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Abstract
The black-box field (BBF) extraction problem is, for a given field F, to determine a secret field element

hidden in a black-box which allows to add and multiply values in F in the box and which reports only
equalities of elements in the box. This problem is of cryptographic interest for two reasons. First, for
F = Fp it corresponds to the generic reduction of the discrete logarithm problem to the computational
Diffie-Hellman problem in a group of prime order p. Second, an efficient solution to the BBF problem
proves the inexistence of certain field-homomorphic encryption schemes whose realization is an interesting
open problems in algebra-based cryptography. BBFs are also of independent interest in computational
algebra.

In the previous literature, BBFs had only been considered for the prime field case. In this paper we
consider a generalization of the extraction problem to BBFs that are extension fields. More precisely we
discuss the representation problem defined as follows: For given generators g1, . . . , gd algebraically gen-
erating a BBF and an additional element x, all hidden in a black-box, express x algebraically in terms of
g1, . . . , gd. We give an efficient algorithm for this representation problem and related problems for fields
with small characteristic (e.g. F = F2n for some n). We also consider extension fields of large charac-
teristic and show how to reduce the representation problem to the extraction problem for the underlying
prime field.

These results imply the inexistence of field-homomorphic (as opposed to only group-homomorphic,
like RSA) one-way permutations for fields of small characteristic.

Keywords: black-box fields, generic algorithms, homomorphic encryption, one-way permutations, com-
putational algebra.

1 Introduction

1.1 Black-Boxes and Generic Algorithms

Algebraic structures like groups, rings, and fields, and algorithms on them, play a crucial role in cryptography.
In order to compute in an algebraic structure one needs a representation of its elements as bitstrings. One
can consider algorithms that do not exploit any property of the representation, i.e., that are generic. This
generic model is of interest for two reasons. First, generic algorithms can be used no matter how the structure
is represented, and second, this model allows for significant lower bound proofs for certain computational
problems. For instance, Shoup [Sho97] proved a lower bound on the complexity of any generic algorithm for
computing discrete logarithms in a finite cyclic group.

Representation-independent algorithms on a given algebraic structure S are best modeled by a black-box
[BS84, BB99, Mau05] which initially contains some elements of S, describing the instance of a computa-
tional problem in consideration. The black-box accepts instructions to perform the operation(s) of S on the
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values stored in it. The (internal) values are stored in addressable registers and the result of an operation is
stored in a new register. The values stored in the black-box are hidden and the only information about these
values provided to the outside (an hence to the algorithm) are equalities of stored elements. This models that
there is no (need for a) representation of values but that nevertheless one can compute on given values. The
equality check provided by the black-box models the trivial property, of any (deterministic) representation,
that equality is easily checked.1

A basic problem in this setting is the extraction problem: The black-box contains a secret value x (and
possibly also some constants), and the task of the algorithm is to compute x (explicitly).

For example, a cyclic group of prime order p is modeled by a black-box where S is the additive group
Zp (and which can be assumed to contain the constants 0 and 1 corresponding to the neutral element and the
generator, respectively). The discrete logarithm problem is the extraction problem for this black-box. Shoup’s
result implies that no algorithm can extract x (if uniformly chosen) with fewer than O(

√
p) operations. Ac-

tually, this many operations are required to provoke a single collision in the black-box, which is necessary
for the algorithm to obtain any information about the content of the black-box. Both the baby-step giant-step
algorithm and the Pohlig-Hellman algorithm are generic algorithm which can be described and analyzed in
this model.

1.2 Black-Box Fields and Known Results

If one assumes in the above setting that the black-box not only allows addition but also multiplication of
values modulo p, then this corresponds to a black-box field (BBF).

An efficient (non-uniform) algorithm for the extraction problem in Fp was proposed in [Mau94] (see
also [MW99]), where non-uniform means that the algorithm depends on p or, equivalently, obtains a help-
string that depends on p. Moreover, the existence of the help-string, which is actually the description of an
elliptic curve of smooth order over Fp, depends on a plausible but unproven number-theoretic conjecture.

Boneh and Lipton [BL96] proposed a similar but uniform algorithm for the extraction problem in Fp,
but its running time is subexponential and the analysis also relies on a related unproven number-theoretic
conjecture.

1.3 Black-Box Extention Fields

Prime fields differ significantly from extension fields, which is relevant in the context of this paper:
Since a prime field Fp is, in contrast to an extension field Fpk (for k > 1), generated by any non-zero

element (for instance 1), there is a unique isomorphism between any two instantiations of Fp that is given
by mapping the 1 of the first instance to the 1 of the second. In particular there is a unique isomorphism
between a BBF over Fp and any explicit representation of Fp. Therefore there is a unique element in an
explicit representation corresponding to a secret value x inside the black-box and the extraction problem as
stated above is well defined.

As an extension field Fpk (for k > 1) contains non-zero elements that do not algebraically generate the
entire field, it is not sufficient to give a secret value x inside the black box in order to describe an arbitrary
extension field. Rather the field must be given by a set of elements (generators) in the black-box (algebraically)
generating the field. A (vector space) basis of Fpk over Fp would be a natural choice, but our goal is to make
no assumption whatsoever about how the given elements generate the field.

Furthermore, extension fields Fpk (for k > 1) have non-trivial automorphisms, so there is no unique
isomorphism between a black-box extension field and an explicit representation. Therefore the extraction

1Note that this model is simpler than Shoup’s model which assumes a random representation.
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problem as originally posed is not well defined for extension fields. We hence formulate a more general
problem for extension fields, the representation problem: Write a secret x inside the black-box as an algebraic
expression in the other elements (generators) given in the black-box.

When an explicit representation of the field is given outside of the black-box (say in terms of an irre-
ducible polynomial of degree k over Fp), then one can also consider the problem of efficiently computing an
isomorphism (and its inverse) between this explicitly given field and the BBF.

1.4 Contributions of this Paper

We present an efficient reduction of the representation problem for a finite black-box extension field to the
extraction problem for the underlying prime field Fp. If the characteristic p of the field in question is small,
or if p is large but an efficient algorithm for the extraction problem for Fp exists, then this yields an efficient
algorithm for the representation problem for the extension field. Under their respective number-theoretic
assumptions one can also use the results of [Mau94, BL96, MW99].

Theorem 1 (informal). The representation problem for the (finite) black-box (extension) field FB of character-
istic p is efficiently reducible to the representation problem for Fp. If the characteristic p is small (e.g. p = 2)
then the representation problem for FB is effciently solvable.

Furthermore, our algorithms provide an efficiently computable isomorphism between the black-box field
and an explicitly represented (outside the black-box) isomorphic copy. If preimages of the generators inside
the black-box under some isomorphism from an explicitly represented field into the black-box are known or if
the black-box allows inserting elements from an explicitly represented field, we may even efficiently extract
any element from the black-box field, i.e., find the element corresponding to an x in the black-box in the
explicit representation.

In particular, these results imply that any problem posed for a black-box field (of small characteristic)
can efficiently be transformed into a problem for an explicit field and be solved there using unrestricted
(representation-dependent) methods. For example, they imply that computing discrete logarithms in the mul-
tiplicative group over a finite field (of small characteristic) is not harder in the black-box setting than if the
field is given by an irreducible polynomial.

1.5 Cryptographic Significance of Black-Box Fields

A BBF Fp can be viewed as a black-box group of prime order p, where the multiplication operation of the
field corresponds to a Diffie-Hellman oracle; therefore an efficient algorithm for the extraction problem for Fp

corresponds to an efficient generic reduction of the discrete logarithm problem to the computational Diffie-
Hellman problem in any group of prime order p (see [Mau94]). So an efficient algorithm for the extraction
problem for Fp provides a security proof for the Diffie-Hellman key agreement protocol [DH76] in any group
of order p for which the discrete logarithm problem is hard.2

Boneh and Lipton [BL96] gave a second reason why the extraction problem is of interest in cryptography,
namely to prove the inexistence of certain field-homomorphic encryption schemes.

The RSA trap-door oneway permutation defined by x 7→ xe (mod n) is group-homomorphic; the product
of two ciphertexts xe and x′e is the ciphertext for their product: xe · x′e = (x · x′)e. This algebraic property
has proven enormously useful in many cryptographic protocols. However, this homomorphic property is only
for one operation (i.e., for a group), and an open problem in cryptography is to devise a trap-door oneway

2In this context it is not a problem that Maurer’s efficient algorithm [Mau94] for the extraction problem for Fp is non-uniform,
because one can construct a Diffie-Hellman group of order p together with the help-string and hence the equivalence really holds.
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permutation that is field-homomorphic, i.e., for addition and for multiplication. Such a scheme would have
applications in multi-party computation, computation with encrypted data (e.g. server-assisted computation),
etc. [SYY99, ALN87, DF02].

A solution to the extraction problem for Fp implies an equally efficient attack on any Fp-homomorphic
encryption scheme that permits checking the equality of two encrypted elements (which is for example true
for any deterministic scheme). Indeed, a black-box field can be regarded as an idealized formulation of a
field-homomorphic encryption scheme which allows for equality checks. Any algorithm that succeeds in
recovering an “encrypted” element hidden inside the black-box will also break an encryption scheme that
allows the same operations. In particular, an efficient algorithm for the extraction problem for Fp implies the
inexistence of a secure Fp-homomorphic one-way permutation.

This generalizes naturally to the extension field case yielding the following corollary to Theorem 1:

Corollary 1. For fields of small characteristic p (in particular for F2k ) there are no secure field-homomorphic
encryption schemes3 that permit equality checks. In particular, there are no field-homomorphic one-way
permutations over such fields.

The same holds even for large characteristic p if we admit non-uniform adversaries under the assumption
of [Mau94, MW99].

Beyond its cryptographic significance, the representation problem for black-box extension fields is of
independent mathematical interest. The representation problem for groups, in particular black-box groups,
has been extensively studied [BB99, BS84], inciting interest in the representation problem for other algebraic
black-box structures.

2 The Representation Problem for Finite Black-Box Fields

2.1 Preliminaries on Finite Fields

We assume the reader to be familiar with the basic algebraic concepts of groups, rings, fields, and vector
spaces and we summarize a few basic facts about finite fields.

The cardinality of every finite field is a prime power, pk, where p is called the characteristic and k the
extension degree. There exists a finite field for every prime p and every k. Finite fields of equal cardinality
are isomorphic, i.e., for each cardinality pk there is up to isomorphism only one finite field, which allows one
to refer to it just as Fpk .

Prime fields Fp (i.e., k = 1) are defined as Zp = {0, . . . , p−1}with addition and multiplication modulo p.
An extension field Fpk can be defined as the polynomial ring Fp[x] modulo an irreducible polynomial m(x)
of degree k over Fp. It hence consists of all polynomials of degree at most k − 1 with coefficients in Fp.

For every x ∈ Fpk , the p-fold sum of x (i.e., x + x + · · ·+ x with p terms), denoted px, is zero: px = 0.
Moreover, xpk−1 = 1 for all x 6= 0, as pk − 1 is the cardinality of the multiplicative group of Fpk , which is
actually cyclic.

An extension field Fpk is a vector space over Fp of dimension k. For appropriate g ∈ Fpk there ex-
ist bases of the form (1, g, g2, . . . , gk−1). The only automorphisms of a finite field Fpk are the Frobenius
automorphisms x 7→ x(pi) for i = 0, . . . , k− 1. In particular, a prime field has no non-trivial automorphisms.

3In the public-key case we can efficiently recover the encrypted field element, in the private-key case this is only possible up to
isomorphism, as we may have no knowledge of the plaintext field.
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For every ` dividing k, there is a subfield Fp` of Fpk . The trace function trF
pk/F

p`
: Fpk → Fp` , defined

as

trF
pk/F

p`
(a) =

(k/`)−1∑
i=0

a(pi`),

is a surjective and Fp`-linear function [LN97].

2.2 The Black-box Model

We make use of the abstract model of computation from [Mau05]: A black-box field FB is characterized
by a black-box B which can store an (unbounded number of) values from some finite field Fpk of known
characteristic p but not necessarily known extension degree in internal registers V0, V1, V2, . . .. The first d+1
of these registers hold the initial state I = [g0, g1, . . . , gd] of the black-box. We require the size d + 1 of the
initial state to be at most polynomial in log(|FB|).

The black-box B provides the following operations: It takes as input a pair (i, j) of indices and a bit
indicating whether addition or multiplication should be invoked. Then it performs the required operation on
Vi and Vj , stores the result in the next free register, say V`, and reports all pairs of indices (m,n) such that
Vm = Vn.4

Since we only allow performing the field operations + and · on the values of the black box, the black-box
field FB is by definition the field FB = Fp[g0, g1, . . . , gd] generated5 by the elements g0, g1, . . . , gd ∈ Fpk

contained in the initial state I = [g0, g1, . . . , gd] of the black-box.
A black-box field FB is thus completely characterized by the

• public values: characteristic6 p, size d + 1 of the initial state,

• secret values: initial state I = [g0, g1, . . . , gd] (hidden inside the black-box)

This is probably the most basic yet complete way of describing a finite field. The field Fpk , the elements
of which the black-box can store, does not and need not appear here. Since no algorithm can compute any
value not expressible as an expression in +, · and the elements initially given inside the black-box, we can
without loss of generality assume that k is such that Fpk

∼= FB, where k is unknown, but can be efficiently
computed as we shall see later.

Also, the operations “additive inverse” and “multiplicative inverse” and the constants 0 and 1 need not
be provided explicitly, since they can be computed efficiently given the characteristic p and the field size
|FB| = pk: We can compute the additive inverse for an element a ∈ F∗

B as −a = (p − 1)a, and the
multiplicative inverse is a−1 = apk−2. Furthermore, 1 = apk−1 for any non-zero a and 0 = pa for any a.
These expressions can be evaluated efficiently using square-and-multiply techniques.

When discussing the complexity of algorithms on black-box fields, we count each invocation of the black-
box (field operation or equality check) as one step. Additionally we will take into account the runtime of
computations not directly involving the black-box.

We consider an algorithm to be efficient if it runs in time at most polynomial in the bit-size of a field
element, log |FB|.7

4Alternatively, equality checks could also be modeled as an explicit operation which must be called with two indices.
5By Fp[g0, g1, . . . , gd] we denote the field consisting of all polynomial expressions over Fp in the generators g0, g1, . . . , gd.
6If the characteristic p is small it need not be given but can be recovered in time O(

√
p) using Baby-Step-Giant-Step [Mau05].

7The requirement that the size d + 1 of the initial state be at most polynomial in log(|FB|) is necessary for this to make sense.
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2.3 The Representation Problem and Related Problems

We now turn to the problems we intend to solve. Let a characteristic p be given and let B be a black-
box with initial state I = [x, g1, . . . gd] consisting of generators g1, . . . gd and a challenge x, where FB =
Fp[x, g1, . . . gd].We then consider the following problems:

Definition 1 (Representability Problem, Representation Problem). We call x representable (in the generators
g1, . . . gd) if x ∈ Fp[g1, . . . gd]. The problem of deciding whether x ∈ Fp[g1, . . . gd] is called the repre-
sentability problem. If x is representable, then finding a multi-variate polynomial q ∈ Fp[X1, . . . , Xd] such
that x = q(g1, . . . , gd) is called the representation problem. ♦

We proceed to discuss two problems that are closely related with the representation problem. First, we
state a generalization of the extraction problem, defined in [Mau05], that is applicable to all finite black-box
fields. To do so, we need to specify an isomorphism φ from the black-box to some explicitly given field K.
This is necessary for the extraction problem to be well-defined because, in contrast to prime fields, there are
many isomorphisms between two isomorphic extension fields.

Definition 2 (Extraction Problem). Let K be an explicitly given field (e.g. by an irreducible polynomial)
such that K ∼= FB. Let the images φ(g1), . . . , φ(gd) of the generators g1, . . . , gd under some isomorphism
φ : Fp[g1, . . . gd] → K be given. The extraction problem is to compute φ(x).8 ♦

Remark 1. Note that an efficient solution to the representation problem implies an efficient solution to the
extraction problem. The expression q(g1, . . . , gd) returned as solution to the representation problem can
simply be evaluated over K, substituting φ(gi) for gi (i = 1, . . . , d), which yields φ(x):

q(φ(g1), . . . , φ(gd)) = φ(q(g1, . . . , gd)) = φ(x).

Solving the extraction problem can equivalently be described as finding an algorithm for computing the
isomorphism φ defined by giving the images of the generators. This naturally leads to the question whether
the inverse φ−1 of φ can also be efficiently computed.

Definition 3 (Isomorphism Problem). Let K be an explicitly given field (e.g. by an irreducible polynomial)
such that K ∼= FB. The isomorphism problem consists of efficiently computing an (arbitrary but fixed)
isomorphism φ : Fp[g1, . . . gd] → K and its inverse φ−1 for arbitrary elements of K and FB. ♦

In the following we will exhibit an efficient reduction from the representation problem for any finite field
to the representation problem for the underlying prime field. Moreover, our solution to the representation
problem will also yield an explicitly given field (by an irreducible polynomial) Fpk

∼= FB with a solution to
the isomorphism problem for Fpk and FB. This allows to solve any problem posed on the black-box field FB

in the explicitly given field Fpk using the corresponding algorithms.

2.4 The Representation Problem for Fp

First, we shall see that the representation, extraction and isomorphism problems are one and the same when
the black-box field FB is isomorphic to some prime field Fp:

Lemma 1. Let FB be a BBF of characteristic p with initial state I = [x, g1, . . . , gd]. If FB
∼= Fp, then the

representation, extraction and isomorphism problems are efficiently reducible to one another.
8The extraction problem also makes sense if the isomorphism φ is given in another fashion. For example, the black-box might

offer an operation that allows inserting elements from an explicitly given field K. This would for instance correspond to a public-key
field-homomorphic encryption scheme.
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Proof. Note that there is a unique isomorphism φ : FB → Fp. Furthermore, as FB
∼= Fp, there must be a

gi 6= 0 (i ∈ {1, . . . , d}). This gi can efficiently be found by checking the inequality gi + gi 6= gi and the
constant 1 can efficiently be computed inside the black-box as gp−1

i using square-and-multiply.
Reduction extraction to representation: Remark 1.
Reduction isomorphism to extraction: A solution to the extraction problem yields an efficient algorithm

computing the isomorphism φ. The inverse φ−1 of φ can efficiently be computed using the square-and-
multiply technique, constructing φ(a) for a ∈ Fp as a sum of 1s inside the black-box. This solves the
isomorphism problem.

Reduction representation to isomorphism: A solution to the isomorphism problem yields an efficient
algorithm computing the isomorphism φ. Then φ(x)gp−1

i is a solution to the representation problem.

Note that solving the extraction problem for a black-box field FB
∼= Fp with initial state V 1 = [x]

amounts to solving the discrete logarithm problem for a group of order p (given as a black-box) for which a
Diffie-Hellman oracle is given. The following results are known:

Lemma 2 (Maurer). There exists a non-uniform algorithm that, under a (plausible) number-theoretic con-
jecture, solves the extraction (representation, isomorphism) problem for a black-box field FB

∼= Fp in time
polynomial in log(p) with polynomial (in log(p)) amount of advice depending on the characteristic p.

Lemma 3 (Boneh, Lipton). There exists a (uniform) algorithm that, under a (plausible) number-theoretic
conjecture [BL96], solves the extraction (representation, isomorphism) problem for a black-box field FB

∼= Fp

in time subexponential in log(p).

For the remainder of this work we will only concern ourselves with reducing other problems to the rep-
resentation problem for Fp. The reader may generally assume that p is small such that the representation
problem for Fp is easy to solve.

2.5 The Representation Problem for Fpk for given Fp-Basis

Before we proceed to the general case, we first investigate the simpler case where the initial state of the black-
box B is I = [x, b1, . . . , bk], and b1, . . . , bk form a basis of FB as Fp vector space. We efficiently reduce this
problem to the representation problem for Fp described in Section 2.4.

Lemma 4. The representation problem for a black-box field FB of characteristic p with initial state I =
[x, b1, . . . , bk], where b1, . . . , bk form an Fp-basis of FB, is efficiently reducible to the representation problem
for Fp.

Proof. The proof relies on the well-known dual basis theorem [LN97]: For any Fp-basis {b1, . . . , bk} of
Fpk there exists a dual basis {c1, . . . , ck} with the property trF

pk/Fp
(cibj) = δij where δij designates the

Kronecker-Delta. We calculate the dual basis {c1, . . . , ck} for the basis {b1, . . . , bk} inside the black-box.
This can be done efficiently as follows:

We write the elements of the dual basis as ci =
∑k

l=1 αilbl. Let A = (αil)i,l=1,...,k be the coefficient
matrix, B = (tr(blbj))l,j=1,...,k the trace matrix, and Ik the identity matrix. Then the definition of the dual
basis yields a matrix equation AB = Ik. Traces can be computed efficiently inside the black-box using
square-and-multiply techniques. So the trace matrix B can efficiently be computed inside the black-box.
Since B always has full rank [LN97], the matrix equation AB = Ik can be solved for the αil using Gaussian
elimination (inside the box B).

As the characteristic p and the exponent k are known, we can efficiently compute additive and multiplica-
tive inverses (see subsection 2.2). Solving for the k2 unknowns in the matrix A using Gaussian elimination is
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efficient and only requires field operations and equality checks. Hence it can be performed in the black-box
and we can efficiently compute the dual basis elements ci inside the black-box.

To represent the challenge x in the basis {b1, . . . , bk}, we now calculate ξi = tr(cix) ∈ Fp inside the
black-box and have x =

∑k
i=1 ξibi by the dual basis property. We use an oracle O that solves the represen-

tation problem for Fp (possibly instantiated according to subsection 2.4) to extract the ξi from the black box,
obtaining the required representation of x in the given generators (basis) {b1, . . . , bk}.

3 The Representation Problem for Fpk for Arbitrary Generating Sets

Now we turn to the general case, where a black-box field FB of characteristic p is not necessarily given by a
basis, but by an arbitrary generating set {g1, . . . , gd}.

3.1 Main Theorem

Before we get to our main result, we first discuss the representability problem.

Lemma 5. The representability problem for a black-box field FB of characteristic p with initial state I =
[x, g1, . . . , gd] can be solved efficiently and the extension degree k such that FB

∼= Fpk can be found efficiently.

Proof. We need to efficiently determine whether x is representable in the generators g1, . . . , gd and then find k
such that FB

∼= Fpk . To this end we first determine the size ki := k(gi) := |Fp[gi]| of the subfield Fp[gi] ≤ FB

of the black-box field FB generated by gi for i = 1, . . . , d. We have

ki = k(gi) = min{j ∈ N : gi = gpj

i } (1)

by the properties of the Frobenius homomorphism y 7→ yp [LN97]. Eq. (1) can be evaluated efficiently using
square-and-multiply.

Now x is representable in the generators g1, . . . , gd if and only if x ∈ Fp[g1, . . . , gd] or, equivalently,
Fp[x] ≤ Fp[g1, . . . , gd]. But the field Fp[g1, . . . , gd] generated by g1, . . . , gd is isomorphic to the smallest field
Fpk′ where k′ = lcml

i=1(ki) that contains all the Fpki . Hence x is representable in the generators g1, . . . , gd

if and only if k(x) | k′. Moreover, independently of the representability of x we have k = lcm(k(x), k′).

We can now state our main result, an efficient reduction from the representation problem for an extension
field to the representation problem for the underlying prime field:

Theorem 1. The representation problem for the black-box field FB of characteristic p with initial state I =
[x, g1, . . . , gd] (not necessarily a basis) such that x is representable in g1, . . . , gd is efficiently reducible to the
representation problem for Fp.

We shall see later that from this theorem we can also obtain efficient reductions of the extraction and
isomorphism problems to the representation problem for the underlying prime field Fp.

3.2 Proof of Theorem 1

By assumption, the challenge x is representable in the generators g1, . . . , gd. We will show how to efficiently
generate a Fp-power-basis {g0, g1, . . . , gk−1} for FB inside the black-box. The representation problem can
then be efficiently reduced to the representation problem for Fp using Lemma 4.

Algorithm 1 returns an Fp-power-basis for FB by computing an element g ∈ FB (a generator), such that
Fp[g] = Fpk .
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Algorithm 1 Compute power-basis
1: g := 1
2: m := 1
3: for i = 1 to d do
4: ki := k(gi) := min{j ∈ N : gi = gpj

i }
5: if ki - m then
6: m := lcm(m, ki)
7: g := combine gen(g, gi)
8: end if
9: end for

10: return power basis {g0, g1, . . . , gk−1}

Algorithm 1 iterates over the generators g1, . . . , gd, checking if the current gi is already contained in Fp[g]
for the current g.9 If not, Algorithm 1 invokes the algorithm combine gen(g, gi) to obtain a new g (which
we call g′ for now) such that Fp[g′] = Fp[g, gi]. Clearly Fp[g] = Fp[g1, . . . , gd] when the algorithm terminates
and hence {g0, g1, . . . , gk−1} is a Fp-power-basis for Fp[g1, . . . , gd] = FB.

As g is computed inside the black-box from the initially given generators g1, . . . , gd using only field
operations, the representation q′(g1, . . . , gd) = g of g (and therefore of all basis elements) in the generators
g1, . . . , gd is known. Now Lemma 4 gives a representation q′′(g0, g1, . . . , gk−1) = x of the challenge x in the
basis elements and a representation q(g1, . . . , gd) = x of x in the generators g1, . . . , gd can be recovered by
substitution:

q(g1, . . . , gd) = q′′(g0, g1, . . . , gk−1) = q′′(q′(g1, . . . , gd)0, q′(g1, . . . , gd)1, . . . , q′(g1, . . . , gd)k−1)

Finally, Algorithm 1 is obviously efficient if the algorithm combine gen is efficient.
So, to complete the proof of Theorem 1, we only need to provide an algorithm combine gen(a, b) that,

given two elements a, b ∈ FB, efficiently computes a generator g such that Fp[g] = Fp[a, b].

Algorithm 2 combine gen(a, b)
1: find k′

a , k′
b such that

• k′
a | k(a), k′

b | k(b),

• gcd(k′
a, k

′
b) = 1,

• lcm(k′
a, k

′
b) = lcm(k(a), k(b))

2: find a′ ∈ Fp[a] and b′ ∈ Fp[b] such that k(a′) = k′
a and k(b′) = k′

b

3: return a′ + b′

Claim 1. Given two elements a, b ∈ FB, the algorithm combine gen(a, b) efficiently computes a generator
g such that Fp[g] = Fp[a, b].

Proof. We analyze algorithm combine gen(a, b) step by step:

9Note that the number of generators gi appearing in the representation of the generator g (and thereby the representation of x)
could be reduced by considering only the generators gi corresponding to maximal elements in the lattice formed by the ki under the
divisibility relation (these suffice to generate the entire field FB). For ease of exposition we do not do this.
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Step 1 can be performed in time polynomial in k (where pk = |FB|) and hence in log(|FB|) by factoring
k(a) and k(b) (which both divide k). 10

Step 2 relies on the following lemma [Len05]:

Lemma 6. Let M ≥ L ≥ K be a tower of finite fields and let b1, . . . , bn be a K-basis of M . Then
{trM/L(b1), . . . , trM/L(bn)} contains a K-basis of L.

Proof. From [LN97, 2.23(iii)] we know that trM/L : M → L is L-linear and surjective. Hence for all c ∈ L
there exists an a ∈ M such that trM/L(a) = c. Since b1, . . . , bn form a K-basis of M , the element a ∈ M
can be expressed as a =

∑n
i=1 αibi where αi ∈ K (i = 1, . . . , n). Hence using the L-linearity of trM/L we

have

c = trM/L(a) = trM/L(
n∑

i=1

αibi) =
n∑

i=1

αi trM/L(bi).

As we can represent every c ∈ L by a K-linear combination in {trM/L(b1), . . . , trM/L(bn)}, this set must
contain a K-basis of L.

Knowing k′
a and k(a) from Step 1 and using the fact that {ai : i = 0, . . . , k(a) − 1} form a Fp-basis of

Fp[a] we can compute the set {trFp[a]/F
pk′

a
(ai) : i = 0, . . . , k(a) − 1} in time O(k3 log(p)) which contains

by the lemma above a Fp-basis of F
pk′

a
.

The following claim is taken from [BvzGL02, Proof of Theorem 3.2]. For completeness we provide a
short proof sketch.

Claim 2. Any Fp-basis of an extension field Fp` contains a basis element c such that Fp` = Fp[c].

Proof (Sketch). The Fp-dimension of the span of all proper subfields of Fp` can be computed by application
of the inclusion-exclusion principle (first adding the dimensions of all maximal subfields, then subtracting the
dimensions of their intersections, then adding the dimensions of the intersections of the intersections, and so
on). Using the Möbius function µ we can hence write the Fp-dimension of the span of all proper subfields of
Fp` as −

∑
d|`,d6=` µ(`/d)d = `− φ(`) < `. As the Fp-dimension of the span of all proper subfields of Fp` is

smaller then the Fp-dimension ` of Fp` , there must be a basis element c which is not contained in any proper
subfield of Fp` and therefore Fp` = Fp[c].

By Claim 2 there is a basis element a′, that generates F
pk′

a
, i.e. F

pk′
a

= Fp[a′]:

∃a′ ∈ {trFp[a]/F
pk′

a
(xi) : i = 0, . . . , k(a)− 1} : k(a′) = k′

a.

By checking this property for all candidate elements in {trFp[a]/F
pk′

a
(xi) : i = 0, . . . , k(a) − 1} we find the

generator a′ in time O(k3 log(p)).
Analogously we may determine b′ such that k(b′) = k′

b.

10Bach and Shallit [BS96, Section 4.8] give a much more efficient algorithm for computing such values k′
a, k′

b of complexity
O((log k(a)k(b))2).
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Step 3. To complete the analysis of the algorithm combine gen(x, y), it only remains to show that given
a′, b′ from step 2, we have Fp[a′ + b′] = Fp[a, b]. Since lcm(k(a′), k(b′)) = lcm(k(a), k(b)) by step 1, we
have Fp[a′, b′] = Fp[a, b], so it only remains to show that Fp[a′ + b′] = Fp[a′, b′].

Obviously we have Fp[a′, b′] = Fp[a′, a′ + b′] = Fp[a′ + b′, b′] and gcd(k(a′), k(b′)) = 1, therefore

lcm(k(a′), k(b′)) = lcm(k(a′), k(a′ + b′)) = lcm(k(a′ + b′), k(b′)) = k(a′)k(b′).

It is easy to see that then k(a′ + b′) = k(a′)k(b′) and therefore Fp[a′ + b′] = Fp[a, b] as required.

3.3 Implications of Theorem 1

Corollary 2. The extraction problem for any BBF FB of characteristic p is efficiently reducible to the repre-
sentation problem for Fp.

Proof. Follows directly from Theorem 1 and Remark 1.

The extraction problem asks for the computation of an isomorphism φ : FB → K. Note that the compu-
tation of φ−1 also reduces efficiently to the representation problem for Fp, because we can efficiently obtain
a power-basis {g0, g1, . . . , gk−1} inside the black-box as in the proof of Theorem 1. From this basis we can
then compute the basis {φ(g0), φ(g1), . . . , φ(gk−1)} for K. Hence the isomorphism φ−1 can simply and
efficiently be computed by basis representation.

Corollary 3. Let FB be a BBF of characteristic p and K some explicitly given field (in the sense of [Len91])
such that K ∼= FB. Then the isomorphism problem for FB and K can be efficiently reduced to the represen-
tation problem for Fp.

Proof. We show that it is efficiently possible to find a field K ′ ∼= FB that is explicitly given by an irreducible
polynomial, such that the isomorphism problem for FB and K ′ efficiently reduces to the representation prob-
lem for Fp. The corollary then follows from [Len91] which states that the isomorphism problem for two
explicitly given finite fields can be solved efficiently.

Hence, let an oracle O for the representation problem over Fp be given. From the proof of Theorem 1 we
know that we can efficiently obtain a power-basis {g0, g1, . . . , gk−1} inside the black-box. We can use Lemma
4 to obtain a representation q(g0, g1, . . . , gk−1) = gk of gk in the basis elements. Note that the minimal
polynomial fg ∈ Fp[X] of g over Fp is exactly fg(X) = Xk−q(X0, X1, . . . , Xk−1). Let K ′ = Fp[X]/(fg).
Then the required isomorphisms φ and φ−1 are efficiently given by basis representation.

4 Conclusions

We showed that, given an efficient algorithm for the representation problem for Fp, we can solve the rep-
resentability, representation, extraction and isomorphism problems for a black-box extension field FB

∼=
Fpk in polynomial time. We achieve this by efficiently constructing (in the generators) an Fp-power-basis
{g0, g1, . . . , gk−1} for the black-box field FB inside the black-box, which is interesting in its own right.

For small characteristic p we can immediately solve the above problems efficiently, as solving the repre-
sentation problem for Fp (e.g. using Baby-Step-Giant-Step) is easy if p is small.

As a consequence, field-homomorphic one-way permutations over fields of small characteristic p, in par-
ticular over F2k , do not exist, because such a function would constitute an instantiation of a black-box field11

11Instead of generators we have here the possibility to “insert” elements of an explicitly given field into the “black-box” of the
image of the function.
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and could be efficiently inverted using the solution to the extraction problem given above. This implies that
over fields of small characteristic there can be no field-homomorphic analogue to the group-homomorphic
RSA encryption scheme, which constitutes a group-homomorphic trapdoor one-way permutation.

For the same reason, even probabilistic field-homomorphic encryption schemes (both private-12 and
public-key) over fields of small characteristic p, in particular over F2k , cannot be realized, if they allow
for checking the equality of elements. This is unfortunate because such schemes could have interesting ap-
plications in multi-party computation and computation with encrypted data (e.g. server-assisted computation)
[SYY99, ALN87, DF02]. For instance we might be interested in handing encrypted field elements to a com-
puting facility and having it compute some (known) program on them. If the encryption permits equality
checks, the computing facility can recover the field elements up to isomorphism.

Furthermore, a polynomial-time solution to the isomorphism problem implies that any problem posed on
a black-box field (i.e., computing discrete logarithms over the multiplicative group) can efficiently be trans-
ferred to an explicitly represented field (e.g. by an irreducible polynomial) and be solved there using possibly
representation-dependent algorithms (e.g. the number field sieve). The solution can then be efficiently trans-
ferred back to the black-box field. So any representation-dependent algorithm for finite fields is applicable
(in the case of small characteristic) to black-box fields. For example, computing discrete logarithms in the
multiplicative group over a finite field is no harder in the black-box setting than if the field is given explicitly
by an irreducible polynomial.

Of course these conclusions do not only apply to fields of small characteristic p but to any scenario where
we can efficiently solve the representation problem for the underlying prime field Fp.

Hence we obtain subexponential-time solutions to the above problems under a plausible number-theo-
retic conjecture applying the work of Boneh and Lipton [BL96] for solving the representation problem for
Fp. Furthermore we can, under a plausible number-theoretic conjecture, solve the problems above efficiently,
even for large characteristic p, if we are willing to admit non-uniform solutions (solutions that require a
polynomial amount advice depending on the characteristic p) using an algorithm by Maurer [Mau94] for
solving the representation problem for Fp.

Compared to the case of small characteristic, the situation for fields of large characteristic is then more
complex, because the only known efficient algorithm for solving the representation problem for Fp is non-
uniform [Mau94, MW99], i.e. it requires a help-string that depends on p. When considering homomorphic
encryption and homomorphic one-way permutations, this means that our impossibility results hold for cases
where a malicious party M may fix the characteristic p. In this case M can generate p along with the required
help-string to break the scheme. On the other hand our impossibility results do not apply if the characteristic
p cannot be determined by M , for instance because it is generated by a trusted party.

It remains an open problem to resolve this issue by providing an efficient uniform algorithm for the
representation problem for Fp or prove the inexistence thereof.
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