
On the security of an image encryption

scheme

Chengqing Li a,∗, Shujun Li b,∗, Muhammad Asim c,
Juana Nunez d, Gonzalo Alvarez d and Guanrong Chen a

aDepartment of Electronic Engineering, City University of Hong Kong, 83 Tat
Chee Avenue, Kowloon Tong, Hong Kong SAR, China

bLehrgebiet Informationstechnik, FernUniversität in Hagen, Universitätsstraße 27,
58084 Hagen, Germany

cUniversiti Teknologi PETRONAS, 31750, Tronoh, Perak, Malaysia
dInstituto de F́ısica Aplicada, Consejo Superior de Investigaciones Cient́ıficas,

Serrano 144, 28006 Madrid, Spain

Abstract

This paper studies the security of a recently-proposed image encryption scheme
based on chaos, and points out the following problems: 1) there exist a number of
invalid keys and weak keys, and some keys are partially equivalent for the encryp-
tion/decryption processes; 2) given one chosen plain-image, a sub-key K10 can be
guessed with a smaller computational complexity than that of the simple brute-force
attack; 3) given O(10) (at most 128) chosen plain-images, a chosen-plaintext attack
may be able to break the following part of the secret key: ({Ki mod 128}9

i=4,K10),
which works very well when K10 is not too large; 4) when K10 is relatively small, a
known-plaintext attack can be mounted with only one known plain-image to recover
some visual information of other plain-images encrypted by the same key.

Key words: cryptanalysis, image encryption, chaos, known-plaintext attack,
chosen-plaintext attack

1 Introduction

Owing to the rapid development of multimedia and network technologies, the
transmission of multimedia data over networks occurs more and more fre-

∗ Corresponding authors: Chengqing Li (swiftsheep@hotmail.com), Shujun Li
(http://www.hooklee.com).

Preprint submitted to Image and Vision Computing 2 August 2007

quently. As a result, the content protection of multimedia data is often needed
in many applications, which include both public and private services such as
military information systems and multimedia messaging systems (MMS). Al-
though any traditional text ciphers (such as DES and AES) can be used to
fulfill this increasing demand of security, they cannot provide satisfactory solu-
tions to some special properties and requirements in many multimedia-related
applications. For example, one of these requirements is perceptual encryp-
tion [1], which means that the encrypted multimedia data can still be de-
coded by any standard-compliant codec, which cannot be realized by simply
employing any traditional cipher on multimedia data. As responses to this
concern, a large number of specially-designed multimedia encryption schemes
have been proposed in the past two decades [2–8]. Meanwhile, security anal-
ysis on the proposed schemes have also been developed, and some of them
have been found to be insecure to different extents, from the point of view
of cryptography [9–13]. For more discussions about multimedia encryption
techniques, readers are referred to some recent surveys about multimedia en-
cryption [14–18].

Since 2003, Pareek et al. have proposed three different encryption schemes
based on one or more one-dimensional chaotic maps [19–21], among which
the one proposed in [21] was designed for image encryption. Recent cryptana-
lytic results [22,23] have shown that the two schemes proposed in [19,20] are
not secure. The present paper focuses on the security analysis of the image
encryption scheme proposed in [21], and reports the following findings:

(1) There are some different types of security problems with the secret key,
and each sub-key is involved in at least one problem;

(2) One sub-key K10 can be separately searched with a relatively small com-
putational complexity, when only one chosen plain-image is given;

(3) The scheme is insecure against a chosen-plaintext attack in the sense that
only 128 chosen plain-images may be enough to break part of the key.
The attack is especially feasible when K10 is not too large.

(4) When K10 is relatively small and one plain-image is known, a known-
plaintext attack can be mounted to reveal some visual information of
other plain-images encrypted with the same secret key.

The rest of the paper is organized as follows. The next section gives a brief
introduction to the image encryption scheme under study. Section 3 is the main
body of the paper, focusing on a comprehensive cryptanalysis that covers both
theoretical and experimental results. The last section concludes the paper.

2

2 Pareek et al.’s image encryption scheme

In this scheme, the plaintext is a color image with separate RGB channels.
The plain-image is scanned in the raster order, and then divided into 16-pixel
blocks. The encryption and decryption procedures are performed blockwise on
the plain-image. Without loss of generality, assume that the size of the plain-
image is M ×N , and that MN can be exactly divided by 16. Then, the plain-
image I can be represented as a 1-D signal {I(i)}MN−1

i=0 with Nb = MN/16
blocks, namely, I = {I(16)(k)}Nb−1

k=0 , where I(16)(k) = {I(16k + i)}15
i=0. Simi-

larly, the cipher-image is denoted by I∗ = {I∗(16)(k)}Nb−1
k=0 , where I∗(16)(k) =

{I∗(16k + i)}15
i=0.

The secret key of the encryption scheme under study is an 80-bit integer and
can be represented as K = K1 · · ·K10, where each sub-key Ki ∈ {0, . . . , 255}.
Two chaotic systems are involved in the encryption scheme, both of which are
realized by iterating the following Logistic map:

f(x) = µx(1− x), (1)

where µ is the control parameter and fixed as 3.9999. One chaotic map runs
globally throughout the whole encryption process, while another one runs
locally for the encryption of each 16-pixel block. The initial condition of the
global chaotic map is determined by the six sub-key K4 ∼ K9 as follows:

X0 =

(∑6
i=4 Ki · 28(i−4)

224
+

∑9
j=7((Kj mod 16) + bKj/16c)

96

)
mod 1, (2)

and the local chaotic map corresponding to each block is initialized according
to selected chaotic states of the global map. For the k-th block I(16)(k), the
encryption process can be described by the following steps.

• Step 1: Determining the initial condition of the local chaotic map. Iterate
the global chaotic map until 24 chaotic states within the interval [0.1, 0.9)
are obtained. Denoting these chaotic states by {X̂j}24

j=1, generate 24 integers

{Pj}24
j=1, where Pj = b24(X̂j−0.1)/0.8c+1. 1 Then, calculate B2 =

∑3
i=1 Ki ·

28(i−1) and set the initial condition of the local chaotic map as

Y0 =

(
B2 +

∑24
j=1 B2[Pj] · 2j−1

224

)
mod 1, (3)

1 In Sec. 2 of [21], the interval is [0.1, 0.9] and Pj = b23(X̂j−0.1)/0.8c+1. However,
following this process, Pj = 24 when and only when X̂j = 0.9, which becomes a rare
event and conflicts with the requirement that Pj has a roughly uniform distribution
over {1, . . . , 24}. Therefore, in this paper we changed the original process in [21] to
a more reasonable one. Note that such a change does not influence the performance
of the encryption scheme.

3

where B2[Pj] denotes the Pj-th bit of B2.
• Step 2: Encrypting the k-th block I(16)(k). For each pixel in the block, iterate

the local chaotic map to obtain K10 consecutive chaotic states {Ŷj}K10
j=1 which

fall into the interval [0.1,0.9), and then encrypt the RGB values of the
current pixel according to the following equations:

R∗ = E1(R) = gK4,K5,K7,K8,ŶK10
◦ · · · ◦ gK4,K5,K7,K8,Ŷ1

(R), (4)

G∗ = E2(G) = gK5,K6,K8,K9,ŶK10
◦ · · · ◦ gK5,K6,K8,K9,Ŷ1

(G), (5)

B∗ = E3(B) = gK6,K4,K9,K7,ŶK10
◦ · · · ◦ gK6,K4,K9,K7,Ŷ1

(B), (6)

where ◦ denotes the composition of two functions and ga0,b0,a1,b1,Y (x) is a
function under the control of Y as shown in Table 1.

• Step 3: Updating sub-keys K1, . . . , K9. Perform the following updating op-
eration for i = 1 ∼ 9:

Ki = (Ki + K10) mod 256. (7)

Table 1
The definition of ga0,b0,a1,b1,Y (x), where x denotes the bitwise complement of x, and
⊕ denotes the bitwise XOR operation.

Y ∈ ga0,b0,a1,b1,Y (x)= g−1
a0,b0,a1,b1,Y

(x)=

[0.10, 0.13) ∪ [0.34, 0.37) ∪ [0.58, 0.62) x = x⊕ 255

[0.13, 0.16) ∪ [0.37, 0.40) ∪ [0.62, 0.66) x⊕ a0

[0.16, 0.19) ∪ [0.40, 0.43) ∪ [0.66, 0.70) (x + a0 + b0) mod 256 (x− a0 − b0) mod 256

[0.19, 0.22) ∪ [0.43, 0.46) ∪ [0.70, 0.74) x⊕ a0 = x⊕ (a0 ⊕ 255) = x⊕ a0

[0.22, 0.25) ∪ [0.46, 0.49) ∪ [0.74, 0.78) x⊕ a1

[0.25, 0.28) ∪ [0.49, 0.52) ∪ [0.78, 0.82) (x + a1 + b1) mod 256 (x− a1 − b1) mod 256

[0.28, 0.31) ∪ [0.52, 0.55) ∪ [0.82, 0.86) x⊕ a1 = x⊕ (a1 ⊕ 255) = x⊕ a1

[0.31, 0.34) ∪ [0.55, 0.58) ∪ [0.86, 0.90] x = x⊕ 0

The decryption procedure is similar to the above encryption procedure, except
that Eqs. (4)∼(6) in Step 2 are replaced by the following ones:

R = E−1
1 (R∗) = g−1

K4,K5,K7,K8,Ŷ1
◦ · · · ◦ g−1

K4,K5,K7,K8,ŶK10

(R∗), (8)

G = E−1
2 (G∗) = g−1

K5,K6,K8,K9,Ŷ1
◦ · · · ◦ g−1

K5,K6,K8,K9,ŶK10

(G∗), (9)

B = E−1
3 (B∗) = g−1

K6,K4,K9,K7,Ŷ1
◦ · · · ◦ g−1

K6,K4,K9,K7,ŶK10

(B∗), (10)

where g−1
a0,b0,a1,b1,Y (x) is the inverse function of ga0,b0,a1,b1,Y (x) with respect to

x as shown in Table 1.

4

3 Cryptanalysis

In this section we report our cryptanalytic results about the image encryption
scheme under study. These include a comprehensive analysis on invalid keys,
weak keys and partially equivalent keys, a chosen-plaintext attack of breaking
K10, a chosen-plaintext attack of breaking ({Ki mod 128}9

i=4, K10), a known-
plaintext attack and some other minor security problems.

3.1 Two properties about Pareek et al.’s scheme

To facilitate the description of the discussion afterwards, we first point out
two properties of the scheme under study in this subsection. One is about the
subkey updating mechanism, and the other is about the essential equivalent
presentation form of the encryption function.

To improve the security of the scheme, the authors of [21] introduce an up-
dating mechanism for sub-keys as shown in Eq. (7) of this paper. Because the
updating process is performed in a finite-state field, the sequence of each up-
dated sub-key produced with such a mechanism is always periodic (See Fact 1).
As a result, the sequence of the dynamic keys is also periodic. Assuming that
the period is T , the Nb plain pixel-blocks {I(16)(k)}Nb−1

k=0 can be divided into
T separate sets according to values of these dynamically updated sub-keys:{
Ij =

NT−1⋃
k=0

I(16)(T · k + j)

}T−1

j=0

, where NT = dNb/T e. For blocks in the same

set Ij, all the updated sub-keys are identical. In other words, for each set Ij
(1/T of the whole plain-image) we can consider that the secret key is fixed.
Since 1/T of a plain-image may be enough to reveal much visual information,
one can turn to break any set Ij without considering the updating mechanism.

Fact 1 For x, a ∈ {0, . . . , 255}, the integer sequence {y(i) = (x + ai) mod
256}∞i=0, has period T = 256/ gcd(a, 256).

With respect to the encryption function, observing Table 1, one can see that
each sub-encryption-function is represented in one of the following two for-
mats:

(1) ga0,b0,a1,b1,Y (x) = x⊕ α, where α ∈ {0, 255, a0, a1, a0, a1};
(2) ga0,b0,a1,b1,Y (x) = x u β, where x u β denotes (x + β) mod 256 (the same

hereinafter), and β ∈ {a0 u b0, a1 u b1} ⊂ {0, · · · , 255}.

Because (x⊕α1)⊕α2 = x⊕(α1⊕α2) and (xuβ1)uβ2 = xu(β1uβ2), consecutive
sub-encryption-functions of the same kind can be combined together, and
those with α = 0 or β = 0 can be simply ignored. As a result, each encryption

5

function Ei(x) is a composition of len ≤ K10 sub-functions: {Gj(x)}len
j=1, where

Gj(x) = x ⊕ αdj/2e or x u βdj/2e, and Gj(x), Gj+1(x) are sub-encryption-
functions of different kinds. According to the types of G1(x) and Glen(x),
Ei(x) has four different formats:

(1) Ei(x) = ((· · · ((x u β1)⊕ α1) · · ·)⊕ αd(len−1)/2e) u βdlen/2e;
(2) Ei(x) = ((· · · ((x u β1)⊕ α1) · · ·) u βd(len−1)/2e)⊕ αdlen/2e;
(3) Ei(x) = ((· · · ((x⊕ α1) u β1) · · ·)⊕ αd(len−1)/2e) u βdlen/2e;
(4) Ei(x) = ((· · · ((x⊕ α1) u β1) · · ·) u βd(len−1)/2e)⊕ αdlen/2e.

Note that len is generally less than K10. Assuming that {Yi} distributes uni-
formly over the interval [0.1,0.9], we can get the following inequality:

Prob[len = K10] ≤

2 · (5
8
· 1

4
)

K10
2 , when K10 is even,

(5
8
· 1

4
)bK10

2 c(5
8

+ 1
4
), when K10 is odd.

(11)

From the above equation, we can see that the probability decreases exponen-
tially as K10 increases. Because it is difficult to exactly estimate the probability
that len is equal to a given value less than K10, we performed a number of
random experiments for a 512×512 plain-image to investigate the possibilities.
Figure 1 shows a result of 100 random keys when K10 = 66.

1 6 11 16 21 26 31 36 41 46 51 56 61 66
10

0

10
1

10
2

10
3

10
4

10
5

Upper bound
Lower bound

Fig. 1. The number of sub-functions composed of len sub-functions, when K10 = 66
and other sub-keys were generated randomly for 100 times.

Since Gj(x) is a composition of multiple functions ga0,b0,a1,b1,Y (x) of the same
kind, one can easily deduce that 2

αi ∈ A = {255, a0, a1, a0 ⊕ 255, a1 ⊕ 255, a0 ⊕ a1, a0 ⊕ a1 ⊕ 255} (12)

2 Note that a0 ⊕ a1 = a0 ⊕ a1 = a0 ⊕ a1 ⊕ 255 and a0 ⊕ a1 = a0 ⊕ a1.

6

and

βi ∈ B = {z1(a0 u b0) u z2(a1 u b1)|z1, z2 ∈ {0, · · · , K10} and z1 + z2 ≤ K10} .

Note that A has an interesting property: ∀x1, x2 ∈ A∪{0}, x1⊕x2 ∈ A∪{0}.
This property concludes that

⊕
i αi ∈ A∪ {0}, which will be used later in the

chosen-plaintext attack discussed in Sec. 3.5.

3.2 Analysis of the key space

In this subsection, we report some invalid keys, weak keys and partially equiv-
alent keys existing in the encryption scheme under study. Here, an invalid
key denotes a key that cannot ensure the successful working of the encryption
scheme, a weak key is a key that corresponds to one or more security defects,
and partially equivalent keys have the same encryption result for certain part
of the plain-image. When estimating the key space, invalid keys and weak keys
should be excluded, and all keys that are partially equivalent to each other
should be counted as one single key.

3.2.1 Invalid keys about K4 ∼ K9

When X0 = 0, the global chaotic map will fall into the fixed point 0, which dis-
ables the encryption process due to the lack of chaotic states lying in [0.1, 0.9].

Observing Eq. (2), we can see that X0 = 0 is equivalent to

∑6
i=4 Ki · 28(i−4)

224
≡ −FP

(∑9
j=7((Kj mod 16) + bKj/16c)

96

)
(mod 1),

where FP(x) denotes the floating-point value of x. Because 0 ≤ ∑6
i=4 Ki ·

28(i−4) < 224 and 0 ≤ ∑9
j=7((Kj mod 16) + bKj/16c) ≤ 15 · 6 = 90 < 96, we

can further simplify the above equation as follow:

∑6
i=4 Ki · 28(i−4)

224
= 1−

FP
(∑9

j=7((Kj mod 16) + bKj/16c)
)

96
. (13)

From the fact that
∑6

i=4
Ki·28(i−4)

224 mod 2−24 = 0, the following equality is also
true:

FP
(∑9

j=7((Kj mod 16) + bKj/16c)
)

96
mod 2−24 = 0.

By checking all the 90 possible values of
∑9

j=7((Kj mod 16) + bKj/16c), we

7

can easily get the following result:

9∑

j=7

((Kj mod 16) + bKj/16c) = 3C, (14)

where C ∈ [0, 30]. In this case,

1− FP

(∑9
j=7((Kj mod 16) + bKj/16c)

96

)
= 1− C

32
.

Substituting the above equation into Eq. (13), we have

6∑

i=4

Ki · 28(i−4) = 219(32− C). (15)

As a result, any key that satisfies Eqs. (14) and (15) simultaneously can cause
X0 = 0. The number of such invalid sub-keys (K4, · · · , K9) can be calculated to
be 5592406 = 222.415, where 5592406 = d166/3e is the number of distinct values
of (K7, K8, K9) satisfying Eq. (14) (calculated according to Proposition 1).

Proposition 1 Given an n-dimensional vector A = (a1, · · · , an) ∈ {0, · · · , 15}n,
the numbers of distinct values of A that satisfy (a1 + · · · + an) mod 3 = 0, 1
and 2 are d16n/3e, b16n/3c and b16n/3c, respectively.

Proof : Let us prove this proposition via mathematical induction.

When n = 1, one can easily enumerate that number of distinct values of A that
satisfy a1 mod 3 = 0, 1, 2 are 6, 5, 5, respectively. Considering that 6 = d16/3e
and 5 = b16/3c, this proposition is true.

Assuming that this position is true for 1 ≤ n ≤ k, let us prove the case of n =
k+1. First, rewrite a1+· · ·+ak+1 as Ak+ak+1, where Ak = a1+· · ·+ak. Then,
(Ak + ak+1) mod 3 = 0 is equivalent to the following equality: Ak ≡ −ak+1

(mod 3). Then, the number of distinct values of A satisfy Ak+ak+1 mod 3 = 0
is the following sum:

N [(Ak + ak+1) mod 3 = 0] = d16k/3e · d16/3e+ 2b16k/3c · b16/3c
= (b16k/3c+ 1) · d16/3e+ 2b16k/3c · b16/3c
= 16 · b16k/3c+ 6.

Assume 16k = (15 + 1)k = 3C + 1, then 16k+1 = 48C + 16 and d16k+1/3e =
16C + d16/3e = 16C +6. Then 16 · b16k/3c+6 = 16C +6 = d16k+1/3e. Using
a similar process, one can easily get N [(Ak + ak+1) mod 3 = 1] = N [(Ak +
ak+1) mod 3 = 2] = b16k+1/3c. This finishes the proof of the proposition. ¥

8

3.2.2 Invalid keys about K1 ∼ K3

For a given block I(16)(k), if Y0 = 0, the local chaotic map will fall into the fixed
point 0, which will also disable the encryption process of the corresponding
block. According to Eq. (3), Y0 = 0 when the following equality holds:

B2 +

24∑

j=1

B2[Pj] · 2j−1

 mod 224 = 0,

Considering 0 ≤ B2 =
∑3

i=1 Ki · 28(i−1) < 224 and 0 ≤ ∑24
j=1 B2[Pj] · 2j−1 < 224,

the above equality can be simplified as follows:

24∑

j=1

B2[Pj] · 2j−1 = 224 −B2. (16)

Assuming that Pj distributes uniformly in {1, · · · , 24}, B2 and (224−B2) have
m and n 0-bits, respectively, the probability that Eq. (16) holds is

ps =
(

m

24

)n

·
(

24−m

24

)24−n

=
mn(24−m)24−n

2424
.

The relationship between the values of ps and (25m + n) is shown in Fig. 2,
from which one can see that the probability is not negligible for some values
of (m,n). In fact, because ps > 0 holds for any value of (m,n), we can say
any key is invalid from the strictest point of view. To overcome this problem,
the original encryption scheme must be amended to fix this problem. One of
the simplest way to do that is setting Y0 as a pre-defined value once Y0 = 0
occurs. In the following discussions of this paper and all experiments involved,
we set Y0 = 1/224 when such an event occurs.

0 48 96 144 192 240 288 336 384 432 480 528 576 624
10

−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

25m+n

p s

Fig. 2. The value of ps with respect to the value of (25m + n), where
m,n ∈ {0, · · · , 24}.

9

3.2.3 Weak keys about K10

In the encryption scheme under study, the update process of sub-keys K1 ∼ K9

and the number of sub-functions ga0,b0,a1,b1,Y (x) in each encryption function are
both controlled by the sub-key K10. In the following, we discuss two weak key
problems about K10, which correspond to the above two processes controlled
by K10, respectively.

From Fact 1, one may see that the update of subkeys K1 ∼ K9 has an inherent
weakness, i.e., the possible values for the period of the sequence of updated
sub-keys is 2i, with i = 1 ∼ 8. For some values of K10, the period can be
very small, which weaken the updating mechanism considerably. The worst
situation occurs when K10 = 128, which corresponds to period two. From the
most conservative point of view, T should take the maximal value 256, which
means that K10 should be odd.

Another problem is about the number of sub-functions ga0,b0,a1,b1,Y (x) in each
encryption function. When K10 = 1, the probability for a pixel to remain
unchanged is 1/8 (under the assumption that Yi distributes uniformly in the
chaotic interval). Though the probability seems quite large, our experiments
have shown that only a few visual information leaks in the cipher-image. When
K10 ≥ 2, experiments showed that it is almost impossible to distinguish any
visual pattern from the cipher-image. As a result, in this case there exists
only one major weak key: K10 = 1. To avoid other potential security defects,
K10 ≥ 8 is suggested.

3.2.4 Weak keys about K4 ∼ K9

Observing Table 1, one can see that the sub-encryption-function ga0,a1,b0,b1,y

(x) = x or x̄ when the following requirements are satisfied:

a0, a1 ∈ {0, 255} and a0 + b0 ≡ a1 + b1 ≡ 0 (mod 256). (17)

For the sub-image Ij, if the sub-keys corresponding to one encryption function
Ei(x) satisfy the above requirements, Ei(x) will also be x or x̄. Assuming that
the chaotic trajectory of the local chaotic map has a uniform distribution
in the interval [0.1, 0.9], the probability of ga0,a1,b0,b1,y(x) = x̄ is p = 3/8.
Then, according to Proposition 2 (note that x̄ = x ⊕ 255), ∀i = 1 ∼ 3,
the probabilities of Ei(x) = x̄ and Ei(x) = x are (1 − (1/4)K10)/2 and (1 +
(1/4)K10)/2, respectively. This means that about half of all plain-pixels in Ij
are not encrypted at all, which may reveal some visual information about the
plain-image. As an example, when K = “3C1DE8FF0151FF012840” (which
corresponds to T = 4), one of our experiments showed that 49.9% of all the
pixels in I0 were not encrypted (see Fig. 3 for the encryption result).

10

a) b)

Fig. 3. The encryption result when K = “3C1DE8FF0151FF012840” (represented
in hexadecimal format, the same hereinafter): a) the red channel of the plain-image
“Lenna”; b) the red channel of the cipher-image. Note that the other two color
channels have the similar results.

Proposition 2 Given n > 1 functions, f1(x), . . . , fn(x), assume that each
function is x⊕a with probability p and is x with probability 1−p, where a ∈ Z.
Then, the probability of the composition function F (x) = f1◦· · ·◦fn(x) = x⊕a
is P = (1− (1− 2p)n)/2.

Proof : Assuming that k = dn/2e, then n = 2k if it is an even integer and
n = 2k−1 when it is an odd integer. To ensure F (x) = f1 ◦ · · ·◦fn(x) = x⊕a,
the number of sub-functions that are equal to x⊕ a should be an odd integer.
So, we have

P =
k∑

i=1

(
n

2i− 1

)
p2i−1(1− p)n−(2i−1)

= (1− p)n ·
k∑

i=1

(
n

2i− 1

)
(p/(1− p))2i−1

= (1− p)n · (1 + p/(1− p))n − (1− p/(1− p))n

2
= (1− (1− 2p)n)/2.

This completes the proof of the proposition. ¥

By letting Eq. (17) hold for the three encryption functions E1(x), E2(x) and
E3(x), we can get a list of weak keys of this kind in Table 2.

3.2.5 Partially equivalent keys about K7 ∼ K9: Class 1

Observing Eq. (2), one can see that the value of X0 remains unchanged if the
following segments of K7, K8, K9 exchange their values: K7 mod 16, bK7/16c,
K8 mod 16, bK8/16c, K9 mod 16, bK9/16c. Now let us investigate what will
happen if we exchange K9 mod 16 and bK9/16c, i.e., exchange the upper half

11

Table 2
Some weak keys that cause leaking of visual information.

Weak keys Visual information leaked from

(K4,K5), (K7,K8) ∈ {(0, 0), (255, 1)} Channel R

(K5,K6), (K8,K9) ∈ {(0, 0), (255, 1)} Channel G

(K6,K4), (K9,K7) ∈ {(0, 0), (255, 1)} Channel B

(K4,K5,K6,K7,K8,K9) = (0, 0, 0, 0, 0, 0) the whole plain-image

and the lower half of K9. In this case, since the encryption of the red value
of each pixel is independent of K9, the red channel of the cipher-image will
remain unchanged. Similar results also exist for K7 and K8, which correspond
to unchanged blue and green channels of the plain-image, respectively. This
problem causes the sub-key-space of (K7, K8, K9) to reduce from 2563 to (16+
(256− 16)/2)3 = 1363.

3.2.6 Partially equivalent keys about K7 ∼ K9: Class 2

As remarked in Sec. 3.1, each sub-encryption-function ga0,a1,b0,b1,Y (x) can be
represented in one of the following two formats: x⊕ α, and x u β. Then, the
following two facts about ⊕ and u will lead us to construct another class of
partially equivalent keys.

Fact 2 ∀ a ∈ {0, . . . , 255}, a⊕ 128 = a u 128.

Fact 3 ∀ a, b ∈ Z, the following result is true: (a⊕ 128) u b = (a u b)⊕ 128.

Fact 3 means that a change in the MSB (most significant bit) of x, a0, a1, b0,
b1 of any sub-encryption-function ga0,a1,b0,b1,Y (x) is equivalent to XORing 128
on the output of the composition function Ei(x).

Next, let us investigate how to use Fact 3 to figure out the second class of
partially equivalent keys about K7 ∼ K9. First choose any two sub-keys from
K7 ∼ K9. Without loss of generality, let us take K7 and K8. Then, given
a secret key K that satisfies K7 < 128 and K8 ≥ 128 (or, K7 ≥ 128 and
K8 < 128), let us change it into another key K̃ by setting K̃7 = K7⊕ 128 and
K̃8 = K8 ⊕ 128. From Eq. (2), it is easy to see that X0 remains the same for
the two keys. This means that both the global and the local chaotic maps have
the same dynamics throughout the encryption procedure for the two keys, and
that the difference on ciphertexts is only determined by the MSB-changes of
K7 and K8. In the following, to analyze the influence of the MSB-changes on
the ciphertexts, we consider the three color channels separately.

12

First, let us consider the encryption process of the green channel of the plain-
image, in which K7 is not involved at all. Assuming that the chaotic trajectory
{Yi} distributes uniformly within the interval [0.1, 0.9], the probability that
K8 has an effect on each sub-encryption-function is p = 3/8. If K8 appears
an even number of times in the total K10 sub-encryption-functions, then the
value of E2(G) will remain the same for the two keys K and K̃; otherwise
E2(G) changes its MSB. Thus, using the same deduction as the given in the
proof of Proposition 2, the probability that E2(G) remains unchanged can be
calculated to be P2 = (1 + (1 − 2p)K10)/2 = (1 + 4−K10)/2. This means that
more than half of all green pixel values in the ciphertexts are identical for the
two keys K and K̃ in probability.

For the blue channel, K8 is not involved in the encryption process. So following
a similar deduction, the probability that E3(B) remains unchanged can be
calculated to be P3 = (1 + 4−K10)/2 = P2.

For the red channel, both K7 and K8 are involved, but their differences are
neutralized for the sub-encryption-function xu (K7 +K8). So, the probability
that the differences in K7 and K8 have an effect on the ciphertext is reduced
to be p = 2/8 = 1/4. Then, the probability that E1(R) remains unchanged
becomes P1 = (1 + 2−K10)/2 > P2 = P3.

Combining all the above analysis together, it is expected that more than half
of all pixel values in the cipher-images will be identical for the two keys K and
K̃. In addition, for other different pixel values, the XOR difference is always
equal to 128. By enumerating all possibilities about this security problem, one
can calculate that the sub-key-space of (K7, K8, K9) is reduced from 2563 to
4 · 1283 = 2563/2.

To verify the above theoretical results, we made some experiments for a plain-
image of size 512 × 512 and one result is shown in Figure 4, in which the
numbers of the same pixel values in red, green and blue channels are 131241
(50.06%), 130864 (49.92%) and 131383 (50.12%) respectively.

Finally, it deserves to be mentioned that there exists internal relationship
between the sub-images Ij and Ij+T/2, where j ∈ {0, · · · , T/2−1}. This result
can be easily deduced from the following fact about the updating process of the
sub-keys: Ki +K10 ·T/2 = Ki +128 ·K10/ gcd(K10, 256) ≡ Ki +128 = Ki⊕128
(mod 256).

3.2.7 Reduction of the key space

Based on the above analysis given in this subsection, we summarize the influ-
ence of invalid, weak and equivalent keys on the key space in Table 3. Accord-
ing to the table, we can roughly estimate that the size of key space is reduced

13

a) b) c)

Fig. 4. The Decryption result with partially equivalent keys of Class
2: a) the plain-image “Lenna”; b) the cipher-image corresponding to
K = “1A93DF25CF78DC44E160”; c) the decryption result of sub-figure b with a
different key K̃ = “1A93DF25CF785CC4E160”.

to 275, which is a little smaller than 280 (the one claimed in [21, Sec. 3.3]).

Table 3
Reduction of the key space due to the existence of invalid keys, weak keys and
partially equivalent keys.

Sub-keys Size of reduced sub-key-space Reason

K1 ∼ K3 / Y0 = 0

K4 ∼ K9 248 − 5592406 ≈ 248 X0 = 0

K7 ∼ K9 1363/2 = 220.2624 Equivalent key of Classes 1 and 2

K10 < (255− 128− 1) = 126 Weak keys about K10

3.3 Guessing K10 and {Ki}9
i=1 separately

The encryption process of the first block I(16)(0) depends only on the following
secret values: Y0 and K10. In other words, for the first block one can consider
(Y0, K10) as an equivalent to the original key K. Then, by guessing the value
of (Y0, K10) one can get the value of K10 with complexity O(232). Then, the
other sub-keys can be separately guessed with complexity O(272). The total
complexity of such an enhanced brute-force attack is O(232 + 272) = O(272),
which is smaller than O(280), the expected complexity of a simple brute-force
attack.

3.4 Guessing K10 with a Chosen Plain-Image

As remarked in Sec. 3.1, all 16-pixel blocks in Ij =
⋃NT−1

k=0 I(16)(T · k + j) are
encrypted with the same sub-keys. If these blocks also correspond to the same

14

values of Y0, then all the three encryption functions for R, G, B channels will
become identical. Precisely, given two identical blocks, I(16)(k0) and I(16)(k1),
one can see that the corresponding cipher-blocks will also be identical, in the
case that the following two requirements are satisfied:

(A) the distance of the two blocks is a multiple of T , i.e., (k0 − k1) | T ;

(B) Y
(k0)
0 = Y

(k1)
0 , where Y

(k0)
0 and Y

(k1)
0 denote the values of Y0 corresponding

to the two 16-pixel blocks.

Therefore, if the probability of the two cipher-blocks to be identical is suffi-
ciently large, we may use the distance between them to determine the value
of T and narrow the search space of K10.

Please note that the following two cases can both ensure that the require-
ment B is satisfied: 1) the sequences {Pj} corresponding to the two blocks
are identical; 2) the sequences {Pj} corresponding to the two blocks are dif-
ferent (which may have t ∈ {0, · · · , 23} identical elements), but the values of
Y0 are still identical. The second case is tightly related to the ratio of 0-bits
and 1-bits in B2. As an extreme example, when B2 = 0 or 224 − 1 (all the
bits of B2 are 0 or 1), B2[Pj] will be fixed to be 0 or 1, respectively. Assum-
ing that the number of 1-bits in B2 is m, one can easily calculate that the
probability of B2

[
P

(k0)
j

]
= B2

[
P

(k1)
j

]
is (m/24)2 + (1−m/24)2, and then the

probability of Y
(k0)
0 = Y

(k1)
0 will be PB = ((m/24)2 + (1−m/24)2)24. We have

made a large number of experiments to verify this theoretical estimation and
the results are shown in Fig. 5. In these experiments, all possible values of B2

were exhaustively generated to estimate the probability (as the mean value)

for min(m, 24 −m) ≤ 4, and
(

24
4

)
= 10, 626 random keys were generated for

min(m, 24−m) > 4.

Considering that Prob((k0 − k1 | T) is 1/T , the final probability that both
requirements hold is PB/T . According to Fig. 5, this probability may be large
enough for an attacker to find some identical blocks in the same set Ij, espe-
cially when min(m, 24−m) and T are both relatively small.

To show how the attack works, we chose a 512× 512 plain-image in which all
blocks are identical but all pixels in each block is different from each other,
and performed the attack for a secret key K = “2A84BCF35D70664E4740”.
As a result we found 9 pairs of identical blocks whose indices are listed in
Table 4. Because all these indices should satisfy the requirement (k0−k1) | T ,
we can get an upper bound of T by solving their greatest common divisor of
the differences of the 9 indices. Then one can immediately get

gcd(3161− 1941, 7083− 2015, 15255− 3023, 9163− 4159, 12113− 5061,

16355− 5507, 12454− 9166, 12259− 9655, 13102− 11090) = 4.

15

242220181614121086420
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Theoretical value
Experimemtal value

number of 1-bits in B2

P
ro

b
a
b
il
it
y

o
f

Y
(k

0
)

0
=

Y
(k

1
)

0

Fig. 5. Probability of Y
(k0)
0 = Y

(k1)
0 with respect to the number of 1-bits in B2.

This means T ∈ {2, 4}, thus immediately leading to gcd(K10, 256) ∈ {128, 64}
and K10 ∈ {64, 128, 192} according to Fact 1. As can be seen, in this example
the size of the sub-key space corresponding to K10 is reduced from 256 to 3,
which is a significant reduction.

Table 4
The indices of 9 pairs of identical blocks in the cipher-image corresponding to the
plain-image of fixed value zero.

k0 1941 2015 3023 4159 5061 5507 9166 9655 11090

k1 3161 7083 15255 9163 12113 16355 12454 12259 13102

3.5 Breaking {Ki mod 128}10
i=4 with Chosen-Plaintext Attack

First, we prove some useful properties related to the composite functions Ei(x).
These properties are the basis of the attack introduced in this subsection.

Theorem 1 Let F (x) = G2m+1 ◦ · · · ◦ G1(x) be a composite function defined
over {0, . . . , 2n − 1}, where m,n ∈ Z+, G2i(x) = x ⊕ αi for i = 1 ∼ m,
G2i+1(x) = (x + βi) mod 2n for i = 0 ∼ m and αi, βi ∈ {0, . . . , 2n − 1}. If
F (x) = x⊕ γ for some γ ∈ {0, . . . , 2n − 1}, then γ ≡ ⊕m

i=1 αi (mod 2n−1).

Proof : First, let us introduce some notation. Let x =
∑n−1

j=0 xj · 2j, αi =∑n−1
j=0 αi,j · 2j, βi =

∑n−1
j=0 βi,j · 2j, and F (x) =

∑n−1
j=0 Fj(x) · 2j.

The proof is based on the following fact. If F verifies that F (x) = x ⊕ γ for
some γ =

∑n−1
j=0 γj ·2j then, for any j = 0 ∼ n−1, the result of the computation

of Fj(x) depends only on the value of the j-th bit of x, that is, on xj.

16

We are going to check the computation of F (x) starting from the least sig-
nificant bit. To get the value of F0(x), we only need to calculate F̃0(x) =
(· · · ((x0 + β0,0) ⊕ α1,0 + β1,0) ⊕ · · · ⊕ αm,0 + βm,0), and then get the least

significant bit of F̃0(x). 3 Note that the carry bit generated in each + opera-
tion influences only the more more significant bits F1(x) ∼ Fn−1(x), and for
the least significant bit of F̃0(x) the operation + is equivalent to ⊕. There-
fore, we immediately gets F0(x) = x0 ⊕ β0,0 ⊕ α1,0 ⊕ β1,0 · · · ⊕ αm,0 ⊕ βm,0 =
x0 ⊕ (α1,0 ⊕ · · · ⊕ αm,0)⊕ (β0,0 ⊕ · · · ⊕ βm,0).

Then, let us study how the carry bits generated by + operations in the calcu-
lation of F̃0(x) affect the value of F1(x), as an effort to determine the value of
β0,0 ⊕ · · · ⊕ βm,0. Note the following two facts:

• If βi,0 = 1 for some i, then only one of the two possible values of x0 ∈ {0, 1}
can generate a carry bit after the operation +βi,0.

• When a carry bit occurs after the operation +βi,0, then βi,0 = 1.

Denoting the cardinality of the set {i | βi,0 = 1} by N0, the above facts imply
that N0 =

∑
x0∈{0,1} N0(x0) = N0(0)+N0(1), where N0(x0) means the number

of carry bits generated in the calculation process of F̃0(x) when x0 is fixed to
0 or 1.

As we mentioned above, considering that Fi(x) = xi ⊕ γi, the value of F1(x)
is independent of the value of x0. This means that N0(0) = N0(1), and as
a result N0 is an even number, which immediately leads to the conclusion
β0,0 ⊕ · · · ⊕ βm,0 = 0. Then, F0(x) = x0 ⊕ (α1,0 ⊕ · · · ⊕ αm,0).

Next, let us consider the case of F1(x). In this case, F̃1(x) = (· · · ((x1 + β0,1 +
CB0(x0))⊕α1,1+β1,1+CB1(x0))⊕· · ·⊕αm,1+βm,1+CBm(x0)), where CBi(x0)

denotes the bit carrying from F̃0(x) during the i-th + operation (which is equal
to 0 when a carry bit does not exist). Then, due to the same reason as we
mentioned in the case of F0(x), we have F1(x) = x1 ⊕ (α1,1 ⊕ · · · ⊕ αm,1) ⊕
(β0,1⊕CB0(x0) · · · ⊕ βm,1⊕CBm(x0)). Observing the expression of F̃1(x), we
can easily note the following facts:

• when βi,1 = CBi(x0) = 0: no carry bit occurs for any value of x1;
• when βi,1 = CBi(x0) = 1: one carry bit always occurs for any value of x1;
• when βi,1 = 0, CBi(x0) = 1, or when βi,1 = 1, CBi(x0) = 0: one carry bit

occurs for only one value of x1.

As a summary, only one carry bit may be generated for a pair of βi,1 and
CBi(x0), which means that we can consider βi,1 + CBi(x0) as a single value

3 Here, + mod 2n is replaced by + in the calculation process, because mod2n does
not influences any bit of F (x).

17

β∗i,1(x0).

Denoting the cardinality of the set {i | β∗i,1(x0) = 1} by N1(x0), the above
facts imply that N1(x0) =

∑
x1∈{0,1} N1(x0, x1) = N1(x0, 0) + N1(x0, 1), where

N1(x0, x1) means the number of carry bits generated in the calculation process
of F̃1(x) when x0 and x1 are fixed to 0 or 1. Then, because the value of
F2(x) is independent of x1, we can get N1(x0, 0) = N1(x0, 1) and N1(x0) is
even. Which means that β0,1 ⊕ CB0(x0) · · · ⊕ βm,1 ⊕ CBm(x0) = 0 and then
F1(x) = x1 ⊕ (α1,1 ⊕ · · · ⊕ αm,1).

The above deduction can be simply applied to other bits F2(x) ∼ Fn−1(x). As
a result, we can get Fi(x) = xi ⊕ (α1,i ⊕ · · · ⊕ αm,i), ∀i = 0 ∼ n− 1.

Finally, combining all the cases together, we have the result that F (x) ≡
x ⊕ (α1 ⊕ · · · ⊕ αm) (mod 2n−1). This means that γ ≡ ⊕m

i=1 αi (mod 2n−1)
and this theorem is thus proved. ¥

Corollary 1 For the image encryption scheme under study, if there exists
γ ∈ {0, . . . , 255} such that Ei(x) = x⊕ γ, then γ ∈ {⊕i αi, (

⊕
i αi)⊕ 128}.

Proof :

Let us consider the four classes of Ei(x) as shown in Sec. 3.1.

(1) Ei(x) = ((· · · ((xuβ1)⊕α1) · · ·)⊕αd(len−1)/2e)uβdlen/2e: From Theorem 1,

one has γ ∈
{⊕d(len−1)/2e

i=1 αi,
(⊕d(len−1)/2e

i=1 αi

)
⊕ 128

}
.

(2) Ei(x) = ((· · · ((x u β1) ⊕ α1) · · ·) u βd(len−1)/2e) ⊕ αdlen/2e: From The-

orem 1, one has αdlen/2e ⊕ γ ∈
{⊕d(len−1)/2e

i=1 αi,
(⊕d(len−1)/2e

i=1 αi

)
⊕ 128

}
,

which means γ ∈
{⊕dlen/2e

i=1 αi,
(⊕dlen/2e

i=1 αi

)
⊕ 128

}
.

(3) Ei(x) = ((· · · ((x⊕α1)uβ1) · · ·)⊕αd(len−1)/2e)uβdlen/2e: Assume that x′ =
x⊕α1, we have Ei(x) = x⊕γ = x′⊕ (α1⊕γ). Then, applying Theorem 1

on x′, we can easily get α1⊕γ ∈
{⊕d(len−1)/2e

i=2 αi,
(⊕d(len−1)/2e

i=2 αi

)
⊕ 128

}
,

thus γ ∈
{⊕d(len−1)/2e

i=1 αi,
(⊕d(len−1)/2e

i=1 αi

)
⊕ 128

}
.

(4) Ei(x) = ((· · · ((x⊕α1) u β1) · · ·) u βd(len−1)/2e)⊕αdlen/2e: Using a similar

process to the above class, one can get γ ∈
{⊕dlen/2e

i=1 αi,
(⊕dlen/2e

i=1 αi

)
⊕ 128

}
.

The above four conditions finish the proof of this corollary. ¥

From the above corollary and Eq. (12), we can get the following result:

γ mod 128 =
⊕

i
αi mod 128 ∈ A∗ = {x mod 128|x ∈ A ∪ {0}}. (18)

Assuming that a∗0 = a0 mod 128 and a∗1 = a1 mod 128, we have

A∗ = {0, 127, a∗0, a
∗
1, a

∗
0 ⊕ 127, a∗1 ⊕ 127, a∗0 ⊕ a∗1, a

∗
0 ⊕ a∗1 ⊕ 127}. (19)

18

Observing the above equation, we can easily notice the following facts:

(1) when a∗0 = a∗1 ∈ {0, 127}, #(A∗) = 2;
(2) when a∗0 ∈ {0, 127} and a∗1 6∈ {0, 127} (or a∗1 ∈ {0, 127} and a∗0 6∈ {0, 127}),

#(A∗) = 4;
(3) when a∗0, a

∗
1 6∈ {0, 127} and a∗0 ⊕ a∗1 ∈ {0, 127}, #(A∗) = 4;

(4) when a∗0, a
∗
1 6∈ {0, 127} and a∗0 ⊕ a∗1 6∈ {0, 127}, #(A∗) = 8.

Apparently, if we can get the set A∗, it will be possible to get the values of a∗0
and a∗1. The complexity of such a process is summarized as follows:

(1) when #(A∗) = 2, there are only 2 possible values of (a∗0, a
∗
1): (0,127) or

(127,0);
(2) when #(A∗) = 4, assuming that A∗ = {0, 127, a, a ⊕ 127}, there are 8

possible values of (a∗0, a
∗
1): (0, a), (0, a ⊕ 127), (127, a), (127, a ⊕ 127),

(a, a), (a, a⊕ 127), (a⊕ 127, a), (a⊕ 127, a⊕ 127);
(3) when #(A∗) = 8, there are 24 possible values of (a∗0, a

∗
1): a∗0 ∈ A∗/{0, 127}

and a∗1 ∈ A∗/{0, 127, a∗0, a
∗
0 ⊕ 127}.

One can see that in any case the complexity is much smaller than 27×27 = 214,
the complexity of exhaustively searching all the bits of a∗0 and a∗1. This idea
forms the kernel of the chosen-plaintext attack proposed in this subsection.

Next, let us see how to distinguish XOR-equivalent encryption functions. Ac-
cording to Proposition 3, one can achieve such a goal by checking the follow-
ing 255 equalities: F (x1) ⊕ F (x1 ⊕ i) = i, where x1 is an arbitrary integer in
{0, . . . , 255} and i = 1 ∼ 255.

Proposition 3 Let F (x) be a function defined over {0, . . . , 2n − 1}, where
n ∈ Z+. Then, F (x) = x ⊕ γ for any x ∈ {0, . . . , 2n − 1}, if and only if
the following requirement hold: there exists x1 ∈ {0, . . . , 2n − 1} such that
F (x1)⊕ F (x1 ⊕ i) = i,∀i ∈ {1, . . . , 2n − 1}.

Proof : The “only if” part is obvious. Now let us prove the “if” part. Note
that F (x1) ⊕ F (x1 ⊕ i) = i also holds when i = 0. So, when i = x ⊕ x1, we
have F (x1 ⊕ x ⊕ x1) = F (x) = F (x1) ⊕ x ⊕ x1 = x ⊕ (x1 ⊕ F (x1)). When
i = x1, we have F (x1) ⊕ F (x1 ⊕ x1) = x1 and then get x1 ⊕ F (x1) = F (0).
Therefore, F (x) = x⊕ F (0), where F (0) = γ is a fixed value. ¥

For the encryption functions Ei(x) composed of ⊕ and u, the above result can
be further simplified. From Proposition 4, it is enough to check the following
127 equalities: F (x1) ⊕ F (x1 ⊕ d) = d, where x1 is an arbitrary integer in
{0, . . . , 255} and d ∈ {1, · · · , 127}.

Proposition 4 Consider any encryption function Ei(x) (i = 1 ∼ 3) defined
in Eqs. (4)∼(6). If there exists x1 ∈ {0, . . . , 255} such that Ei(x1) ⊕ Ei(x1 ⊕

19

d) = d, ∀d ∈ {1, . . . , 127}, then Ei(x) = x⊕ Ei(0).

Proof : From Fact 3, one has Ei(x1)⊕Ei(x1⊕128) = 128 and Ei(x1)⊕Ei(x1⊕
j ⊕ 128) = j ⊕ 128 for j = 1 ∼ 127. This means that Ei(x1)⊕ Ei(x1 ⊕ j) = j
holds ∀j ∈ {1, . . . , 255}. Then, from Proposition 3, Ei(x) = x⊕ Ei(0). ¥

Next, let us investigate the probability that a given encryption Ei(x) is equiva-
lent to x⊕γ. Again, because the theoretical analysis is quite difficult, we made
a number of random experiments with a 512 × 512 plain-image for different
values of K10, where K1 ∼ K9 were generated at random. Basically speaking,
this probability becomes smaller when K10 increases, but it fluctuates in a
wide range for different values of K1 · · ·K9. Two typical examples are shown
in Fig. 6, in which the XOR-equivalent encryption functions involving the
second kind of sub-encryption-functions (i.e., functions of the form x u β) or
those not involving these sub-encryption-functions were counted separately.

1 32 64 96 128 160 192 224 255
10

0

10
1

10
2

10
4

10
6

Not involving x+̇β

Involving x+̇β

a)

1 32 64 96 128 160 192 224 255
10

0

10
1

10
2

10
4

10
6

Not involving x+̇β

Involving x+̇β

b)

Fig. 6. The number of pixels satisfying E1(x) = x ⊕ γ under different value of
K10: a) K1 ∼ K9 = “8DB87A1613D75ADF2D”; b) K1 ∼ K9 = “2A84BCF35
D70664347”.

Based on the above discussions, a chosen-plaintext attack can be developed
by choosing 128 plain-images {Il}127

l=0 of size M × N as follows: Il = I0 ⊕ l, 4

where I0 can be freely chosen. To facilitate the following description about the
attack, let us denote the encryption function Ei(x) corresponding to the j-th
pixel of the k-th block by Ei,k,j(x), and the parameters a0, a1 corresponding
to the k-th block by a0,i,k, a1,i,k, respectively. Similarly, for each updated sub-
key Kj, the value corresponding to the k-th block is denoted by Kj,k. Then,
according to the discussion in Sec. 3.2.6, we have the following fact:

4 In this paper we use Il = I0 ⊕ l to denote the following facts: ∀i = 0 ∼ MN − 1,
Rl(i) = R0(i)⊕ l, Gl(i) = G0(i)⊕ l and Bl(i) = B0(i)⊕ l.

20

Fact 4 Given two XOR-equivalent encryption functions Ei,k1,j1(x) = x⊕γk1,j1

and Ei,k2,j2(x) = x⊕ γk2,j2, if k1 ≡ k2 (mod T/2), then γk1 ≡ γk2 (mod 128).

Then, the proposed chosen-plaintext attack works in the following steps.

Step 1 – Finding XOR-equivalent encryption functions

For each color channel, scan the 128 plain-images to find encryption functions
Ei,k,j that are equivalent to x⊕ γk, where γk = Ei,k,j(0) (according to Propo-
sition 4). Record all the XOR-equivalent encryption functions corresponding
to each color channel in an Si × 2 matrix Ai, where Si denotes the number
of blocks containing such encryption functions. The first and the second rows
of Ai contain the block indices and the corresponding values of γk, respec-
tively. Here, note that all XOR-equivalent encryptions in the same block are
identical, since they share the same parameters a0,i,k and a1,i,k.

The output of this step is composed of three matrices {Ai}1≤i≤3, which require∑3
i=1 2Si memory units.

Step 2 – Estimating A∗i,k (for each guessed value of K10)

Exhaustively search the value of K10 and get the period T = 256/ gcd(K10, 256).

Then, for each matrix Ai, generate the following T/2 sets:
{
Ãi,k

}T/2−1

k=0
, where

Ãi,k = {Ai(s, 2) mod 128|s ≡ k (mod T/2)}. Next, expand each Ãi,k to con-

struct Ã∗i,k =
{
x1 ⊕ x2 ⊕ x3

∣∣∣ x1, x2, x3 ∈ Ãi,k ∪ {0, 127}
}
, which is an approx-

imation of the following set

A∗i,k = {0, 127, a∗0,i,k, a
∗
1,i,k, a

∗
0,i,k⊕127, a∗1,i,k⊕127, a∗0,i,k⊕a∗1,i,k, a

∗
0,i,k⊕a∗1,i,k⊕127},

where a∗0,i,k = (a0,i,0 + k ·K10) mod 128 and a∗1,i,k = (a1,i,0 + k ·K10) mod 128.
Note that a0,i,0 and a1,i,0 are the two sub-keys corresponding to the involved
color channel.

Then, if there exists k ∈ {0, · · · , T/2 − 1} such that #
(
Ã∗i,k

)
6∈ {2, 4, 8}, we

can immediately conclude that the current value of K10 is wrong and then
remove it from the list of candidate values of K10.

The output of this step includes a list of N candidate values of K10 and at
most 3T/2 sets {Ãi,k} 1≤i≤3

0≤k≤T/2−1
for each candidate value of K10. The total

number of memory units required is not greater than 6 × 3NT/2 = 9NT ≤
12 × 256 × 128 = 294912 ≈ 218.2, which is practical for a PC to store the
intermediate data. Here, note that 0 and 127 are always in A∗, so they do not
need to be saved.

Step 3 – Determining {Ki mod 128}10
i=4

21

For each color channel, choosing the set Ã∗i,k0
of the greatest size 5 , we can

exhaustively search all possible values of (a∗0,i,k0
, a∗1,i,k0

), i.e., search all possible
values of a∗0,i,0 = (a∗0,i,k0

− k0 ·K10) mod 128 and a∗1,i,0 = (a∗1,i,k0
− k0 ·K10) mod

128. Note that a∗0,1,0 = K4 mod 128 and a∗1,1,0 = K7 mod 128 (red channel),
a∗0,2,0 = K5 mod 128 and a∗1,2,0 = K8 mod 128 (green channel), a∗0,3,0 = K6 mod
128 and a∗1,3,0 = K9 mod 128 (blue channel).

All the guessed values of (a∗0,i,0, a
∗
1,i,0) are verified by employing the relationship

between A∗i,k0
and other sets {A∗i,k}k 6=k0 . If all possible values of (a∗0,i,0, a

∗
1,i,0) are

eliminated, the current value of K10 can also be eliminated. Note that the other
three values of a valid candidate (a∗0,i,0, a

∗
1,i,0⊕128, K+10 mod 128) = (u, v, w)

will also pass the verification process due to Fact 5: (u⊕127, v⊕127, 128−w),
(v, u, w), and (v ⊕ 127, u⊕ 127, 128− w).

Fact 5 Given x, a, c ∈ {0, · · · , 127}, x + ac ≡ (x ⊕ 127 + (128 − a)c) ⊕ 127
(mod 128).

The output of this step is a list of candidate values of

K∗ = (K4 mod 128, · · · , K9 mod 128, K10 mod 128).

In the worst case, the number of all possible values is N × 243 ≤ 256 ×
243 = 3538944 ≈ 221.6, which is still much smaller than the number of all
possible values of the sub-key K∗: 26×7+8 = 250. In the best case, the number
of candidate values will be 2× 23 = 16 (according to Fact 5).

To validate the feasibility of the above attack, we carried out a real attack
with a randomly-generated secret key K = “2A84BCF25E6A664E4C41”.
As a result, we got the following output from Step 2:

K10 ∈ {1, 3, · · · , 255},
A∗0,6 = {0, 127, 108, 20, 7, 107, 120, 108},
A∗0,28 = {0, 127, 115, 125, 14, 0, 12, 113},
A∗0,79 = {0, 127, 116, 117, 1, 10, 11, 126},
A∗1,19 = {0, 127, 16, 33, 49, 111, 94, 78},
A∗1,28 = {0, 127, 106, 122, 21, 5, 111, 16},
A∗2,7 = {0, 127, 19, 78, 108, 49, 34, 93},
A∗2,18 = {0, 127, 34, 93, 3, 33, 124, 94}.

The final output of the attack (i.e., the output of Step 3) is shown in Table 5.

5 The greatest size may be 8, 4 or 2. When it is 4 or 2, Ã∗i,k0
may not be a good

estimation of A∗i,k0
and as a result cannot be used to support this attack. This case

often occurs when K10 is relatively large, thus leading to a very small occurrence

22

Table 5
The final output of a real attack, where the underlined data form the real value of
K∗ = {Ki mod 128}10

i=4.

K10 mod 128
{Ki mod 128}9

i=4

i = 4 i = 7 i = 5 i = 8 i = 6 i = 9

63

25 13

33 49
51 21

21 51

49 33
51 21

21 51

13 25

33 49
51 21

21 51

49 33
51 21

21 51

65

102 114

94 78
76 106

106 76

78 94
76 106

106 76

114 102

94 78
76 106

106 76

78 94
76 106

106 76

Finally, note that one may also be able to distinguish some XOR-equivalent
encryption functions even with less than 128 chosen plain-images. To inves-
tigate such a possibility, we made some experiments by choosing the follow-
ing (n + 1) < 128 plain-images instead: {Il}n

l=0, where Il = I0 ⊕ l for any
l > 0. Assuming that N(n) denotes the number of XOR-equivalent encryp-
tion functions detected with the above n + 1 chosen plain-images, the ratio
r(n) = N(127)/N(n) gave an estimation of the probability that a detected
XOR-equivalent encryption function is real. For three randomly-generated key,
the values of r(n) with respect to different values of n are shown in Fig. 7,
from which one can see that the value of r(n) always increases significantly
when n increases from 2i−1 to n = 2i (i = 1 ∼ 6). We also made experiments
for many other random keys, and found that this fact always holds for most
of them. According to this experimental result, we can choose the following
13 plain-images as an effort of minimizing the number of chosen plaintexts:

probability of XOR-equivalent encryption functions (see Fig. 6).

23

I0, I1 = I0 ⊕ 1, I2 = I0 ⊕ 2, I3 = I0 ⊕ 3, I4 = I0 ⊕ 4, I5 = I0 ⊕ 7, I6 = I0 ⊕ 8,
I7 = I0 ⊕ 15, I8 = I0 ⊕ 16, I9 = I0 ⊕ 31, I10 = I0 ⊕ 32, I11 = I0 ⊕ 63 and
I12 = I0⊕64. Then, for 1,000 randomly-generated secret keys, our experiments
showed that the average value of r∗ = N(127)/N∗ is about 0.825, where N∗

denotes the number of detected XOR-equivalent encryption functions with the
13 chosen plain-images. Note that the value of r∗ is not accurate when N∗ is
too small. If only those keys that correspond to N∗ ≥ 100 are considered, the
average value of r∗ increases to about 0.9234. If only those corresponding to
N(n) ≥ 1000 are counted, the average value of r∗ becomes about 0.9826. In
practice, one may have to use more than 13 chosen plain-images to mount the
proposed attack, but it is expected that O(20) chosen plain-images are enough
for the attack to work well in most cases.

1 2 4 8 16 32 64 127
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

Fig. 7. The values of r(n) with respect to different values of n = 1 ∼ 127, where the
three lines correspond to the results of three randomly-generated keys.

3.6 Known-Plaintext Attack Based on Masking Image

According to the results shown in Fig. 6, we know that many encryption
functions are equivalent to XOR operations. Therefore, if we consider all
the encryption functions as XOR-equivalent ones, then a masking image can
be obtained by simply XORing a known plain-image and the corresponding
cipher-image pixel by pixel. By using this masking image as an equivalent
of the secret key to decrypt other cipher-images, all the pixels encrypted by
real XOR-equivalent encryption functions will be correctly recovered. If the
number of such correctly-recovered pixels is sufficiently large, some visual in-
formation about the plain-images may be obtained. It is expected that this
known-plaintext attack can work well when K10 is relatively small. Figure 8
shows two examples of this attack when K10 = 6 and 30, from which one can
see that some important visual information about the plain-image is obtained.

24

a) b)

Fig. 8. The result of breaking a plain-image “Peppers” with the mask-
ing image obtained when “Lenna” (Fig. 4a) is the known plain-image: a)
K = “8DB87A1613D75ADF2D06”; b) K = “8DB87A1613D75ADF2D1E”.

4 Conclusion

In this paper, the security of a recently-proposed image encryption scheme
has been studied in detail. It is found that there exist a number of invalid
keys, weak keys and partially equivalent keys, which reduce the size of the
key space. Some attacks to a number of sub-keys have also been developed: 1)
a sub-key can be guessed with a chosen plain-image; 2) part of the key may
be recovered with a chosen-plaintext attack when 127 chosen plain-images.
The scheme under study can also be broken with only one known plain-image
when K10 is small enough. In addition, some other insecure problems about
the scheme are discussed together. The cryptanalysis presented in this paper
also provide a thought for attacking schemes composing of multiple round
encryption functions.

Acknowledgements

Shujun Li was supported by the Alexander von Humboldt Foundation, Ger-
many.

References

[1] S. Li, G. Chen, A. Cheung, B. Bhargava, K.-T. Lo, On the design of perceptual
MPEG-video encryption algorithms, IEEE Trans. Circuits and Systems for
Video Technology 17 (2) (2007) 214–223.

[2] C. Alexopoulos, N. G. Bourbakis, N. Ioannou, Image encryption method using
a class of fractals, J. Electronic Imaging 4 (3) (1995) 251–259.

25

[3] T.-J. Chuang, J.-C. Lin, New approach to image encryption, J. Electronic
Imaging 7 (2) (1998) 350–356.

[4] J.-I. Guo, J.-C. Yen, H.-F. Pai, New voice over Internet protocol technique with
hierarchical data security protection, IEE Proc. – Vis. Image Signal Process.
149 (4) (2002) 237–243.

[5] H.-C. Chen, J.-C. Yen, A new cryptography system and its VLSI realization,
J. Systems Architecture 49 (2003) 355–367.

[6] K.-L. Chung, L.-C. Chang, Large encryption binary images with higher security,
Pattern Recognition Letters 19 (5–6) (1998) 461–468.

[7] Y. Mao, G. Chen, S. Lian, A novel fast image encryption scheme based on 3D
chaotic Baker maps, Int. J. Bifurcation and Chaos 14 (10) (2004) 3613–3624.

[8] G. Chen, Y. Mao, C. K. Chui, A symmetric image encryption scheme based on
3D chaotic cat maps, Chaos, Solitons & Fractals 21 (3) (2004) 749–761.

[9] S. Li, C. Li, G. Chen, N. G. Bourbakis, K.-T. Lo, A general cryptanalysis of
permutation-only multimedia encryption algorithms, IACR’s Cryptology ePrint
Archive: Report 2004/374, available at http://eprint.iacr.org/2004/374
(2007).

[10] S. Li, C. Li, G. Chen, K.-T. Lo, Cryptanalysis of RCES/RSES image encryption
scheme, IACR’s Cryptology ePrint Archive: Report 2004/376, available online
at http://eprint.iacr.org/2004/376 (2007).

[11] C. Li, S. Li, D. Zhang, G. Chen, Cryptanalysis of a chaotic neural network
based multimedia encryption scheme, in: Advances in Multimedia Information
Processing - PCM 2004: 5th Pacific Rim Conference on Multimedia, Tokyo,
Japan, November 30 - December 3, 2004. Proceedings, Part III, Vol. 3333 of
Lecture Notes in Computer Science, Springer-Verlag, 2004, pp. 418–425.

[12] S. Li, C. Li, K.-T. Lo, G. Chen, Cryptanalysis of an image encryption scheme,
J. Electronic Imaging 15 (4) (2006) art. no. 043012.

[13] C. Li, S. Li, D. Zhang, G. Chen, Cryptanalysis of a data security protection
scheme for VoIP, IEE Proc. – Vis. Image Signal Process. 153 (1) (2006) 1–10.

[14] S. Li, G. Chen, X. Zheng, Chaos-based encryption for digital images and videos,
in: B. Furht, D. Kirovski (Eds.), Multimedia Security Handbook, CRC Press,
2004, Ch. 4, pp. 133–167, preprint is available at http://www.hooklee.com/
pub.html.

[15] B. Furht, D. Socek, A. M. Eskicioglu, Fundamentals of multimedia encryption
techniques, in: B. Furht, D. Kirovski (Eds.), Multimedia Security Handbook,
CRC Press, 2004, Ch. 3, pp. 93–132.

[16] A. Uhl, A. Pommer, Image and Video Encryption: From Digital Rights
Management to Secured Personal Communication, Springer Science + Business
Media Inc., Boston, 2005.

26

[17] B. Furht, E. Muharemagic, D. Socek (Eds.), Multimedia Encryption and
Watermarking, Springer, New York, 2005.

[18] W. Zeng, H. Yu, C.-Y. Lin (Eds.), Multimedia Security Technologies for Digital
Rights Management, Academic Press, Inc., Orlando, Florida, 2006.

[19] N. Pareek, V. Patidar, K. Sud, Discrete chaotic cryptography using external
key, Physics Letters A 309 (1–2) (2003) 75–82.

[20] N. Pareek, V. Patidar, K. Sud, Cryptography using multiple one-dimensional
chaotic maps, Communications in Nonlinear Science and Numerical Simulation
10 (7) (2005) 715–723.

[21] N. Pareek, V. Patidar, K. Sud, Image encryption using chaotic logistic map,
Image and Vision Computing 24 (9) (2006) 926–934.

[22] G. Álvarez, F. Montoya, M. Romera, G. Pastor, Cryptanalysis of a discrete
chaotic cryptosystem using external key, Physics Letters A 319 (3–4) (2003)
334–339.

[23] C. Li, S. Li, G. Álvarez, G. Chen, K.-T. Lo, Cryptanalysis of a chaotic block
cipher with external key and its improved version, Chaos, Solitons & Fractals,
in press, doi:10.1016/j.chaos.2006.08.025 (2006).

27

