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Abstract 
 

Digital signature schemes based on public-key 

cryptosystems generally permit existential forgery, except 

the schemes are equipped with some message formatting 

mechanisms, such as using hash functions or padding 

redundancies. In 2004, Chang et al. proposed a new digital 

signature scheme, and claimed the scheme without using 

any hash function or padding any redundancy can resist 

forgery attacks. However, many attacks on Chang et al.’s 

scheme were presented. Kang et al. also gave an effective 

improvement to resist these forgery attacks. In this letter, 

we gave a further improvement to shorten the signed 

signature. Our improvement keeps the security of Kang et 

al.’s scheme and makes it more efficient in computation 

and communication. 
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1. Introduction 
 

Digital signature schemes based on public-key 

cryptosystems generally permit existential forgery. A usual 

method to prevent existential forgery is using message 

formatting mechanisms, such as using hash functions and 

padding redundancies, which permit a verifier to verify non-

random distribution of a message. The ElGamal signature 

family is a typical example. The message signed in the 

original ElGamal signature scheme does not contain any 

recognizable redundancy and the scheme is subject to 

existential forgery [1]. However, the modified ElGamal 

signature scheme, into which a hash function is introduced, 

was proved secure by Pointcheval and Stern [5]. Schnorr 

signature scheme [2] and Digital Signature Standard (DSS) 

[3] are another two influential variations in ElGamal-family 

signatures. Both of them utilize hash functions and can 

resist forgery attacks. 

Commonly in a digital signature scheme, the signed 

signature is appended to the original message and sent to 

the receiver together. Then the receiver can verify the 

validity of the signed message using the signer’s public key. 

Another kind of digital signature scheme is with message 

recovery, where the original message is included and hidden 

in the signed signature [4]. Upon receiving the signature, 

the receiver can recover the original message from the 

signature and complete the verification process. A digital 

signature with message recovery is more useful for some 

applications in which the message to be signed is small, 

such as a time, numbers, and so on. 

In 2004, Chang et al. [6] proposed a digital signature 

scheme with message recovery and claimed that their 

scheme can resist forgery attacks without using any hash 

function or padding any redundancy. However, many 

papers proved that Chang et al.’s scheme was insecure. 

Zhang [8], Fu et al. [7] and Chien [9] gave their forgery 

attacks on Chang et al.’s scheme recently. Kang et al. gave 

an effective improvement to resist these forgery attacks [10]. 

In this letter, we proposed two more efficient schemes. Our 

schemes are as secure as Kang et al.’s scheme. However, 

the signature generated in our scheme is much shorter than 

Kang et al.’ scheme. The shortened signature means fewer 

operations in signature generation and verification and less 

transmission in signature sending. That is to say, we make 

the signature schemes more efficient in computation and 

communication.  

 

2. Review of Chang et al.’s Scheme 
 

The initialization for Chang et al.’s digital signature 

scheme is described as follows. Let p  be a large prime, and 

pg   is a random multiplicative generator element. x is 

the private key of the signer U ,where 

 1,gcd , 1 1x p x p    . Y  is the corresponding public key 

such that modxY g p . To generate a signature for message 

pm , U executes the following steps. 

A. Signature-Generation Phase 

1. U  computes modms Y p .  

2. U  randomly chooses  1, 1k p   and computes 

modkr m s g p    

3. U  derives the value t  from 

   1 mod 1s t x k r p      

4. U  sends the signature  , ,r s t  of m  to the verifier. 

B. Verification Phase Upon receiving the signature 

 , ,r s t  of m , the verifier V  performs the following steps 

to validate the signature. 

1. V  computes 
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1 mods t rm Y r g s p       

2. V  checks whether modms Y p


  holds. If so, he 

accepts the signature; otherwise, he rejects it. 

 

3. Forgery Attacks on Chang et al.’s Scheme 
 

Assume Eve is an attacker who wants to forge signature 

 ', ', 'r s t  for message 'm .  , ,r s t  is a legitimate signature 

for message m  , which may be utilized during the forge 

process.  

 

3.1. Fu et al.’s Forgery Attack 1 
 

Eve randomly chooses ' pr   and computes: 

'' ' modrm r g p   

'' modms Y p  

   ' ' ' mod 1t m s p    

 ', ', 'r s t  can pass the verification because: 
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3.2. Fu et al.’s Forgery Attack 2 
 

Eve randomly chooses pR   and computes: 

' modr r R p   

 1' modr Rm mRsg p  

'' modms Y p  

   ' ' 'mod 1t s t m s p      

 ', ', 'r s t  can pass the verification because: 
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3.3. Zhang’s Forgery Attack 1 
 

Eve randomly chooses 1p 
  and computes: 

' modm m Y p   

'' modms Y p  

' modr r p  

 ' ' 'mod 1t s t m s m p        

 ', ', 'r s t  can pass the verification because: 
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3.4. Zhang’s Forgery Attack 2 
 

Eve randomly chooses p   and computes: 

' modr r p   

  1'mod 1 , pr r p  
     

' modm m g p    

'' modms Y p  

 ' ' 'mod 1t s t m s m p       

 ', ', 'r s t  can pass the verification because: 
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3.5. Chien’s Attack 
 

Eve randomly chooses  ' 1, 1k p   and computes: 

'' modkr Y p  

'' modrm g p  

'' modms Y p  

 ' ' ' 'mod 1t s k m p      

 ', ', 'r s t  can pass the verification because: 

 
1' ' '

' ' ' ' '

' '

'mod

s t r

k m k r m

m Y r g s

Y Y g Y

m p

 

  



   



 

 

4. Kang et al.’ Improvement  
 

Kang et al. gave a detailed cryptanalysis on above 

forgery attacks and summarized a common attack named 

parameter reduction attack, which revealed the fatal flaw of 

Chang et al.’s signature scheme.  

Let 't s t m   , the verification phase of Chang et al.’s 

scheme can be transformed as: 
' mod

mod

t r

m

m Y r g p

s Y p


   



 

The parameters in the equation to recover the original 

message are reduced from three to two. Therefore, the 

attacker can choose arbitrary , 'r t  and compute m , then 

compute s . This kind of signature  , , 'r s t s m   for 

message m  always can pass the verification. Chang et al. 

hoped to resist forgery attacks utilizing an extra parameter 

modms Y p  other than using hash functions or padding 

redundancies in their scheme. However, this parameter s  

does not work as what Chang et al.’s hoped. It’s useless in 

the equation to recover the original message. That’s the 

fatal flaw of Chang et al.’s signature scheme. 
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Then Kang et al. gave an effective solution to fix this 

flaw in [10]. To sign message pm , U executes the 

following steps. 

A. Signature-Generation Phase 

1. U  computes modms Y p .  

2. U  randomly chooses  1, 1k p   and computes  

modkr s mg p  . 

3. U  derives the value t from 

   1 mod 1s t x k r p      

4. U  sends the signature  , ,r s t  of m  to the verifier. 

B. Verification Phase Upon receiving the signature 

 , ,r s t  of m , V  performs the following steps to validate 

the signature. 

1. V  computes 

  mods t rm r s Y g p    

2. V  checks whether modms Y p


  holds. If so, he 

accepts the signature; otherwise, he rejects it. 

Kang et al.’s scheme works correctly since: 
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Let 't t s   and 'r r s  , the equation to recover the 

original message in Kang et al.’ improved scheme can be 

transformed as: 

  '

' '

mod

' mod
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The transformation is not able to reduce parameters as what 

Kang et al. did to Chang et al.’s scheme. That is to say, 

Kang et al.’ improved scheme can resist the so-called 

parameter reduction attack. 

Kang et al.’ improved scheme also can resist those 

forgery attacks depicted in part 3. In Chang et al.’s scheme, 

it’s easy for Eve to find a doublet  , 'r t  to satisfy 
' modt rm Y r g p    . However in Kang et al.’ scheme, 

it’s much more difficult for Eve to find a triplet  ', , 'r s t  to 

satisfy ' '' modt r sm r Y g p  . Given the value 'r , it’s a 

discrete logarithm problem to derive the value 't  from  

   1 '' ' modr stY m r g p
   . 

On the other hand, when given 't , to calculate 'r  from  

' '' modr s tr Y mg Y p   

it’s not easier than solving discrete logarithm problem [1]. 

Moreover, there is no effective solution for Eve to find 

valid 'r  and 't  simultaneously to satisfy the recovery 

equation until now. 

 

5. Our Improved Schemes 
 

Kang et al.’ improved scheme is secure to resist forgery 

attacks. However, we found that it is not efficient enough. 

To sigh a message m  of length p , the length of the 

signature is about 3 p . The longer signature means more 

operations in signature generation and verification and more 

transmission in signature sending. While preserving the 

security properties, the shortened signature will make the 

signature scheme more efficient. 

 

5.1. Improvement on Kang et al.’s Scheme 
 

Setup two prime numbers p  and q  such that | 1q p  , 

where the typical size for these parameters are: 1024p   

and 160q  . Setup an element pg   of order q . x is 

the private key of the signer U ,where 1x p  , 

 gcd , 1 1x p   . Y  is the corresponding public key such 

that modxY g p . To generate a signature for message 

pm , U executes the following steps. 

A. Signature-Generation Phase 

1. U  computes modms Y q .  

2. U  randomly chooses  1,k q  and computes 

modkr s mg p   

3. U  derives the value t  from 

 1 mods t x k r q     

4. U  sends the signature  , ,r s t  of m  to the verifier. 

B. Verification Phase Upon receiving the signature 

 , ,r s t  of m , V  performs the following steps to validate 

the signature. 

1. V  computes 

  mods t rm r s Y g p    

2. V  checks whether modms Y q


  holds. If so, he 

accepts the signature; otherwise, he rejects it. 

Obviously, the improved scheme works correctly too. 

 

5.2. Another Improved Signature Scheme 
 

The system initialization is identical as described in 5.1. 

To generate a signature for message pm , U executes 

the following steps. 

A. Signature-Generation Phase 

1. U  computes modms Y q .  

2. U  randomly chooses  1,k q  and computes 

modkr mg p  

3. U  derives the value t  from 

 1 modt x k rs q    

4. U  sends the signature  , ,r s t  of m  to the verifier. 

B. Verification Phase Upon receiving the signature 

 , ,r s t  of m , V  performs the following steps to validate 

the signature. 

1. V  computes 

modt rsm Y rg p   

2. V  checks whether modms Y q


  holds. If so, he 

accepts the signature; otherwise, he rejects it. 

 , ,r s t  is a valid signature of message m  because: 

mod

t rs

k rs k rs

m Y rg

g mg g

m p
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5.3. Analysis of Our Improved Scheme 
 

First, only some module values are changed in our 

improvement on Kang et al.’s scheme. So our improvement 

does not change the security properties of Kang et al.’s 

scheme. Thus, our improved scheme still can resist 

parameter reduction attack and forgery attacks. 

Secondly, the signature scheme in 5.2 is secure against 

parameter reduction attack as Kang et al.’s scheme. We 

have already made a reduction in deriving the value t . We 

omit the useless s  so the parameter t  is not reducible any 

longer. When let 'r rs , the equation to recover the 

message can be transformed as: 

 ' 1 '' modt rm Y r s g p   

This transformation is not able to reduce parameters either. 

As Kang et al.’s improved scheme, our scheme can resist 

those forgery attacks depicted in part 3. It’s difficult for Eve 

to find a triplet  , ,r s t  to satisfy modt rsm Y rg p  . 

Given the value r , it’s a discrete logarithm problem to 

derive the value t  from  

1 modt rsY mr g p  . 

On the other hand, when given t , to calculate r  from  

  mod
r

s tr g mY p  

it’s not easier than solving discrete logarithm problem [1]. 

Moreover, there is no effective solution for Eve to find 

valid r  and t  simultaneously. 

Thirdly, also our main contribution, the signature 

generated in our improved schemes is much shorter than 

Chang et al.’s scheme and Kang et al.’s scheme: 

( 2 )p q bits are required for transmitting our signature, 

in comparison with 3 p  bits for transmitting a Chang et 

al.’s signature or a Kang et al.’s signature. As we 

mentioned above, shortened signature also means fewer 

operations in signature generation and verification: 

 2 3log logO p q  in our schemes vs.  5logO p  in Chang 

et al.’s scheme or Kang et al.’s scheme.  

 

6. Conclusion 
 

In this paper, we presented a further cryptanalysis of 

Chang et al.’s digital signature scheme, which was claimed 

to resist forgery attacks without using any one-way hash 

function or padding any redundancy. We reviewed some 

forgery attacks and Kang’s improvement. Then, we 

proposed two improved signature schemes, in which the 

length of the signed signature is much shorter. Our 

improvement makes the schemes more efficient in 

computation and communication. Whether we can let 

modulo p  part in signature generation be conducted in an 

off-line manner is an interesting open question. Such a 

design arrangement will make the signature schemes more 

suitable for a small device to perform.  
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