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Abstract

Recently, a new image encryption scheme using chaotic Logistic map was proposed.
This paper studies the security properties of the scheme, and finds the following
problems: 1) there is a number of secret keys that fail to serve as eligible secure
ones; 2) one sub-key K10 may be guessed by observing only the cipher-image of a
special plain-image; 3) there exist some potential insecure properties; 4) sub-keys
K4 ∼ K10 can be recovered with at most 64 pairs of differential chosen plain-images,
being the attack performance especially good when K10 is not too large.

Key words: chaos, cryptanalysis, encryption, differential attack

1 Introduction

Owing to the rapid development of multimedia and network technologies, the
transmission of multimedia data over networks occurs more and more fre-
quently. Therefore, the secure protection of multimedia data, especially digital
images and videos, is urgently needed. However, the traditional text ciphers,
like DES and AES, fail to agree well with the properties and requirements
of multimedia application, such as the bulky size and strong redundancy in
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the uncompressed multimedia data, the high encryption speed for real time
process and the feasibility of cascade for the whole system. To meet the chal-
lenges, a great number of encryption schemes were proposed in the past two
decades [1–7]. Meanwhile, security analysis on the proposed schemes have also
been developed, and some of them have been found to be insecure to different
extents, from the point of view of cryptography [8–12]. A more comprehensive
survey of the state-of-the-art of this topic can be found in [13–15].

Since 2003, Pareek et al. have proposed three different encryption schemes
based on one or more one-dimensional chaotic maps [16–18]. The two schemes
proposed in [16] and [17] have been cryptanalyzed successfully in [19] and [20],
respectively. In [18], a scheme based on Logistic map was proposed specially
for image encryption. The present paper focuses on the security analysis of
such scheme, and finds the following problems:

(1) There are some different types of security problems with the secret key,
and each sub-key at least suffers from one of them;

(2) The main encryption functions have potential security holes, and the
histogram of sub-images of a cipher image is not uniform enough;

(3) The scheme is insecure against a differential chosen-plaintext attack in
the sense that only 64 pairs of chosen images are enough to break the
scheme. The attack is especially feasible when K10 is not too large.

The rest of the paper is organized as follows. The next section introduces
Pareek et al.’s scheme briefly. Section 3 gives detailed cryptanalysis of the
scheme. The last section concludes the paper.

2 Pareek et al.’s scheme

The scheme scans the plain-image in reverse scan order, and encrypts it block
by block, where each block contains 16 consecutive pixels. Without loss of gen-
erality, assume that the size of the plain-image is M ×N (height×width), and
that MN can be exactly divided by 16. Then the plain-image {I(l)}MN−1

l=0 has
MN/16 blocks, namely, {I(16)(0), . . . , I(16)(k), . . . , I(16)(MN/16 − 1)}, where
I(16)(k) ={I(16k + 0), . . . , I(16k + i), . . . , I(16k + 15)}.

The secret key of the encryption scheme under study is an 80-bit integer and
can be represented as K = K1 · · ·K10, where each sub-key Ki ∈ {0, . . . , 255}.
Two chaotic maps are used in the encryption scheme, both of which are Lo-
gistic maps defined by the following equation:

f(x) = µ · x · (1− x), (1)

where µ is the control parameter and it is fixed as 3.9999 throughout the
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scheme.

For the k-th pixel-block I(16)(k), the scheme can be described as follows.

Step 1. Generating the initial condition of the first Logistic map. The
initial condition of the first Logistic map, X0, is determined by the six sub-
keys K4, . . . , K9 as follows:

X0 =

(∑6
i=4 Ki · 28(i−4)

224
+

∑9
i=7((Ki mod 16) + bKi/16c)

96

)
mod 1. (2)

Step 2. Generating the initial condition of the second Logistic map.
The initial condition of the second Logistic map, Y0, is determined by the
chaotic state of the first Logistic map as follows. Iterate the first Logis-
tic map to extract 24 chaotic states {X̂j}24

j=1, by discarding the states not
belonging to the interval [0.1, 0.9) and then generate 24 integers {Pj}24

j=1,

where Pj = b24(X̂j − 0.1)/0.8c+ 1. 1 Then, calculate B2 =
∑3

i=1 Ki · 28(i−1)

and set

Y0 =

(
B2 +

∑24
j=1 B2[Pj] · 2k−1

224

)
mod 1, (3)

where B2[Pj] denotes the Pj-th bit of B2.
Step 3. Encrypting 16 consecutive pixels within I(16)(k). For the R, G,

B values of each pixel, do the following operations to get the corresponding
cipher-values R∗, G∗ and B∗.

First, iterate the second Logistic map to extract K10 chaotic states {Ŷj}K10
j=1,

by excluding chaotic states falling out of the interval [0.1, 0.9]. Then, encrypt
the R, G, B values simultaneously according to the following equations:

R∗ = E1(R) = gK4,K5,K7,K8,ŶK10
◦ · · · ◦ gK4,K5,K7,K8,Ŷ1

(R), (4)

G∗ = E2(G) = gK5,K6,K8,K9,ŶK10
◦ · · · ◦ gK5,K6,K8,K9,Ŷ1

(G), (5)

B∗ = E3(B) = gK6,K4,K9,K7,ŶK10
◦ · · · ◦ gK6,K4,K9,K7,Ŷ1

(B), (6)

where ◦ denotes the composition of two functions and ga0,b0,a1,b1,Y (x) is a
function under the control of Y as shown in Table 1.

In the sequel, I∗(16)(k) ={I∗(16k + 0), . . . , I∗(16k + i), . . . , I∗(16k + 15)}
will denote the corresponding blocks of cipher images.

Step 4. Updating sub-keys K1, . . . , K9. Do the following updating opera-
tion for i = 1 ∼ 9:

Ki = (Ki + K10) mod 256, (7)

1 In Sec. 2 of [18], the interval is [0.1, 0.9] and Pj = b23(X̂j−0.1)/0.8c+1. However,
following this process, Pj = 24 when and only when X̂j = 0.9, which becomes a rare
event and conflicts with the requirement that Pi has a roughly uniform distribution
over {1, . . . , 24}. Therefore, in this paper we changed the original process in [18] to
a more reasonable one. Note that such a change does not influence the performance
of the encryption scheme.
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Table 1
The definition of ga0,b0,a1,b1,Y (x), where x denotes the bitwise complement of x, and
⊕ denotes the bitwise XOR operation.

Y ∈ ga0,b0,a1,b1,Y (x)= g−1
a0,b0,a1,b1,Y

(x)=

[0.10, 0.13) ∪ [0.34, 0.37) ∪ [0.58, 0.62) x = x⊕ 255

[0.13, 0.16) ∪ [0.37, 0.40) ∪ [0.62, 0.66) x⊕ a0

[0.16, 0.19) ∪ [0.40, 0.43) ∪ [0.66, 0.70) (x + a0 + b0) mod 256 (x− a0 − b0) mod 256

[0.19, 0.22) ∪ [0.43, 0.46) ∪ [0.70, 0.74) x⊕ a0 = x⊕ a0

[0.22, 0.25) ∪ [0.46, 0.49) ∪ [0.74, 0.78) x⊕ a1

[0.25, 0.28) ∪ [0.49, 0.52) ∪ [0.78, 0.82) (x + a1 + b1) mod 256 (x− a1 − b1) mod 256

[0.28, 0.31) ∪ [0.52, 0.55) ∪ [0.82, 0.86) x⊕ a1 = x⊕ a1

[0.31, 0.34) ∪ [0.55, 0.58) ∪ [0.86, 0.90] x = x⊕ 0

and then go to Step 2 and encrypt the next block until the whole plain-image
is exhausted.

The decryption procedure is similar to the above encryption procedure, except
that Eqs. (4)∼(6) in Step 3 are replaced by the following ones:

R = E−1
1 (R∗) = g−1

K4,K5,K7,K8,Ŷ1
◦ · · · ◦ g−1

K4,K5,K7,K8,ŶK10

(R∗), (8)

G = E−1
2 (G∗) = g−1

K5,K6,K8,K9,Ŷ1
◦ · · · ◦ g−1

K5,K6,K8,K9,ŶK10

(G∗), (9)

B = E−1
3 (B∗) = g−1

K6,K4,K9,K7,Ŷ1
◦ · · · ◦ g−1

K6,K4,K9,K7,ŶK10

(B∗), (10)

where g−1
a0,b0,a1,b1,Y (x) is the inverse function of ga0,b0,a1,b1,Y (x) with respect to

x as shown in Table 1.

3 Cryptanalysis

3.1 Two remarks about Pareek et al.’s scheme

To facilitate the description of the discussion afterwards, we first analyze two
properties of the scheme under study in this subsection. One is about the
subkey update, and the other is about the essential equivalent presentation
form of the encryption function.

To improve the security of the scheme, the original authors introduce an up-
date mechanism for sub-keys, shown in Eq. (7). Obviously, the sequence of the
updated sub-keys produced with such a mechanism is periodic. So, assuming
that the period is T , then the MN/16 plain pixel-blocks {I(16)(k)}MN/16−1

k=0 can

be divided into T groups

{
NT−1⋃
k=0

I(16)(T · k + j)

}T−1

j=0

, where NT = MN/(16T ).
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For blocks in the same group, the update mechanism of sub-keys is disabled,
namely the 1

T
of the whole plain-image is encrypted with fixed sub-keys.

With respect to the encryption function, observing Table 1, one can see that
each encryption sub-function can be represented in the following two formats:

(1) ga0,b0,a1,b1,Y (x) = x⊕ α, where α ∈ {0, 255, a0, a1, a0, a1};
(2) ga0,b0,a1,b1,Y (x) = x u β, where β ∈ {a0 u b0, a1 u b1}, and x u c denotes

(x + c) mod 256 (the same hereinafter).

Since both operations verify (x ⊕ α1) ⊕ α2 = x ⊕ (α1 ⊕ α2) and (x u β1) u
β2 = x u (β1 u β2), consecutive sub-encryption-functions of the same type
can be combined together. As a result, each encryption function Ei(x) is a
composition of len sub-functions {Gj(x)}len

j=1 with len ≤ K10, where Gj(x) =
x ⊕ αbj/2c+1 or x u βbj/2c+1. According to the type of G1(x), Ei(x) has two
different formats:

• Ei(x) = (· · · (((x⊕ α1) u β1)⊕ α2) u β2)⊕ · · · ;
• Ei(x) = (· · · (((x u β1)⊕ α1) u β2)⊕ α2) u · · · .

Since Gj(x) is a multiple composition of functions ga0,b0,a1,b1,Y (x) of the same
kind, one can easily deduce that

αi ∈ A = {0, 255, a0, a1, a0, a1, a0 ⊕ a1, a0 ⊕ a1}

and

βi ∈ B = {z1(a0 u b0) u z2(a1 u b1)|z1, z2 ∈ {0, . . . , K10}} .

3.2 Analysis of the key space

In this subsection, we report some invalid keys, weak keys and partially equiv-
alent keys existing in the encryption scheme under study. The term invalid
key denotes a key that cannot ensure the successful working of the encryption
scheme. A weak key is a key that displays a security hole. The term partially
equivalent keys denotes those keys that work as the same key for some part of
the plain-image. When estimating the key space, invalid keys and weak keys
should be excluded; equivalent keys should be counted as one single key.

3.2.1 Invalid keys for K1 ∼ K9

When X0 = 0 or Y0 = 0, the Logistic maps will fall into the fixed point 0,
which disables the encryption process due to the lack of chaotic states lying
in [0.1, 0.9].
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Observing Eq. (2), one can easily see that X0 = 0 under the following sub-
keys: K4 = K5 = K6 = K7 = K8 = K9 = 0; K4 = K5 = K6 = 255, K7 =
K8 = K9 = 0; K4 = K5 = K6 = 0, K7 = K8 = K9 = 255; K4 = K5 = K6 =
K7 = K8 = K9 = 255. In addition, there is a set of combinations of K4, K5

and K6 making

X0 =

(∑6
i=4 Ki · 28(i−4) + Ks/3 · 219

224

)
mod 1 =

(
224

224

)
mod 1 = 0, (11)

when 3|Ks and Ks > 0, where Ks =
∑9

i=7((Ki mod 16) + bKi/16c). For ex-
ample, K4 = 0, K5 = 0, K6 = 248, K7 = 3, K8 = K9 = 0 verifies the previous
equation. We have counted the cases satisfying this equation and obtained
41907 possibilities. 2

For the k-th plain-block I(16)(k), the initial value Y0 will be equal to zero
definitely when the current values of K1, K2, K3 are as follows: K1 = K2 =
K3 = 0; K1 = K2 = K3 = 255. In addition, for any B2, Y0 = 0 when
(B2 +

∑24
j=1 B2[Pj] · 2j−1) = 224. Assuming the distribution of Pj is uniform,

the probability of this event can be counted as

ps = (
m

24
)n · (24−m

24
)24−n, (12)

where m and n are the numbers of zero bits in binary presentation of B2

and B2 + 1 respectively. Note that n and m depend on B2 but they may
be considered independent since there is no way to compute n from m. For
example, when K1 = 0, K2 = 0, K3 = 128 and B2 = 8388608, ps = (23

24
)23 ·

(24−23
24

)24−23 ≈ 0.0157. Although ordinarily the value of ps is extremely small
(See Fig. 1), the potential hole exists for the encryption of any plain block
with any current secret key, i.e., any secret key may act as an invalid one 3 .

3.2.2 Weak keys for K10

In the scheme under study, the update of sub-keys K1 ∼ K9 and the iteration
number of sub-functions ga0,b0,a1,b1,Y (x) are both controlled by the sub-key K10.
In the following, we discuss the weak key problems relative to K10 and related
to this two tasks.

Observing Eq. (7) one may see that the update of subkeys K1 ∼ K9 has an
inherent weakness derived from the following well known fact:

2 Since there is no simple expression, we resort to enumerating all possible cases
via a computer program.
3 In the discussion afterwards and experimental implementation, we adopt a tiny
fluctuation, set Y0 as 1

224 when Y0 < 1
224 , to avoid this problem.
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(25⋅m+n)

p s

Fig. 1. (25 ·m+n) vs. ps. Note that there is a deterministic relation between (m,n)
and (25 ·m + n) since the scopes of m and n are both [0, 24].

Fact 1 for x, a ∈ {0, . . . , 255}, the integer sequence {y(i) = (x + ai) mod
256}∞i=0, has period T = 256/ gcd(a, 256).

Thus, the possible values for the period of the sequence of updated sub-keys
is 2i, with i = 1 ∼ 8. For some values of K10, the period can be very small,
which weaken the updating mechanism considerably. The situation is specially
dramatic for K10 = 128, where the period is two.

Given K10, and following the notation introduced in Sec. 3.1, the blocks of the

group

{
NT−1⋃
k=0

I(16)(T · k + j)

}
for any j ∈ {0, . . . , T − 1} will compose a strip

of width 16 when 16T |N , which is a sub-image encrypted with fixed sub-keys.

Now, let us study the weak key problem of K10 for the task of controlling the
iteration number of sub-functions ga0,b0,a1,b1,Y (x).

When K10 is too small, the probability for a pixel to remain unchanged is not
negligible. This situation may yield a leak of visual information in a channel
or in the whole plain-image. The worst case occurs when K10 = 1, where,
on the average, one eighth of the image is not encrypted. If moreover the
values of a0, a1, b0, b1 make some sub-encryption-function collapse to x, this
probability will increase. Intuitively, sufficiently large K10 may guarantee that
the encryption functions Ei(x) are not trivial.

To illustrate this problem, we disabled the secret key update mechanism, and
calculated the number of different values in the encryption result of a 512×512
image with fixed value zero. We found that the possible number may be smaller
than or equal to 128 when (a0 u b0) and (a1 u b1) are even at the same time.
Among 50,000 times random experiments, where sub-keys K1 ∼ K9 were
selected randomly and K10 = 255 there were 1,143 such cases (account for
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2.286%). For the secret sub-keys K1 ∼ K9 that made the number of possi-
ble encryption results reach 256 under the sufficient large K10, the relation
between the mean value of the possible numbers and K10 is shown in Fig. 2.

1 3 5 7 9
8

32

64

96

128

160

192

224

256

Fig. 2. The value of K10 vs. the mean value of the numbers of possible encryption
result.

From the previous discussion we conclude two criteria for a cryptographically
strong sub-key K10: 1) K10 is an odd integer; 2) K10 is sufficiently large (at
least larger than 8).

3.2.3 Weak keys for K4 ∼ K9

Observing Table 1, one can see that the encryption sub-functions verify ga0,a1,b0,b1,y

(x) = x or ga0,a1,b0,b1,y(x) = x̄ when the following requirements are satisfied:

a0, a1 ∈ {0, 255} and a0 + b0 ≡ a1 + b1 ≡ 0 (mod 256). (13)

In this case, the three composition encryption functions, E1(x), E2(x) and
E3(x), are also be x or the identity of the bitwise complement. Assuming that
the chaotic trajectory of the second Logistic map has an uniform distribution
in the interval [0.1, 0.9], one can check that the probability of ga0,a1,b0,b1,y(x) =
x̄ is p = 3/8. Then, according to Lemma 1 (note that x̄ = x⊕255), ∀i = 1 ∼ 3,
the probabilities of Ei(x) = x̄ and Ei(x) = x are (1 − (1/4)n)/2 and (1 +
(1/4)n)/2 respectively, where n = Y10. This means that, for n sufficiently large,

about half of all plain-pixels from the group of blocks {
NT−1⋃
k=0

I(16)(T ·k+0)} are

not encrypted at all, which may reveal some visual information in the plain-
image. In the experiment shown in Fig. 3, 49.9% of the pixels of the vertical
strips are failed to be encrypted.

Lemma 1 Given n > 1 functions, f1(x), . . . , fn(x), assume that each function
is x⊕ a with probability p and is x with probability 1− p, where a ∈ Z. Then,
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Fig. 3. The encryption result when K = “3C1DE8FF0151FF012840” (represented
in hexadecimal format, the same hereinafter ).

the probability of the composition function F (x) = f1 ◦ · · · ◦ fn(x) = x ⊕ a is
P = (1− (1− 2p)n)/2. If p < 1/2 then P < 1/2.

Proof : Assuming that k = dn/2e, then n = 2k if it is an even integer and
n = 2k−1 when it is an odd integer. To ensure F (x) = f1 ◦ · · ·◦fn(x) = x⊕a,
the number of sub-functions that are equal to x⊕ a should be an odd integer.
So, we have

P =
k∑

i=1

(
n

2i− 1

)
p2i−1(1− p)n−(2i−1)

= (1− p)n ·
k∑

i=1

(
n

2i− 1

)
(p/(1− p))2i−1

= (1− p)n · (1 + p/(1− p))n − (1− p/(1− p))n

2
= (1− (1− 2p)n)/2 < 1/2.

This completes the proof of the lemma. ¥

By letting Eq. (13) hold for function Ei(x), i = 1 ∼ 3, we can get a list of
weak keys as shown in Table 2.

Actually, the above analysis can be further generalized to obtain families of
not so weak keys satisfying one of the following conditions, which are conser-
vatively estimated according to some random tests.

(1) #(A) < 7, where #(S) denote the cardinality of set S (The same here-
inafter);

(2) More than half elements of A are too small, such as a0, a1, a0⊕a1 are less
than 10 at the same time;

(3) #(B) < 256.
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Table 2
Some weak keys that cause leaking of visual information.

Weak keys Visual information leaked from

K4 = K5 = K7 = K8 = 0 Channel R

K4 = K7 = 255, K5 = K8 = 1

K5 = K6 = K8 = K9 = 0 Channel G

K5 = K8 = 255, K6 = K9 = 1

K4 = K6 = K7 = K9 = 0 Channel B

K6 = K9 = 255, K4 = K7 = 1

K4 = K5 = K6 = K7 = K8 = K9 = 0 the whole plain-image

To display this potential problem efficiently, we deliberately discard the update
function Eq. (7), and show one example in Fig. 4.

Fig. 4. The red channel of encryption result when Eq. (7) is disabled and
K = “3C1DE8FF0A51FF0A2840”.

From the most conservative point of view, a cryptographically strong key
should ensure that all the sub-encryption-functions shown in Table 1 are not
weakened. This means that a strong key should satisfy the following criteria:
1) #(A) = 7, 2) the value of elements in A is larger than 10; 3) #(B) = 256.

3.2.4 Partially equivalent keys for K7 ∼ K9: Class 1

Observing Eq. (2), one can see that the value of X0 remains unchanged if the
following segments of K7, K8, K9 exchange their values: K7 mod 16, bK7/16c,
K8 mod 16, bK8/16c, K9 mod 16, bK9/16c. Now let us investigate what will
happen if we exchange K9 mod 16 and bK9/16c, i.e., exchange the upper half
and the lower half of K9. In this case, since the encryption of the red value
of each pixel is independent of K9, the red channel of the cipher-image will
remain unchanged. For the plain-image shown in Fig. 5, this phenomenon is
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shown in Fig. 6. Similar results also exist for K7 and K8, which correspond to
unchanged blue and green channels of the plain-image, respectively.

Fig. 5. The red channel of plain-image “Lenna”(displayed as a gray-scale image).

a) b)

c)

Fig. 6. The encryption results of two partially equivalent keys of Class 1,
K = “1A84BCF35D70664E4750” and K̃ = “1A84BCF35D70664E7450”: a) the
red channel of the cipher-image corresponding to K; b) the red channel of the
cipher-image corresponding to K̃; c) the difference image.
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3.2.5 Partially equivalent keys for K7 ∼ K9: Class 2

As remarked in Sec. 3.1, one can see that each sub-encryption-function ga0,a1,b0,b1,Y (x)
can be represented as one of the following two kinds of functions: x⊕ α, and
x u β. The combination of this fact and the following two properties of octets
will lead us to construct another class of partially equivalent keys. The follow-
ing property is immediate:

Fact 2 ∀ a ∈ {0, . . . , 255}, a⊕ 128 = a u 128.

The previous property and the associativity of modular arithmetic yields to
the following:

Fact 3 ∀ a, b ∈ Z, the following result is true: (a⊕ 128) u b = (a u b)⊕ 128.

Fact 3 means that a change in the MSB (most significant bit) of x, a0, a1, b0,
b1 of any sub-encryption-function ga0,a1,b0,b1,Y (x) is equivalent to XORing 128
on the output of the composition function Ei(x).

Next, let us investigate how to use this fact to figure out another class of
partially equivalent keys about K7 ∼ K9. Choose any two sub-keys from
K7 ∼ K9. For instance take K7 and K8. Then, given a secret key K that
satisfies K7 < 128 and K8 ≥ 128 (or, K7 ≥ 128 and K8 < 128), let us
change it into another key K̃ by setting K̃7 = K7 ⊕ 128 and K̃8 = K8 ⊕ 128.
From Eq. (2), it is easy to see that X0 remains the same for the two keys.
This means that the two Logistic maps have the same dynamics throughout
the encryption procedure for the two keys, and the difference on ciphertexts
is only determined by the MSB-changes of K7 and K8. In the following, we
consider the three color channels separately.

First, let us consider the encryption of the green channel of the plain-image,
in which K7 is not involved at all. Assuming that the chaotic trajectory {Yi}
is distributed uniformly within the interval [0.1, 0.9], one can see that the
probability that K8 has an effect on each encryption sub-function is p = 3/8. If
K8 appears an even number of times of the K10 total encryption sub-functions,
then the value of E2(G) will remain the same for the two keys; otherwise
E2(G) changes its MSB. Thus, using the same deduction as the given in the
proof of Lemma 1, we can get immediately the probability of E2(G) to remain
unchanged as P2 = (1 + (1 − 2p)K10)/2 = (1 + (1 − 3/4)K10)/2. This means
that more than half of all green pixel values in the ciphertexts are identical
for the two keys K and K̃ in probability.

For the blue channel, the condition is completely similar, and one can get the
probability of E3(B) to remain unchanged as P3 = (1 + (1− 3/4)K10)/2 = P2.
For the red channel, both K7 and K8 are involved, but their differences are
neutralized for the sub-encryption-function (x + K7 + K8) mod 256. So, the
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probability that the differences in K7 and K8 have an effect is reduced to
be p = 2/8 = 1/4. Then, one can get the probability of E1(R) to remain
unchanged as P1 = (1 + (1− 1/2)K10)/2 > P2 = P3.

To verify the above theoretical results, we made some experiments for a plain-
image of size 512 × 512 and some of the results are shown in Figure 7. The
numbers of the same elements in red, green and blue channel of Figs. 7a) and
b) are 131241, 130864 and 131383 respectively. The XOR difference between
red channel of Figs. 7a) and b) is shown in Fig. 7c) as an example, which is a
{0, 128} binary image.

a) b)

c)

Fig. 7. The encryption results of two partially equivalent keys of Class 2,
K = “1A93DF25CF78DC44E160” and K̃ = “1A93DF25CF785CC4E160”: a)
The cipher-image corresponding to K; b) The cipher-image corresponding to K̃; c)
the red channel of the XOR difference image.

3.2.6 Reduction of the key space

Based on the above analysis, we briefly summarize here the influence of invalid,
weak and equivalent keys in the key space. The result is shown in Table 3.
From the table, we can roughly estimate that the size of key space is reduced
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to 275, which is little smaller than 280, the one claimed in [18, Sec. 3.3].

Table 3
Analysis of key space.

Sub-keys Reduced numbers Reason

K1 ∼ K3 2 Y0 = 0

K4 ∼ K9 41911 X0 = 0

K4 ∼ K9 2 · 2543 + 26 #(A) < 7

K4 ∼ K9 2 · 106 Four elements of A are less than 10

K4 ∼ K9 (
∑128

i=1(2i))6 #(B) < 256

K7 ∼ K9 (2563 − 256−16
2 )3 Equivalent key of class 1

K7 ∼ K9 3 · 1283 Equivalent key of class 2

K10 128 T < 256

3.3 Vulnerabilities of the cryptosystem

In this subsection, we discuss some security problems of the encryption scheme
under study.

3.3.1 Potential security holes for the encryption function Ei(x)

As remarked in Sec. 3.1, the combination of some encryption sub-functions
may produce some simplifications in the resultant encryption function. If the
encryption sub-function is of the type x⊕ α, the iteration of an even number
of times of the same function will become the identity. More generally, the
result of any iteration of functions of the kind x ⊕ α with α ∈ A, is still a
function x⊕α with α ∈ A. If the encryption sub-function is of the type xuβ,
the T and T

2
times consecutive iteration of it will become to xu0 and xu128,

respectively.

The direct consequence of these holes is that the number of real effective
operations in Ei(x), len, may be much less than K10. Assuming that the
distribution of chaotic states generated by iterating Logistic map is uniform,
we can calculate

Prob(len = K10) =





2 · (5
8
· 1

4
)

K10
2 when K10 is even,

(5
8
· 1

4
)b

K10
2
c(5

8
+ 1

4
) when K10 is odd.

(14)
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From the above equation, we can see that the probability is extremely small
when K10 is large enough. The estimation of the probability for len to be a
given value is very complex. Alternatively, we carry out a number of random
experiments for a 512 × 512 plain image with fixed K10. Figure 8 shows the
bounds of distribution of len for 100 times random experiments, in which
K10 = 66, and other sub-keys are selected randomly.

1 6 11 16 21 26 31 36 41 46 51 56 61 66
10

0

10
1

10
2

10
3

10
4

10
5

Upper bound
Lower bound

Fig. 8. The value of len vs. the number of sub-functions whose number of real
operation is len.

From Fig. 8, it can be observed that len is much less than K10 in a relative large
probability. These potential security holes mean that not every encryption step
contribute to the security of the whole scheme, and even compromise it. It also
help to explain why the slope of the line shown in Fig. 2 is so slow.

3.3.2 Non-uniformity of the cipher-image

Although the original authors have validated the uniform histogram of the
whole cipher-image in [18, Sec. 3.1], we found that the histograms of some
sub-images of the cipher-image are not uniform.

As discussed in Sec. 3.1, the scheme under study works for T sub-images

{
NT−1⋃
k=0

I(16)(T · k + j)}T−1
j=0 with fixed secret key. Furthermore, from the above

sub-subsection, we can guess that the distribution of pixels in
NT−1⋃
k=0

{I∗(16)(T ·
k + j)} is not uniform enough. To validate this estimation, we made a number
of random experiments. The secret key “ABCDEF0123456789FF05”, the one
also used in [18, Fig. 1], was used to encrypt a 512×512 plain-image “Lenna.”
The histogram of the red channel of cipher-image is shown in Fig. 9 a). As

the discussion in Sec. 3.2.5, ∀ x ∈
{
I∗(16)(T · k + j)⊕ I∗(16)(T · k + j + T/2)

}
,
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x ∈ {0, 128}. So we divide the cipher-image into T/2 parts,

{⋃NT−1

k=0

{
I∗(16)(T · k + j) ∪ I∗(16)(T · k + j + T/2)

}}T/2−1

j=0
,

and show the distributions of the 0-th and 21-th one in Figs. 9b) and c) respec-
tively. Just as expected, the distribution of the whole cipher-image is relative
uniform, however the distributions of the two sub-images are not uniform,
which make it feasible for cipher-text only attack. Note that this potential
flaw exists for any value of K10 since a larger value of T means more dis-
tribution diagrams with weaker detail, and a smaller value of T means less
distribution diagrams with stronger detail.
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c)

Fig. 9. Distribution of the cipher-image: a) the histogram of the whole cipher-image;
b) the histogram of the 0-th part of Fig. 9a); c) the histogram of the 21-th part of
Fig. 9a).

3.3.3 Low sensitivity to plain-image

Unfortunately, the scheme under study fails to satisfy the property on the
MSB of each pixel value since Ei(x ⊕ 128) = Ei(x) ⊕ 128 from Fact 3. So,
the change of the MSB of any pixel value only lead to the change of the one
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of corresponding cipher-pixel value, which demonstrate the extremely weak
sensitivity.

3.4 Guessing K10 with a chosen plain-image

As remarked in Sec. 3.1, all 16-pixel blocks in
{
I(16)(T · k + j)

}NT−1

k=0
are en-

crypted with the same sub-keys. If these blocks also correspond to the same
values of Y0, then all the three encryption functions for R, G, B channels will
become identical. Precisely, given two identical blocks, I(16)(k0) and I(16)(k1),
one can see that the corresponding cipher-blocks will also be identical, in the
case that the following two requirements are satisfied:

(A) the distance of the two blocks is a multiple of T , i.e., (k0 − k1) | T ;

(B) Y
(k0)
0 = Y

(k1)
0 , where Y

(k0)
0 and Y

(k1)
0 denote the value of Y0 corresponding

to the two 16-pixel blocks.

If the probability of the two cipher-blocks to be identical is sufficiently large,
we may use the distance between them to determine the value of T and narrow
the search space of K10. However, the two cipher-blocks may also be identical
by accident not satisfying one of the above requirements, but we will show later
that the probability of such a false event is much smaller than the probability
of the real event so that it can be simply neglected in practice.

Next, let us calculate the probability of the above two requirements to hold si-
multaneously. From the definition of conditional probability, we have Prob(A∩
B) = Prob(A)Prob(B|A). Under the assumption that the two blocks are cho-
sen at random, one can easily deduce that Prob(A) = 1/T . Since the values
of B2 = K1K2K3 are the same when (k0 − k1) | T , from Eq. (3) one has

Y
(k0)
0 − Y

(k1)
0 =




∑24
k=1

(
B2

[
P

(k0)
k

]
−B2

[
P

(k1)
k

])
× 2k−1

224


 mod 1,

=
24∑

k=1

(
B2

[
P

(k0)
k

]
−B2

[
P

(k1)
k

])
× 2k−25,

where P
(k0)
k and P

(k1)
k denote the values of Pk corresponding to the two blocks.

Then, one can get Prob(B|A) = Prob
(
B2

[
P

(k0)
k

]
= B2

[
P

(k1)
k

]
,∀k = 1 ∼ 24

)
.

Assuming that each Pk has an uniform distribution over {1, . . . , 24} and there
are m 0-bits in the binary representation of B2, one can deduce that the
probability of B2

[
P

(k0)
k

]
= B2

[
P

(k1)
k

]
is

p0 =
(

m

24

)2

+
(

24−m

24

)2

= 1− m

12
+

m2

288
.
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Further assuming that any two elements in {Pk}24
k=1 are independent of each

other, one has Prob(B|A) = p24
0 . Combining with the probability of B2 hav-

ing m 0-bits in its binary representation, one can determine the value of
Prob(B|A) when B2 (i.e., the sub-key K1K2K3) is generated at random:

Prob(B|A) =
24∑

m=0

p24
0 ·

(
24

m

)/
224,

=
24∑

m=0

(
1− m

12
+

m2

288

)24

·
(

24

m

)/
224 ≈ 2−18.3.

Then, one can finally get Prob(A ∩B) = Prob(A) · Prob(B|A) ≈ 2−18.3/T .

Note that the above theoretical analysis is based on the following idealized
assumption: P1 ∼ P24 are independent and identically-distributed random
variables with an uniform distribution over {1, . . . , 24}. However, in reality,
this assumption is generally not true, and as a result the actual value of
Prob(A ∩ B) may be much larger than the theoretically estimated value. We
have made a number of experiments to study the non-uniform distribution
of the elements of the sequence {Pk}24

k=1, i.e., an approximate distribution of
trajectories of the Logistic map in the interval [0.1, 0.9]. All the distributions
are similar to each other, so only the trajectory generated by Y0 = 0.35 is
shown in Fig. 10 for illustration. Obviously, the non-uniform distribution of the
chaotic trajectory will improve the correlation between elements in {Pk}24

k=1.

To validate this point, we carried out 100 experiments computing {P (i)
k }16384

i=1

(the blocks for encryption of a 512× 512 plain-image) with random generated

keys. In {P (i)
k }16384

i=1 , we consider all possible pairs of sequences {Pk}24
k=1 (a

number of
(

16384
2

)
= 134209536 ≈ 227 pairs) and count those pairs whose two

sequences coincide in a given number k of elements. In Fig. 11 it is represented
the result of this experiment. For any number k it is given the mean value of
numbers of sequences coincident in the first k elements. As a comparison, the
theoretical probability pk =

(
24
k

)
( 1

24
)k(23

24
)24−k is also plotted in the same figure.

Note that the number of the same elements between any pair of {Pk}24
k=1 is

less than or equal to 22 in the experiment.

To reveal the actual value of Prob(A ∩B), we carry out 50,000 random tests
with a plain-image of size 1024 × 768, where K10 = 162 and K1 ∼ K9 are
selected randomly. We count the mean value and standard deviation of the
results and obtain 2−24.87 and 2−21.42 respectively. The mean value is a little
larger than the theoretical one 2−18.3/T = 2−25.3, but the standard deviation
means that the former is much larger than the latter for some cases.

Now let us analyze the probability of the false event, i.e., the probability that
two cipher-blocks are identical when at least one of the two requirements is
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Fig. 10. Distribution of {P (i)
k }393216

i=1 when Y0 = 0.35.
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Fig. 11. The number of the same elements between blocks {Pk} vs. corresponding
probability.

not satisfied. Assuming that each pixel value has an uniform distribution over
{0, . . . , 255} and that any two pixel values are statistically independent of each
other, one can easily deduce that this probability is ( 1

256
)16×3 = 2−384. As this

probability is so tiny, we can completely neglect it in practice.

The fact that Prob(A ∩ B) ≈ 2−24 means that an image of size 512 × 512
may be enough to carry out a chosen-plaintext attack. To validate the fea-
sibility of the attack, we chose a special plain-image with fixed value, and
check the corresponding cipher-image encrypted with a random secret key
K = “2A84BCF35D70664E4740”. Then we found 9 pairs of identical blocks
whose indices are listed in Table 4. Since all these indices should satisfy the
requirement (k0 − k1) | T , we can get an upper bound of T by solving their
greatest common divisor of the 9 index-differences. For the data shown in
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Table 4, one can immediately get

gcd(3161− 1941, 7083− 2015, 15255− 3023, 9163− 4159, 12113− 5061,

16355− 5507, 12454− 9166, 12259− 9655, 13102− 11090) = 4.

This immediately leads to T ∈ {2, 4}. Then, from Fact 1, one has gcd(K10, 256) ∈
{128, 64} and further gets K10 ∈ {64, 128, 192}. We can see that the size of
the sub-key space corresponding to K10 is reduced to 3 from 256, which is a
significant reduction.

Table 4
The indices of 9 pairs of identical blocks in the cipher-image corresponding to the
plain-image of fixed value zero.

i 1941 2015 3023 4159 5061 5507 9166 9655 11090

j 3161 7083 15255 9163 12113 16355 12454 12259 13102

3.5 A Differential Chosen-Plaintext Attack

First, we prove some useful properties related to the composite functions Ei(x).
Such properties are the basis of the differential attack introduced in this sub-
section.

Theorem 1 Let F (x) = G2m+1 ◦ · · · ◦ G1(x) be a composite function defined
over {0, . . . , 255}, where G2i(x) = x ⊕ αi for i = 1 ∼ m, G2i+1(x) = x u βi

for i = 0 ∼ m and αi, βi ∈ {0, . . . , 255}. If F (x) = x ⊕ γ for some γ ∈
{0, . . . , 255}, then γ ∈ {⊕m

i=1αi, (⊕m
i=1αi)⊕ 128}.

Proof : First, let us introduce some notation. Let x =
∑7

j=0 xj · 2j, αi =∑7
j=0 αi,j · 2j, βi =

∑7
j=0 βi,j · 2j, and F (x) =

∑7
j=0 Fj(x) · 2j.

The proof is based on the following fact. If F verifies that F (x) = x ⊕ γ for
some γ then, for any i = 0 ∼ 7, the result of the computation of Fi(x) depends
only on the value of the i-th coordinate of x, that is, on xi.

We are going to check the computation of F (x) starting from the least sig-
nificant bit. We write F0(x) = x0 u β0,0 ⊕ α1,0 u β1,0 ⊕ · · · ⊕ αm,0 u βm,0.
The calculation is carried out from the left to the right and the carry bits
occurring for the operation u will have an effect in other coordinates. Ob-
serve that, to compute the value of F0(x), one simply may write F0(x) =
x0 + β0,0 + α1,0 + β1,0 + · · ·+ αm,0 + βm,0, where, in this context, the operation
+ is the sum modulo 2 and it is equivalent to ⊕.

Let us study how the carry bits occurring at the first coordinate affect the
second and other coordinates.
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• If βi,0 = 1 for some i, then one and only one of the values of x0 will generate
a carry bit at i.

• When a carry bit occurs at βi,0 for some i, then βi,0 = 1.

This implies that the cardinal of the set {i | βi,0 = 1} is the sum of the carry
bits occurring when x0 = 0 and the carry bits occurring when x0 = 1.

The effect of the carry bits on the second coordinate has to be the same when
x0 = 0 and when x0 = 1. For that reason both numbers (the sum of the carry
bits occurring when x0 = 0 and when x0 = 1) need to have the same parity and
hence the cardinal of {i | βi,0 = 1} is even. Then, F0(x) = x0⊕α1,0⊕· · ·⊕αm,0.
This proves the theorem for the least significant bit.

This argument may be used for any bit but the most significant one. Without
loss of generality, we may assume we are working with the sixth (least signif-
icant) bit. F5(x) does not depend only on {αi,5}m

i=1 and {βi,5}m
i=0 but also on

the ones corresponding to carry bits occurring in previous bits.

Suppose we evaluate the octet x = (x7, x6, x5, 0, 0, 0, 0, 0). The evaluation of
the first five bits will produce carry bits on the sixth position. Hence, F5(x) =
x5 u β̄0,5⊕α1,5 u β̄1,5⊕· · ·⊕αm,5 u β̄m,5 where β̄i,5 and βi,5 disagree only when
the effect of a carry bit produced in a previous bit is visible at the sixth bit.
Observe that the final value of F5(x) does not depend on any xj with j 6= 5.

Repeating the argument for the least significant bit, and working only with
octets with the first five bits equal to zero, we conclude that the set {i | β̄i,5 =
1} has even cardinal.

Now take any other octet x = (x7, x6, x5, x4, x3, x2, x1, x0) and consider F5(x) =
x5 u β̆0,5 ⊕ α1,5 u β̆1,5 ⊕ · · · ⊕ αm,5 u β̆m,5, where β̆i,5 and βi,5 disagree only
when the effect of a carry bit produced in a previous bit is visible at the sixth
bit. Notice that (x7, x6, x5, x4, x3, x2, x1, x0) is fixed and the definition of β̆i,5

depends on (x4, x3, x2, x1, x0). Since this sum only depends on x5 we conclude
that the parity of the sets {i | β̄i,5 = 1} and {i | β̆i,5 = 1} have to coincide
and hence is even. This implies that F5(x) = x5 ⊕ α1,5 ⊕ · · · ⊕ αm,5 for any x.

This argument does not work for the most significant bit because the carry
bits are lost and do not have any effect about the result of the function.

Note that the above analysis is independent of the value of x. So F (x) =
x⊕ γ, where γ ∈ {⊕m

i=1αi, (⊕m
i=1αi)⊕ 128}, which completes the prove of this

theorem. ¥

Corollary 1 If there exists γ ∈ {0, . . . , 255} such that Ei(x) = x ⊕ γ, then

γ ∈
{⊕bK10/2c

i=1 αi,
(⊕bK10/2c

i=1 αi

)
⊕ 128

}
.
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Proof : Let us consider the following three different cases to prove the corollary.

(1) When G1(x) = x u β1 and GK10(x) = x u βbK10/2c, this corollary is the
same as Theorem 1.

(2) When G1(x) = x ⊕ α1 and GK10(x) = x u βbK10/2c, define y = G1(x) =

x ⊕ α1 and set F̃ (y) = GK10 ◦ · · · ◦ G2(y). Since F (x) = x ⊕ γ, then
F̃ (y) = x ⊕ α1 ⊕ γ = y ⊕ (α1 ⊕ γ). So, from Theorem 1, we have α1 ⊕
γ ∈

{⊕bK10/2c
i=2 αi,

(⊕bK10/2c
i=2 αi

)
⊕ 128

}
, which immediately leads to γ ∈{⊕bK10/2c

i=1 αi,
(⊕bK10/2c

i=1 αi

)
⊕ 128

}
.

(3) When G1(x) = xuβ1 and GK10(x) = x⊕αbK10/2c, rewrite F (x) = GK10 ◦
F̃ (x) = F̃ (x)⊕αbK10/2c, where F̃ (x) = GK10−1 ◦ · · · ◦G1(x). From F (x) =

x⊕γ, one has F̃ (x) = x⊕(γ⊕αbK10/2c). Then, performing condition a) or

b) on F̃ (x), we have γ⊕αbK10/2−1c ∈
{⊕bK10/2−1c

i=1 αi,
(⊕bK10/2−1c

i=1 αi

)
⊕ 128

}

and then get γ ∈
{⊕bK10/2c

i=1 αi,
(⊕bK10/2c

i=1 αi

)
⊕ 128

}
.

¥

Now let us try to find the answer to another question: how can we find
encryption functions that are equivalent to x ⊕ γ? From Proposition 1 and
Corollary 2, this can be done by checking if the following 255 equalities hold:
F (x1) ⊕ F (x1 ⊕ i) = i, where x1 is an arbitrary integer in {0, . . . , 255} and
i = 1 ∼ 255.

Proposition 1 Let F (x) = y be a function defined over {0, . . . , 255} such that
there exists x1 ∈ {0, . . . , 255} verifying F (x1)⊕F (x1⊕i) = i,∀i ∈ {1, . . . , 255}.
Then F (x) = x⊕ γ for some γ ∈ {0, . . . , 255} where F (0) = γ.

Proof : Take any x ∈ {0, . . . , 255} and apply the hypothesis to i = x⊕ x1 to
obtain F (x1) ⊕ F (x) = x ⊕ x1. This implies F (x) = x ⊕ x1 ⊕ F (x1). Thus
γ = x1 ⊕ F (x1) = F (0). ¥

Corollary 2 Let F (x) = y be a function defined over {0, . . . , 255}. If there
exists x1 ∈ {0, . . . , 255} such that F (x1) ⊕ F (x1 ⊕ i) = i, ∀i ∈ {1, . . . , 255}.
Then, ∀x2, x3 ∈ {0, . . . , 255}, F (x2)⊕ F (x3) = x2 ⊕ x3.

Proof : From Proposition 1, we have F (x2) ⊕ F (x3) = (x2 ⊕ F (0)) ⊕ (x3 ⊕
F (0)) = x2 ⊕ x3. Thus the corollary is proved. ¥

For the encryption functions Ei(x) composed of the two basic kinds of func-
tions, the above result can be further simplified. From Proposition 2, Corol-
lary 3, it is enough to check the following 64 equalities: F (x1)⊕F (x1⊕d) = d,
where x1 is an arbitrary integer in {0, . . . , 255} and d iterates over all elements
of a set S satisfying Eq. (15).
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(S ∪ {x⊕ 64|∀ x ∈ S}) ⊃ {1, . . . , 64}
#(S) = 64.

(15)

Proposition 2 Consider any encryption function Ei(x) (i = 1 ∼ 3) defined
in Eqs. (4)∼(6). If there exists x1 ∈ {0, . . . , 255} such that Ei(x1) ⊕ Ei(x1 ⊕
d) = d, ∀d ∈ {1, . . . , 127}, then Ei(x) = x⊕ Ei(0).

Proof : From Fact 3, one has Ei(x1)⊕Ei(x1⊕128) = 128 and Ei(x1)⊕Ei(x1⊕
j ⊕ 128) = j ⊕ 128 for j = 1 ∼ 127. This means that Ei(x1)⊕ Ei(x1 ⊕ j) = j
holds ∀j ∈ {1, . . . , 255}. Then, from Proposition 1, Ei(x) = x⊕ Ei(0). ¥

Proposition 3 For a function F (x) verifying the hypothesis of Theorem 1,
any one of the following three statements:

• F (0)⊕ F (d) = d,
• F (0)⊕ F (64) = 64,
• F (0)⊕ F (d⊕ 64) = d⊕ 64,

can be derived from the other two, where d is any integer within the set
{1, . . . , 63}.

Proof : Let d =
∑7

j=0 dj ·2j. For convenience we write F (0) = γ =
∑7

j=0 γj ·2j.
Let us derive the third statement from the first and second one. The other
combinations are proved in a similar way.

The first statement may be written as F (d) = d ⊕ γ for any d ∈ {1, . . . , 63}.
Consider the octet d = (0, 0, d5, . . . , d0). It is clear that F6(d) = F6(0) =
γ6. This implies that, at the seventh coordinate, the number of carry bits
produced by d and by 0 have the same parity p6 and it is independent of d.
Now consider the octet d′ = (0, 1, d5, . . . , d0). For the definition of F , since
the first coordinates to be evaluated are the least significant, it is clear that
Fj(d

′) = Fj(d) = dj ⊕ γj for any j = 0 ∼ 5. For the seventh coordinate, since
the parity or the carry bits produced by the previous coordinates does not
depend on d, we may conclude that F6(d

′) = F6(d)⊕ 1 = γ6 ⊕ 1.

To check the eight coordinate, we need the second hypothesis. We may write
it as F (64) = 64⊕γ. Since F7(64) = F7(0) = γ7, we conclude that, at the eight
coordinate, the carry bits produced by 64 and by 0 have the same parity (let
us call it p7). From the first statement we know that, the effect in the seventh
coordinate of the carry bits of d, d′, 0 and 64 is identical (defined through
p6). For that reason, the effect of the carry bits in the eight coordinate may
be reduced to the value of the seventh coordinate of the evaluated octet. But,
as was said before, this only depends on p7. Thus, we may conclude that
F7(d

′) = F7(d) = F7(0) = F7(64) = γ7. ¥
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Corollary 3 For the encryption Ei(x) (i = 1 ∼ 3) shown in Eqs. (4)∼(6),
if there exists x1 ∈ {0, . . . , 255} such that Ei(x1) ⊕ Ei(x1 ⊕ d) = d, ∀ d ∈ S
satisfying Eq. (15), then Ei(x) = x⊕ Ei(0).

Proof : This corollary is the direct consequence of Propositions 2 and 3. ¥

Now, let us discuss how to carry out the differential attack. We choose 65
different plain-images {Il}64

l=0. The size of the images is M ×N and the pixel
values of the image Il for any l = 0 ∼ 64 is Rl(i) = Gl(i) = Bl(i) = l, where
i = 1 ∼ MN .

With the chosen plain-images and the corresponding cipher-image {I∗l }64
l=0,

we can find out the encryption functions that are equivalent to x ⊕ γ in the
following way.

Consider the cipher image of the red channel of the first block in all 65 images.
The encryption function E1 is the same for all of them. So, we know E1(x)
for x = 0 ∼ 64. Does E1 verify E1(x) = x⊕ γ for some γ? From the previous
technical results, it is enough to check that E1(x) = x⊕E1(0) for x = 0 ∼ 64.
This argument is valid for any encryption function Ei and for any block.

Now iterate over all the blocks of the images to find, for the red channel,
the encryption functions equivalent to x ⊕ γ and construct a two columns
matrix N in the following way. If the n-th block verifies that the corresponding
encryption function satisfies E1(x) = x ⊕ γn, then add to N the row (n, γn).
The dimension of the matrix is S × 2, where S is the total number of blocks
with encryption function equivalent to x⊕ γ for some γ.

Now, according to the notation introduced in section 3.1, consider any of the
blocks {I(16)(T · k + j)}NT−1

k=0 or {I(16)(T · k + j + T
2
)}NT−1

k=0 . If any of them
produce an entrance in N, say for instance row s, then the corresponding γ is
N(s, 2) and belongs to the set Ãj, where

Ãj =Aj ∪ {x⊕ 128|x ∈ Aj},
= {0, ã0, ã1, ã0 ⊕ ã1,

255, ã0 ⊕ 255, ã1 ⊕ 255, ã0 ⊕ ã1 ⊕ 255, (16)

128, ã0 ⊕ 128, ã1 ⊕ 128, ã0 ⊕ ã1 ⊕ 128,

127, ã0 ⊕ 127, ã1 ⊕ 127, ã0 ⊕ ã1 ⊕ 127},

Aj = {0, ã0, ã1, ã0⊕ ã1, 255, ã0⊕ 255, ã1⊕ 255, ã0⊕ ã1⊕ 255}, ã0 = a0 u j ·K10

and ã1 = a1 u j ·K10.

Now, let us analyze the set Ãj for a given j. The cardinality of Ãj depends on
ã0, ã1, and can be classified as follows:
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• #(Ãj) = 4. This is the case when ã0, ã1 ∈ {0, 255, 128, 127}.

• #(Ãj) = 8. This is the case when one of the following conditions hold:
· ã0 = ã1 6∈ {0, 255, 128, 127};
· ã0 ∈ {0, 255, 128, 127}, ã1 6∈ {0, 255, 128, 127};
· ã1 ∈ {0, 255, 128, 127}, ã0 6∈ {0, 255, 128, 127}.

• #(Ãj) = 16: For the rest of the cases.

Considering the family {#(Ãj)}NT−1
j=0 , information about a0 and a1 can be

obtained as follows:

• When #(Ãj) = 4 ∀ j = 0 ∼ NT − 1 then a0, a1 ∈ {0, 255, 128, 127} and
K10 ∈ {0, 128}.

• When #(Ãj) ≤ 8 ∀ j = 0 ∼ NT − 1 then one of the following conditions
hold:
· a0 = a1 6∈ {0, 255, 128, 127};
· a0 ∈ {0, 255, 128, 127}, a1 6∈ {0, 255, 128, 127} and K10 ∈ {0, 128};
· a0 6∈ {0, 255, 128, 127}, a1 ∈ {0, 255, 128, 127} and K10 ∈ {0, 128}

• When #(Ãj) /∈ {4, 8} for some j then the rest of the combinations hold.

The second column of N provides elements of different Ãj. From the above
analysis, one can see that the scope of a0, a1 and K10 can be guessed by
observing the whole {#(Ãj)}NT−1

j=0 . The procedure to obtain such information
will be discussed shortly.

The estimation of the needed values is mainly based on the following fact. For
j0, j1 such that j0 6= j1(mod T ) and j0 6= j1(mod T

2
), Ãj0 and Ãj1 may have

twelve different elements. 4 Since every set Ãj is closed with respect to XOR

operation, the cardinality of a searched version of Ãj0 may exceed 16 if one

element of Ãj1 is loaded in it and then all possible XOR operations between
pairs of elements are performed.

Based on this point, we can search for the period of Eq. (7) T from N by the
following steps.

Step 1. Set i with initial value i = 8 and define the setM = {0, 255, 128, 127}.
For the rest of the procedure, consider the member of N, N(1, 1).

Step 2. Consider T ∗ = 2i as an estimation of T . For any s = 1 ∼ S, add
N(s, 2) to M if (N(s, 1)− N(1, 1)) mod T ∗ = 0.

Step 3. Carry out the XOR operation between any two elements of M, and
add the result into M if the value is not contained in M.

4 Note that there have only eight different elements when (a0 u j0K10) ⊕ (a1 u
j0K10) = (a0 u j1K10)⊕ (a1 u j1K10).
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Step 4. If #(M) ≤ 16, then go to Step 2 with i = i− 1; else stop the search.

Let us see how this algorithm works with an example. Assume that T = 28.
Suppose that N(1, 1) = T · k + j0 for some natural number k. Then N(1, 2) ∈
Ãj0 . In the first round, the only s to pass the test are those of the form
N(1, 1) + n · 256 for some natural number n. Since the encryption functions
corresponding to those blocks are defined with the same keys, then N(s, 2) has
to belong to Ãj0 . Thus, the cardinal of M after the first round has to be at
most 16. It also could be 4 or 8.

At the second round, if s pass the test in Step 2 then s = N(1, 1) + n ·
128 for some natural number n. Thus, the keys corresponding to the block
I(16)(N(1, 1)) and I(16)(N(s, 1)) have a gap of 128. Since 128 ∈ M, N(s, 2)
already belongs to Ãj0 . So, after the second round, the cardinal of M is not
greater than 16. Again, it also could be 4 or 8.

Now, in the third round, if s pass the test in Step 2 then s = N(1, 1) + n ·
64 for some natural number n. Thus, the keys corresponding to the block
I(16)(N(1, 1)) and I(16)(N(s, 1)) have a gap of 64. For that reason, N(s, 2) does
not need to belong to Ãj0 . So, after the third round the cardinal ofM could be
greater than 16. It also could be less or equal to 16: it depends of the values
of N.

Observe that the previous argument may be repeated for any period T . In any
case, it is concluded that the validation condition #(M) > 16 will be reached
only when T ∗ ≤ T

4
, i.e., T ≥ 4 · T ∗.

Observe that if the second column of N has only a few different values and
they are related to N(1, 2) in the sense that all of them belong to the same set
Ãj, then no information may be obtained from this procedure.

Once T is determined, we can search for the values of K10, a0 and b0 by the
correlation between Ãj0 and Ãj1 , which can be described with the following
steps:

Step 1. Enumerate all possible values of K10 and take the first one. From
Fact 1, for a given guessed period T , there are many suitable values for K10.
For instance, for T = 256, any odd number is a candidate for K10.

Step 2. Recover two different sets Ãj0 and Ãj1 . Let j0 and j1 be such that
N(1, 1) = T · k1 + j0 and N(s1, 1) = T · k2 + j1 for some natural numbers
k1 and k2 and for s1 ∈ {1, . . . , S} such that j0 6= j1(mod T ) and j0 6=
j1(mod T

2
). To recover the set Ãj0 , find in the first column of N values s

such that N(1, 1) = N(s, 1)(mod T ). With all such values generate the set
of all XOR possible combinations and the numbers {0, 255, 128, 127}. The
same procedure may be repeated for Ãj1 .

Step 3. Enumerate all possible combination of a0,j0 , a1,j0 from Ãj0 and take

26



the first one. Observing Eq. (16), one may see that there are
(

3
2

)
· 4 · 4 = 48

possible combinations of a0,j0 , a1,j0 when a0,j0 , a1,j0 6∈ {0, 255, 128, 127}.
Step 4. Construct the set Âj1 as follows:

Âj1 = {0, 255, â0, â1, â0, â1, â0 ⊕ â1, â0 ⊕ â1, 128, 127, â0 ⊕ 128,

â1 ⊕ 128, â0 ⊕ 127, â1 ⊕ 127, â0 ⊕ â1 ⊕ 128, â0 ⊕ â1 ⊕ 127},

where â0 = a0,j0 u dif ·K10 and â1 = a1,j0 u dif ·K10 and dif = j1 − j0.

Step 5. If Âj1 = Ãj1 , it means that the corresponding estimation of (K10, a0, a1)
is reasonably good. So, it should be considered as a possible solution. Go to
Step 6.

If Âj1 6= Ãj1 , it means that (K10, a0,j0 , a1,j1) is a bad estimation for
(K10, a0, a1) so it should be discarded Go to Step 4 with the next pair
(a0,j0 , a1,j1) of the enumeration constructed in Step 3.

Step 6. Consider the next value of K10 in the enumeration constructed in
Step 1. Then go to Step 4, starting at the first pair (a0,j0 , a1,j1) of the
enumeration constructed in Step 3.

The performance of the above search can be analyzed as follows. Given one
combination of (K10, a0,j0 , a1,j0) passing the previous validation, the following
variants would also pass it.

• (K10, a0,j0⊕128, a1,j0), (K10, a0,j0 , a1,j0⊕128) and (K10, a0,j0⊕128, a1,j0⊕128);

• (c, a0,j0 , a1,j0), where (c · dif) mod 256 = ((K10 · dif) mod 256)⊕ 128;

• (c, a0,j0 , a1,j0), where (c · dif) mod 256 = (K10 · dif) mod 256;

• (c, a0,j0 , a1,j0), where (c · dif) u (K10 · dif) = 0.

Obviously, the first two types are due to the same reason, which is described in
Fact 3. The last one is caused by equality ai,j0 u(c ·dif) = ai,j0 u (K10 · dif) =
âi, i ∈ {0, 1}. The number of the searched results depends on K10 and dif .
To minimize the searched results, one can choose dif satisfying i0 is as small
as possible, where 2i0|dif and 2i0+1 - dif . The value of a0, a1 can be recovered
from a0,j0 , a1,j0 by a0 = (a0,j0−j0 ·K10) mod 256, a1 = (a1,j0−j0 ·K10) mod 256.

To validate the feasibility of the above attack, we carry out a real attack
with random selected secret key “2A84BCF35D70664E4751”. First, we find
T ∗ = 64, so T = 256. Then we get Ã88 = {0, 255, 203, 62, 52, 193, 245, 10, 128,
127, 75, 190, 180, 65, 117, 138}, and Ã134 = {0, 255, 89, 204, 166, 51, 149, 106, 128,
127, 217, 76, 38, 179, 21, 234}. The total combinations passing the validation
are shown in Table 5.
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Table 5
The possible combination of K10, a0,88 and a1,88 from the search.

K10 a0,88 a1,88 K10 a0,88 a1,88 K10 a0,88 a1 K10 a0,88 a1,88

17 203 62 81 203 62 145 203 62 209 203 62

17 203 190 81 203 190 145 203 190 209 203 190

17 75 62 81 75 62 145 75 62 209 75 62

17 75 190 81 75 190 145 75 190 209 75 190

47 52 193 111 52 193 175 52 193 239 52 193

47 52 65 111 52 65 175 52 65 239 52 65

47 180 193 111 180 193 175 180 193 239 180 193

47 180 65 111 180 65 175 180 65 239 180 65

In this case, there are 32 possible combinations of (K10, a0, a1) passing the
validation. Only the framed one in Table 5 is correct.

As will be discussed later, the value of the ratio S
MN

has strong relation with
K10. In the above experiment, S = 162. We can guess K10 ∈ {81, 111}. In
addition, the speed of the encryption function is sensitive to K10, which helps
the attacker to determine the value of K10 if the running time of encryption
function can be detected.

So, we can get 16 possible value of (K4, K7). Similarly, the 16 possible val-
ues of (K5, K8), (K6, K9) can be obtained from the green and blue channel
respectively.

To further determine the values of K4 ∼ K9, we have to exhaustively guess Y0

to check the coincidence between the cipher-image and the encryption result
obtained by the searched candidate sub-keys. Considering 16 pixels of one
channel is enough for validating the search and f(x) = f(1 − x), we can
estimate the complexity of this search is about O(223 · 32 + 32 · 2) = O(228).
Once Y0 is obtained, the value of K1 ∼ K3 can be recovered from Eq. (3).

Since 64 pairs of differential chosen-images are relatively much, we study the
probability of successfully detecting encryption functions that are equivalent
to x ⊕ γ with a smaller number of differential chosen-images. For a number
of random secret key, we set the differential values with all elements in Sj =

{1+26−j ·k}(64/26−j)−1
k=0 , j = 0 ∼ 6. For each secret key, the ratio N6

Nj
is computed,

where Nj, N6 are the numbers of functions passing the detection when the
differential values are set with all elements in Sj and S6 respectively. The
results are shown in Fig. 12. Note that only encryption functions involving
x u β are counted. From the experiment, we know O(10) differential chosen
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images may be enough for the attack especially when K10 is not large.
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Fig. 12. Differential set Sj = {1 + 26−j · k}(64/26−j)−1
k=0 and corresponding probability

of successful detection, j = 0 ∼ 6.

Finally, we discuss the feasibility of the differential attack proposed in this
subsection. The most important point of the procedure is the recovering Ãj0

and Ãj1 . In the better case, four encryption functions equivalent to x⊕γ should
assure this point. However, the proposed attack is generally infeasible if the
probability of an encryption function to be equal to x⊕ γ is too small. When
K10 is not very large, a lower bound of the probability can be estimated as
the probability that an encryption function does not involve the second kind
of sub-encryption-functions (i.e., functions of the form x u β). Assuming that
the chaotic trajectory of the second Logistic map has an uniform distribution
over {0, . . . , 255} and any two chaotic states are independent of each other,
we can deduce that this lower bound is (3/4)K10 . When K10 is relatively large,
we can only turn to the encryption functions that are equivalent to x ⊕ γ
even if the second kind of sub-encryption-functions are involved. From the
proof of Theorem 1, we can see that being Ei(x) equivalent to x ⊕ γ has a
sensitive relation to {αbj/2c+1}len

j=1 and {βbj/2c+1}len
j=1, in the sense that even one

bit change of αbj/2c+1 or βbj/2c+1 could make the equivalence to fail.

As a reference, we carried out a 1,000 times random experiment under some
values of K10, where sub-keys K1 ∼ K9 are chosen randomly. The results are
shown in Table 6, where the numbers of different sub-key sets that have at least
one pixel satisfying E1(x) = x ⊕ γ, the mean value and standard variance of
the sequence including the number of pixels satisfying the condition are shown
from the first row to the third one respectively.

For a plain-image of size 512 × 512, a number of random experiments have
been made with random selected K1 ∼ K9 under different value of K10. Two
of such examples are shown in Fig. 13. In the figure, the encryption functions
involving the second kind of sub-encryption-functions or not involving are
counted respectively.
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Table 6
Experiment results about the probability E1(x) = x⊕ γ under some values of K10.

K10 45 65 100 150 200 255

number 1000 1000 572 445 197 230

mean 324 146 194 238 775 329

variance 629 584 1408 1355 4486 1136
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a)

1 32 64 96 128 160 192 224 255
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Fig. 13. The number of pixels satisfying E1(x) = x ⊕ γ under different value of
K10: a) K1 ∼ K9 = “8DB87A1613D75ADF2D”; b) K1 ∼ K9 = “2A84BCF35
D70664347”.

4 Conclusion

In this paper, the security of a recently proposed image encryption scheme has
been studied in detail. It is found that there exist some serious problems with
secret keys including invalid ones, weak ones and partially equivalent ones. The
distribution of sub-images of the cipher-images is not uniform enough. A sub-
key even can be guessed from cipher-image of a chosen plain-image. Moreover,
seven sub-keys among the ten ones can be recovered with a differential attack
in the case that any 64 chosen plain-images satisfying a constraint is enough.
The cryptanalysis presented in this paper also provide a thought for attacking
schemes composing of multiple round encryption functions.
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