + bi,ni−1x

ni−1 + . . . + bi,1x + bi,0

where bi,j are random elements of Zp. It then sets

P1 = Y1 = αP ; P2 = Yh + βP = (αh + β)P ; and for 1 ≤ i ≤ h, 1 ≤ j ≤ ni

Qi,j = bi,jP + ai,jYh−i+1; P3,j = bi,0P + ai,0Yh−i+1.

B declares the public parameters to be

(P, P1, P2,
−→
P 3,

−→
Q1, . . . ,

−→
Qh),

where−→P 3 = (P3,1, . . . , P3,h) and−→Q i = (Qi,1, . . . , Qi,ni). The corresponding master key αP2 = Yh+1+βY1

is unknown to B. The distribution of the public parameter is as expected by A.

Phase 1: Suppose A asks for the private key corresponding to an identity v = (v1, . . . , vh′) for h′ ≤ h.
Note that for any i ≤ η′,

Vi = P3,i +
ni∑

j=1

vj
i Qi,j

= bi,0P + ai,0Yh−i+1 +
ni∑

j=1

vj
i (bi,jP + ai,jYh−i+1)

= Fi(vi)Yh−i+1 + Ji(vi)P.

Hence, Vi is computable from what is known to B.
Recall that A initially committed to sets of identities up to level u before the set-up phase. If

h′ ≤ u, then there must be a k ≤ h′ such that Fk(vk) 6= 0, as otherwise vj ∈ I∗j for each j ∈ {1, . . . , h′}
– which the adversary is not allowed by the rules of the Game. In case h′ > u, it is possible that
F1(v1) = · · · = Fu(vu) = 0. Then by construction Fu+1 6= 0. So, in either case there is a k such that
Fk(vk) 6= 0. Moreover, k is the first such index in the range {1, . . . , h′}. B picks a random r ∈ Zp and
assigns d0|k = (−Jk(vk)/Fk(vk))Yk + βY1 + rVk and d1 = (−1/Fk(vk))Yk + rP. Now,

d0|k = −Jk(vk)
Fk(vk)

Yk + βY1 + αkYh−k+1 − αk Fk(vk)
Fk(vk)

Yh−k+1 + rVk

= −Jk(vk)
Fk(vk)

αkP + αP2 − αk Fk(vk)
Fk(vk)

Yh−k+1 + rVk

= αP2 + r̃Vk
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where r̃ = (r− αk

Fk(vk)). Also d1 = − 1
Fk(vk)Yk + rP = − αk

Fk(vk)P + rP = r̃P . For any j ∈ {1, . . . , h′} \ {k}
we have

r̃Vj = (r − αk

Fk(vk)
)(Fj(vj)Yh−j+1 + Jj(vj)P )

= r(Fj(vj)Yh−j+1 + Jj(vj)P )− 1
Fk(vk)

(Fj(vj)Yh+k−j+1 + Jj(vj)Yk).

Recall that, k is the smallest in the range {1, . . . , h′}, such that, Fk(vk) 6= 0. Hence, for j < k, Fj(vj) = 0
and r̃Vj = rJj(vj)P − Jj(vj)Yk

Fk(vk) . For j > k, Yh+k−j+1 varies between Y1 to Yh. So B can compute all
these r̃Vjs from the information it has. It forms

d0 = d0|k +
∑

j∈{1,...,h′}\{k}

r̃Vj = αP2 + r̃
h′∑

j=1

Vj .

To form a valid private key, B also needs to compute r̃P3,i and r̃
−→
Q i for h′ < i ≤ h. Now,

r̃P3,i =
(

r − αk

Fk(vk)

)
(bi,0P + ai,0Yh−i+1)

= r(bi,0P + ai,0Yh−i+1)−
1

Fk(vk)
(bi,0Yk + aj,0Yh+k−i+1) ;

r̃Qi,j =
(

r − αk

Fk(vk)

)
(bi,jP + ai,jYh−i+1)

= r(bi,jP + ai,jYh−i+1)−
1

Fk(vk)
(bi,jYk + ai,jYh+k−i+1) .

All these values are computable from what is known to B. Hence, B forms the private key as:

dv =
(
d0, d1, r̃P3,τ+1, . . . , r̃P3,h, r̃

−→
Q τ+1, . . . , r̃

−→
Qh

)
and provides it to A.

Challenge: After completion of Phase 1, A outputs two messages M0,M1 ∈ G2 together with a target
identity v∗ = (v∗1, . . . , v

∗
u′), u′ ≤ u, on which it wishes to be challenged. The constraint is each v∗j ∈ I∗j

and hence Fj(v∗j ) = 0 for 1 ≤ j ≤ u′ ≤ u. B picks a random b ∈ {0, 1} and provides A the challenge
ciphertext

CT =

(
Mb × T × e(Y1, βQ), Q,

(
u′∑

i=1

Ji(v∗i )

)
×Q

)
.

Suppose, Q = γP for some unknown γ ∈ Zp. Then

u′∑
j=1

Jj(v∗j )Q = γ
u′∑

j=1

(
Jj(v∗j )P + Fj(v∗j )Yh−j+1

)

= γ

 u′∑
j=1

Vj

 .

17



If the input provided to B is a true h-wDBDHI∗ tuple, i.e., T = e(P,Q)(α
h+1), then

T × e(Y1, βQ) = e(P,Q)(α
h+1) × e(Y1, βQ) = e(Yh + βP, Q)α = e(P1, P2)γ .

So, the challenge ciphertext is

CT =

Mb × e(P1, P2)γ , γP, γ

 u′∑
j=1

Vj

 .

CT is a valid encryption of Mb under v∗ = (v∗1, . . . , v
∗
u′). On the other hand, when T is random, CT is

random from the view point of A.

Phase 2: This is similar to Phase 1. Note that A places at most q queries in Phase 1 and 2 together.

Guess: Finally, A outputs its guess b′ ∈ {0, 1}. B outputs 1⊕ b⊕ b′.

A’s view in the above simulation is identical to that in a real attack. This gives us the required bound
on the advantage of the adversary in breaking the HIBE protocol.

9 Product Scheme

We have mentioned that Boneh-Boyen-Goh [4] proposed a “product” construction based on the BBG-
HIBE and the BB-HIBE. A similar construction is possible based on the HIBE G1 of Section 5 and
BB-HIBE. The resulting HIBE is secure in s+ID model. On the other hand, in [11] we have presented
a construction H1 which is secure in model M1. This construction is in a sense an extension of the
BB-HIBE. We propose a composite scheme based on H1 and G2 which we denote as (h, n)-G3 or simply
G3, where h is the maximum number of levels in G3 and n is a parameter that comes from the underlying
security model M1.

The essential idea, as in [4] is to form a product of two HIBEs. For this we represent an identity
tuple in the form of a matrix (say II) having (a-priori) fixed number of columns, `2 (say). When we
look at a row of II, it forms a constant size ciphertext HIBE, H, while each row taken together as a
single identity forms another HIBE, H′. We obtain a product construction by instantiating H′ to be
H1 of [11] and H to be the constant size ciphertext HIBE G2 of Section 8. In this case, the components
of the identity tuples are from Zp and we obtain security in M1. Since M1 allows the target identity
to be of any length up to the maximum height of the HIBE, the adversary has the flexibility to choose
the length of the target identity in the challenge phase.

9.1 Construction

Let the maximum depth of the HIBE be h ≤ `1× `2. Here individual identity components are elements
of Zp.
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Setup: Let P be a generator of G1. Choose a random secret x ∈ Zp and set P1 = xP . Randomly
choose P2; an `1 × `2 matrix R where

R =

 R1,1 · · · R1,`2
...

...
...

R`1,1 · · · R`1,`2


and `2 many vectors −→U1, . . . ,

−→
U`2 from G1, where each −→

Ui = (Ui,1, . . . , Ui,n), n being a parameter. The
public parameters are 〈P, P1, P2,R,

−→
U1, . . . ,

−→
U`2〉, while the master secret is xP2.

Key Generation: Given an identity v = (v1, . . . , vu), for any u ≤ h, this algorithm generates the
private key dv of v as follows.

Let u = k1`2+k2 with k2 ∈ {1, . . . , `2}. We represent v by a (possibly incomplete) (k1+1)×`2 matrix
I where the last row has k2 elements. Choose (k1 + 1) many random elements r1, . . . , rk1 , rk2 ∈ Zp and
output

dv =

xP2 +
k1∑
i=1

ri

`2∑
j=1

(Vi,j + Ri,j) + rk2

k2∑
j=1

(Vk1+1,j + Rk1+1,j) , r1P, . . . , rk1P, rk2P,

rk2Rk1+1,k2+1, . . . , rk2Rk1+1,`2 , rk2

−−−→
Uk2+1, . . . , rk2

−→
U`2

)
= (a0, a1, . . . , ak1 , ak1+1, bk2+1, . . . , b`2 ,

−→c k2+1, . . . ,
−→c `2) say.

where Vi,j =
∑n

k=1 vk
i,jUj,k and rk2

−→
Ui denotes that each element of −→Ui is multiplied by the scalar rk2 .

Note: Here u = k1`2 + k2, so the first k1`2 components of the identity tuple can be arranged as the
first k1 rows of a matrix having `2 many columns. Each of these rows taken separately can be viewed
as an identity tuple for a constant size ciphertext HIBE, H, having maximum depth `2. Similarly, the
last k2 ≤ `2 components of the identity tuple can be viewed as a separate identity tuple of the same
constant size ciphertext HIBE. Next, we view each of the first k1 rows as a single identity component
of another HIBE, H′. We now take a closer look at the structure of dv. Let,

a0 = xP2 +
k1∑
i=1

ri

`2∑
j=1

(Vi,j + Ri,j) + rk2

k2∑
j=1

(Vk1+1,j + Rk1+1,j)

= A1 + A2 + A3

Here, A1 = xP2 is the master key and A2+A3 is used to generate the private key for v by suitably masking
the master secret. A2 =

∑k1
i=1 ri

∑`2
j=1 (Vi,j + Ri,j) – the inner sum is over a single row which forms a

full-length identity tuple for the constant size ciphertext HIBE H; while the outer sum is over the first k1

rows where we treat each row as a single identity component for H′. A3 = rk2

∑k2
j=1 (Vk1+1,j + Rk1+1,j)

is for the remaining row having k2 ≤ `2 many elements and this row forms an identity tuple of depth k2

for H. Altogether we have k1 +1 levels in H′ and a1, . . . , ak1+1 correspond to each of these levels. These
elements i.e, (a0, a1, . . . , ak+1) are sufficient for decryption as we will see in the Decryption algorithm.
The rest of the elements, i.e., bis and −→c is are required for generating the private key for the next level
as we show below.

19



The private key of v can also be generated given the private key of v|u−1
= v1, . . . , vu−1 as required.

There are two cases to be considered.
Case 1: Suppose u− 1 = k1`2 + `2 = (k1 + 1)`2, then

dv|u−1
=

xP2 +
k1+1∑
i=1

ri

`2∑
j=1

(Vi,j + Ri,j) , r1P, . . . , rk1P, rk1+1P


= (a0, a1, . . . , ak1 , ak1+1) (say)

Choose a random r∗ ∈ Zp and form dv as

dv = a0 + r∗(Vk1+2,1 + Rk1+2,1), a1, . . . , ak1+1, r
∗P, r∗Rk1+2,2, . . . , r

∗Rk1+2,`2 , r
∗−→U2, . . . , r

∗−→U`2 .

Case 2: Let, u− 1 = k1`2 + k′2 with k′2 < `2 then,

dv|u−1
=

xP2 +
k1∑
i=1

ri

`2∑
j=1

(Vi,j + Ri,j) + r′k2

k′2∑
j=1

(Vk1+1,j + Rk1+1,j) , r1P, . . . , rk1P, r′k2
P,

r′k2
Rk1+1,k′2+1, . . . , r

′
k2

Rk1+1,`2 , r
′
k2

−→
U k′2+1, . . . , r

′
k2

−→
U `2

)
= (a0, a1, . . . , ak1 , ak1+1, bk′2+1, . . . , b`2 ,

−→c k′2+1, . . . ,
−→c `2) (say)

Choose a random r∗ ∈ Zp and form dv as

dv = a0 +
n∑

j=1

vj
uck′2+1,j + bk′2+1 + r∗

k′2+1∑
j=1

(Vk1+1,j + Rk1+1,j) , a1, . . . , ak1 , ak1+1 + r∗P,

bk′2+2 + r∗Rk1+1,k′2+2, . . . , b`2 + r∗Rk1+1,`2 ,
−→c k′2+2 + r∗

−→
U k′2+2, . . . ,

−→c `2 + r∗
−→
U `2

It can be verified that dv is a proper private key for v.

Encrypt: To encrypt a message M ∈ G2 under the public key v = (v1, . . . , vu) choose a random s ∈ Zp
and then the ciphertext is

C =

(
e(P1, P2)

s ×M, sP, s

`2∑
j=1

(V1,j + R1,j), . . . , s

`2∑
j=1

(Vk1,j + Rk1,j) , s

k2∑
j=1

(Vk1+1,j + Rk1+1,j)

)

where Vi,j is as defined in Key Generation part. Each Ci correponds to the ith row of the identity
matrix for v.

Decrypt: Let CT = (A,B, C1, . . . , Ck1 , Ck1+1) be a cipher text and v = v1, . . . , vu be the corresponding
identity represented as a (k1 + 1)× `2 matrix. Then we decrypt CT using dID = (d0, d1, . . . , dk1+1, . . .)
as

A×
∏k1+1

i=1 (di, Ci)
e(B, d0)

= M.
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9.2 Security

Security of the above hybrid construction in the generalised selective-ID model (h, n′)-M1 of [11] can
be reduced from the hardness of `2-wDBDHI∗ problem. Here we give a sketch of the proof.

Theorem 9.1. Let h, n, q be positive integers and n′ be another positive integer with n′ ≤ n. Then then

Adv
(h,n)-G3

(h,n′)-M1
(t, q) ≤ Adv`2−wDBDHI∗(t + O(τnq)).

Proof :
We want to prove (h, n)-G3 secure in model (h, n′)-M1 using a reductionist security argument where

1 ≤ n′ ≤ n. This means that the public parameters of the HIBE depend on n, while the adversary
commits to a set I∗ of size n′ in the commit phase.

The simulator is provided with a tuple 〈P,Q, Y1, . . . , Y`2 , T 〉 ∈ G`2+2
1 ×G2. It has to decide whether

this is a proper `2-wDBDHI∗ instance or not.

Adversary’s commitment: A commits to a set I∗, where |I∗| = n′. The restriction on the adversary
is that in the private key extraction query at least one component of the identity tuple should be outside
I∗; while in the challenge phase it asks for the encryption under an identity v∗ all of whose components
are from I∗.

Set-up: The simulator defines

F (x) =
∏
v∈I∗

(x− v) = xn′
+ · · ·+ a1x + a0

J
(j)
i (x) = bi,nxn + · · ·+ bi,1x + b

(j)
i,0 for 1 ≤ i ≤ `1, 1 ≤ j ≤ `2

where each bi,k and b
(j)
i,0 is chosen at random from Z∗

p. Define an′ = 1 and an = an−1 = · · · = an′+1 = 0.
The simulator defines P1 = Y1, P2 = Y`2 + βP in a similar manner as in the set-up of Section 6. It
further defines Ui,j = bi,jP + aiYh−i+1 for 1 ≤ i ≤ `2, 1 ≤ j ≤ n and Rk,j = b

(j)
k,0P + a0Y`2−j+1 for

1 ≤ k ≤ `1, 1 ≤ j ≤ `2.
The simulator gives the public parameters 〈P, P1, P2,R,

−→
U1, . . . ,

−→
U`2〉 to A, while the corresponding

master secret is unknown to the simulator.

Phase 1: Suppose A asks for the private key of an identity v = v1, . . . , vm where m = k1 × `2 + k2.
The simulator first forms the (k1 + 1) × `2 matrix I where v1 is indexed as v1,1 and vm as vk1+1,k2 .
The last row of the matrix may have elements less than `2. As per the rule of the game there is at
least one identity, say vl, such that F (vl) 6= 0. Suppose, vl is indexed as k′1, k

′
2 in I. Now consider the

identity tuple ((vk′1,1, . . . , vk′1,k′2
). This by itself can be seen as a valid identity tuple of depth k′2 for the

HIBE H. Using the technique of Section 6, the simulator forms a private key for (vk′1,1, . . . , vk′1,k′2
) as

(a′0, ak′1
, bk′2+1, . . . , b`2 ,

−→c k′2+1, . . . ,
−→c `2). Note that, this is a valid private key for an identity tuple of

depth k′2 in the constant size ciphertext HIBE H. It next chooses r1, . . . , rk′1−1 ∈ Zp and computes the
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private key for (v1, . . . , vl) as

a0 = a′0 +
k′1−1∑
i=1

ri

`2∑
j=1

(Vi,j + Ri,j)

ai = riP for 1 ≤ i ≤ k′i − 1

Note that, Vi,j =
∑n

k=1 vk
i,jUj,k, so

Vi,j + Ri,j =
n∑

k=1

vk
i,jUj,k + Ri,j

=
n∑

k=1

vk
i,j(bj,kP + ajY`2−j+1) + b

(j)
i,0P + a0Y`2−j+1

= F (vi,j)Y`2−j+1 + J
(j)
i (vi,j)P

The simulator can compute all these from the information it possesses. Hence,

(a0, a1, . . . , ak′i−1, ak′1
, bk′2+1, . . . , b`2 , ck′2+1, . . . , c`2)

is a proper private key for v1, . . . , vl from which the simulator forms a private key for v and gives it to
A.

Challenge: At this stage, A produces two equal length messages M0,M1 ∈ G2 and a challenge identity
v∗. The challenge identity v∗ = (v∗1, . . . , v

∗
u) should have each vj ∈ I∗ and hence F (v∗j ) = 0 for 1 ≤ j ≤ u.

Based on this fact the simulator is able to form a proper encryption of Mγ where γ is chosen uniformly
at random from {0, 1}, if the tuple provided to it is a true h-wDBDHI∗ instance.

Phase 2: The key extraction queries in this stage are handled as in Phase 1.

Guess: The adversary outputs a guess γ′. The simulator outputs 1 if γ = γ′, else it outputs 0.
A’s view in the above simulation is identical to that in a real attack if the given instance is a true

`2-wDBDHI∗ instance.
The above shows that an adversary’s ability to attack (h, n)-G3 HIBE in model (h, n′)-M1 can be

converted into an algorithm for solving `2-wDBDHI∗ problem. The bound on the advantage follows
from this fact.

Note that, in the commitment stage we may give the adversary some more flexibility by allowing it
to commit to sets of identities I∗1 , . . . , I∗h, where I∗j corresponds to the commitment for the jth level of
the constant size ciphertext HIBE. In this case the restrictions in M2 regarding the private key queries
and challenge generation apply. This added flexibility, however, does not affect the efficiency of the
protocol.

10 Discussion

The private key corresponding to an identity in a HIBE has two roles. The first role is to enable
decryption of a message encrypted using this identity, while the second role is to enable generation of
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lower level keys. Not all components of the private key are necessarily required for decryption, i.e., the
decryption subkey can have strictly fewer components than the whole private key. This has also been
observed in [4] and in case of the BBG-HIBE, the decryption subkey consists of only two components.
In G1 and G2, the decryption subkeys also consist of two components as in the BBG-HIBE. In G3 the
size of the decryption subkey is reduced by a factor of h compared to the size of the decryption subkeys
in H1.

Having a small decryption subkey is important, since the decryption subkey may need to be loaded
on to smart cards for frequent and online decryptions. This is achieved in all the HIBE constructions
described in this work. On the other hand, the entire private key is required for key delegation to lower
level entities. Key delegation is a relatively infrequent activity which will typically be done by an entity
from a workstation. Storage in a workstation is less restrictive and a larger size private key required
only for key delegation is more tolerable.

The size of the private key in the BBG-HIBE and G1 is proportional to the number of levels in the
HIBE. For G2 this size is proportional to n×h, where h is the number of levels of the HIBE and n is the
maximum number of challenge identities that the adversary can commit to for any level. The size of the
private key in G3 varies cyclically with the number of components j in the identity. Let j = j1h + j2,
where h is the number of levels in H used in the product construction and j2 ∈ {1, . . . , h}. The size
of the private key then varies as j1 + n × j2, where n is the number of elements in the set from which
the adversary can construct the challenge identity. Since j2 varies in a cyclic manner with period h,
the size of the private key also shows a similar behaviour. (A similar behaviour is also shown by the
size of the private key in the product construction in [4].) A modification of the protocols eliminates
the dependence of the size of the private key on j2. Suppose that key delegation is only allowed to
be performed by the PKG and entities at levels h, 2h, 3h, . . .. For example, in a big organisation, the
hierarchy may be divided into sub-hierarchies. The entities at levels h, 2h etcetera are the system
administrators for the sub-hierarchy of depth h and the delegation of private key is solely managed by
them. The other entities in the sub-hierarchy are not involved with the business of key-delegation but
they can still access the secret information encrypted for their subordinates. In this scenario, the size
of the private key varies only with j1 and in fact, the private key and the decryption subkey become
identical.

11 Conclusion

In this work, we have augmented the selective-ID security model for hierarchical identity-based encryp-
tion by allowing the adversary some flexibility in choosing the target identity tuple during the challenge
phase of the security reduction. We have denoted this model by selective+-ID model (s+ID model). The
Boneh-Boyen HIBE satisfies this notion of security while the constant size ciphertext HIBE of Boneh,
Boyen and Goh needs some modification in the security reduction to do so. This modification introduces
a multiplicative security degradation. We have further augmented the BBG-HIBE to construct a new
protocol secure in s+ID model without any degradation which maintains all the attractive features of
BBG-HIBE. We build on this new construction another constant size ciphertext HIBE. The security
of our second construction is proved under a generalization of the selective-ID security model. Our
third construction of HIBE is a “product” construction that allows a controllable trade-off between the
ciphertext size and the private key size.
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A The Case of Boneh-Boyen HIBE

The original reduction in [2] goes through without almost any modification for the s+ID model. The
only change is in challenge generation as described below.

Initialization: A commits to a target identity v∗ = (v∗1, . . . , v
∗
k) of height k ≤ h. If k < h, B adds

extra random elements from Zp to make v∗ an identity of height h.

Setup: B picks random α1, . . . , αh ∈ Zp and defines Qj = αjP − v∗jP1 for 1 ≤ j ≤ h. It gives A the
public parameters PP = 〈P, P1, P2, Q1, . . . , Qh〉. Here the msk = aP2 = abP is unknown to B. Define
the function Fj(x) = xP1 + Qj = (x− v∗j )P1 + αjP for 1 ≤ j ≤ h.

Phase 1 and Phase 2: As in [2].

Challenge: After completion of Phase 1, A outputs two messages M0,M1 ∈ G2 and an identity
tuple v+ = (v∗1, . . . , v

∗
τ ), τ ≤ k. B chooses a random bit γ and forms the ciphertext C = (Mγ ·

Z, cP, α1cP, . . . , ατcP ). Note that, Fi(v∗i ) = αiP , so

C = 〈Mγ · Z, cP, cF1(v∗1), . . . , cFτ (v∗τ )〉.

If Z = e(P, P )abc = e(P1, P2)c then C is a valid encryption of Mγ .
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