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Abstract. In this paper we obtain conditions on the divisors of the group
order of the Jacobian of a hyperelliptic genus 2 curve, generated by the complex
multiplication method described by Weng (2003) and Gaudry et al (2005).
Examples, where these conditions imply that the Jacobian has a large cyclic
subgroup, are given.

1. Introduction

In elliptic curve cryptography it is essential to know the number of points on the
curve. Cryptographically we are interested in curves with large cyclic subgroups.
Such elliptic curves can be constructed. The construction is based on the theory of
complex multiplication, studied in detail by Atkin and Morain (1993). It is referred
to as the CM method.

Koblitz (1989) suggested the use of hyperelliptic curves to provide larger group
orders. Therefore constructions of hyperelliptic curves are interesting. The CM
method for elliptic curves has been generalized to hyperelliptic curves of genus 2 by
Spallek (1994), and efficient algorithms have been proposed by Weng (2003) and
Gaudry et al (2005).

Both algorithms take as input a primitive, quartic CM field K, and give as
output a hyperelliptic genus 2 curve C over a prime field Fp. A prime number p is
chosen such that p = ωω for a number ω ∈ OK , where OK is the ring of integers
of K. We have K = Q(η) and K ∩ R = Q(

√
D), where η = i

√
a+ bξ and

ξ =

{
1+
√

D
2 , if D ≡ 1 (mod 4),√
D, if D ≡ 2, 3 (mod 4).

Write ω = c1 + c2ξ + (c3 + c4ξ)η, ci ∈ Z. Let C be a hyperelliptic curve of genus 2
over Fp with End(C) ' OK . The Jacobian JC(Fp) is isomorphic to

(1) Z/n1Z× Z/n2Z× Z/n3Z× Z/n4Z,

where ni | ni+1 and n2 | p − 1. In this paper, conditions on the prime divisors
of the number n2 are obtained, and examples, where these conditions imply that
the Jacobian JC(Fp) has a large cyclic subgroup, are given. The conditions on the
prime divisors are given by the following theorem.
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Theorem 1. Let C/Fp be a hyperelliptic curve of genus 2 with End(C) ' OK ,
where K is a primitive, quartic CM field. Assume that the structure of JC(Fp) is
given by (1). Let ` | n2 be an odd prime number. Then ` ≤ Q, where

Q = max{a,D, a2 − b2D},

if D ≡ 2, 3 (mod 4), and

Q = max{a,D, 4a(a+ b)− b2(D − 1), aD + 2b(D − 1)},

if D ≡ 1 (mod 4). If ` > D, then c1 ≡ 1 (mod `) and c2 ≡ 0 (mod `).

Remark 2. Since the number n2 | p− 1 and ` | n2, it follows that ` 6= p.

2. Hyperelliptic curves

A hyperelliptic curve is a smooth, projective curve C ⊆ Pn of genus g ≥ 2 with
a separable, degree 2 morphism φ : C → P1. Let C be a hyperelliptic curve of
genus g = 2 defined over a prime field Fp, where Fp is of characteristic p > 2. By
the Riemann-Roch theorem there exist an embedding ψ : C → P2, mapping C to a
curve given by an equation of the form

y2 = f(x),

where f ∈ Fp[x] is of degree deg(f) = 6 and have no multiple roots (see Cassels
and Flynn, 1996, chapter 1).

The set of principal divisors P(C) on C constitutes a subgroup of the degree 0
divisors Div0(C). The Jacobian JC of C is defined as the quotient

JC = Div0(C)/P(C).

Let ` 6= p be a prime number. The `n-torsion subgroup JC [`n] < JC of elements of
order dividing `n is then by (Lang, 1959, theorem 6, p. 109)

JC [`n] ' Z/`nZ× Z/`nZ× Z/`nZ× Z/`nZ.

An endomorphism ϕ : JC → JC induces a Z`-linear map

ϕ` : T`(JC) → T`(JC)

on the `-adic Tate-module T`(JC) of JC (Lang, 1959, chapter VII, §1). Hence ϕ is
represented on JC [`] by a matrix M ∈ Mat4×4(Z/`Z). Let P (X) ∈ Z[X] be the cha-
racteristic polynomial of ϕ (see Lang, 1959, pp. 109–110) and PM (X) ∈ (Z/`Z)[X]
the characteristic polynomial of M . Then (Lang, 1959, theorem 3, p. 186)

(2) P (X) ≡ PM (X) (mod `).

Since C is defined over Fp, the mapping (x, y) 7→ (xp, yp) is an isogeny on C.
This isogeny induces an endomorphism ϕ on the Jacobian JC , the Frobenius endo-
morphism. The characteristic polynomial P (X) of ϕ is of degree 4 (Tate, 1966,
theorem 2, p. 140). Theorem 1 will be established by using the identity (2) on the
Frobenius.
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3. CM fields

An elliptic curve E with Z 6= End(E) is said to have CM. Let K be an imaginary,
quadratic number field with ring of integers OK . K is a CM field. If End(E) ' OK ,
then E is said to have CM by OK . More generally a CM field is defined as follows.

Definition 3 (CM field). A number fieldK is a CM field, ifK is a totally imaginary,
quadratic extension of a totally real number field K0.

In this paper only CM fields of degree [K : Q] = 4 are considered. Such a field is
called a quartic CM field. Let K0 = K ∩ R. Then K0 is a real, quadratic number
field, K0 = Q(

√
D). Since K is a totally imaginary, quadratic extension of K0, a

number η ∈ K exists, such that K = K0(η), η2 ∈ K0. The number η is totally
imaginary, and we may assume η = iη0, η0 ∈ R, and that −η2 is totally positive.

Let C be a hyperelliptic curve of genus g = 2. Then C is said to have CM by OK ,
if End(C) ' OK . The structure of K determines whether C is irreducible. More
precisely, the following theorem holds.

Theorem 4. Let C be a hyperelliptic curve of genus 2 with CM by OK , where K is
a quartic CM field. Then C is reducible if, and only if, K/Q is Galois with Galois
group Gal(K/Q) ' Z/2Z× Z/2Z.

Proof. (Shimura, 1998, proposition 26, p. 61). �

Theorem 4 motivates the following definition.

Definition 5 (Primitive, quartic CM field). A quartic CM field K is called primi-
tive if either K/Q is not Galois, or K/Q is Galois with cyclic Galois group.

4. The CM method for genus 2

The CM method for genus 2 is described in detail by Weng (2003) and Gaudry
et al (2005). In short, the CM method is based on the construction of the class
polynomials of the number field K. The prime number p has to be chosen such
that

(3) p = ωω

for a number ω ∈ OK . There are 2 approaches to choose such a prime number p. Ei-
ther pick a random prime number p, and try to solve the complex norm equation (3)
in OK , or generate a number ω ∈ OK , such that ωω is a prime number. The first
approach needs deep theory, e.g. class groups. The second can be implemented in
a short algorithm, and is based on elementary theory. Moreover, empirical results
indicate that the elementary method is the faster of the two approaches (Weng,
2003, table 1). Thus the elementary method is preferable. The algorithm is given
in figure 1 for D ≡ 2, 3 (mod 4). The algorithm for D ≡ 1 (mod 4) is similar
(Weng, 2003, section 8).

Remark 6. In either way we get an ω ∈ OK with ωω = p. We may assume that
ω fulfils the additional condition gcd(c3, c4) = 1, where the numbers c3 and c4 are
given by equation (4) in section 5. In the first approach, if ω does not fulfil this
condition, we can just pick another prime number p. In the elementary method we
can incorporate this condition in the algorithm.
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Input: CM-field K = Q
(
i
√
a+ b

√
D
)
.

Output: Prime p = ωω and ω ∈ OK .
(1) Choose random numbers c3, c4 ∈ Z such that gcd(c3, c4) = 1 and

c23b− c24bD ≡ 0 (mod 2).
(2) Set 2n := −2c3c4a− c23b− c24bD.
(3) Choose c1 at random as a divisor of n.
(4) Set c2 := n/c1.
(5) Set p := c21 + c22D+ c23a+ c24aD+2c3c4bD. If p is not a prime number,

start again.
(6) Set ω := c1 + c2

√
D + (c3 + c4

√
D)i

√
a+ b

√
D.

Figure 1. Elementary method to choose a prime number p = ωω
in the case D ≡ 2, 3 (mod 4).

5. Properties of JC(Fp)

Let K be a primitive, quartic CM field with real subfield K0 = Q(
√
D) of class

number h(K0) = 1. Write K = Q(η), where η = i
√
a+ bξ and

ξ =

{
1+
√

D
2 , if D ≡ 1 (mod 4),√
D, if D ≡ 2, 3 (mod 4).

We may assume that a ± b
√
D, a + b 1±

√
D

2 > 0, cf. section 3. Let p be a prime
number such that

p = ωω

for a number ω ∈ O = OK0 + ηOK0 . Since h(K0) = 1, we can write

(4) ω = c1 + c2ξ + (c3 + c4ξ)η, ci ∈ Z.
We may assume gcd(c3, c4) = 1, cf. remark 6. Let C/Fp be a hyperelliptic curve of
genus 2 with CM by OK . Write

(5) JC(Fp) ' Z/n1Z× Z/n2Z× Z/n3Z× Z/n4Z,
where ni | ni+1 and n2 | p− 1 (see Frey and Lange, 2006, proposition 5.78, p. 111).
Depending on the remainder of D modulo 4, we obtain conditions on the prime
divisors of the number n2.

Theorem 7. Let C/Fp be a hyperelliptic curve of genus 2 with CM by OK . Assume
that the structure of JC(Fp) is given by (5). Let ` | n2 be an odd prime number.
Then ` ≤ Q, where

Q = max{a,D, a2 − b2D},

if D ≡ 2, 3 (mod 4), and

Q = max{a,D, 4a(a+ b)− b2(D − 1), aD + 2b(D − 1)},
if D ≡ 1 (mod 4). If ` > D, then c1 ≡ 1 (mod `) and c2 ≡ 0 (mod `).

Proof. Assume D ≡ 2, 3 (mod 4). Since ωω = p we find that

p = c21 + c22D + c23a+ c24aD + 2c3c4bD,(6)

0 = 2c1c2 + c23b+ c24bD + 2c3c4a.(7)
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Let P (X) be the characteristic polynomial of the Frobenius ϕ.

P (X) =
4∏

i=1

(X − ωi) = X4 − 4c1X3 + (2p+ 4(c21 − c22D))X2 − 4c1pX + p2.

Here ωi are the roots of P (X).
Let ` | n2 be an odd prime number. Then by equation (5) the Jacobian JC(Fp)

contains a subgroup U ' (Z/`Z)3. As

(Z/`Z)3 < JC(Fp)[`] < JC [`],

the Frobenius ϕ is represented on JC [`] by a matrix

M =


1 0 0 m1

0 1 0 m2

0 0 1 m3

0 0 0 m4


Notice that m4 = det(M) ≡ deg(ϕ) = p2 (mod `). Since p ≡ 1 (mod `), M has
the characteristic polynomial

PM (X) ≡ (X − 1)4 = X4 − 4X3 + 6X2 − 4X + 1 (mod `).

Now P (X) ≡ PM (X) (mod `). Thus

c1 ≡ c21 − c22D ≡ 1 (mod `),

since ` 6= 2.
Assume ` > D. Then

(8) c1 ≡ 1 (mod `), c2 ≡ 0 (mod `).

By the equations (6) and (7), we get

c21 + c22D + c23a+ c24aD + 2c3c4bD ≡ 1 (mod `),

2c1c2 + c23b+ c24bD + 2c3c4a ≡ 0 (mod `).

Therefore, by equation (8), the following holds.

c23a+ c24aD + 2c3c4bD ≡ 0 (mod `),(9)

c23b+ c24bD + 2c3c4a ≡ 0 (mod `).

It follows that
c3c4(a2 − b2D) ≡ 0 (mod `).

Here a2−b2D = (a+b
√
D)(a−b

√
D) > 0, since a±b

√
D > 0. Assume ` > a2−b2D.

Then we get c3c4 ≡ 0 (mod `). Thus either c3 ≡ 0 (mod `) or c4 ≡ 0 (mod `).
Assume ` > a. If c3 ≡ 0 (mod `), then c24aD ≡ 0 (mod `) by equation (9), i.e.

c4 ≡ 0 (mod `). On the other hand if c4 ≡ 0 (mod `), then c23a ≡ 0 (mod `), i.e.
c3 ≡ 0 (mod `).

Summing up, c3 ≡ c4 ≡ 0 (mod `) if ` > max{a,D, a2 − b2D}. But this contra-
dicts gcd(c3, c4) = 1. Therefore ` ≤ max{a,D, a2 − b2D}, and the case D ≡ 2, 3
(mod 4) is established.
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Now consider the case D ≡ 1 (mod 4). Since ωω = p, we now find that

p = c21 + c1c2 +
1
4
c22(1 +D) + c23

(
a+

1
2
b
)

+ c3c4

(1
2
b(D + 1) + a

)
+ c24

(1
8
b(3D + 1) +

1
4
a(D + 1)

)
,

0 = c1c2 +
1
2
c22 +

1
2
c23b+ c3c4(a+ b) + c24

(1
8
b(D + 3) +

1
2
a
)
.

The characteristic polynomial of the Frobenius ϕ is given by

P (X) = X4 − (4c1 + 2c2)X3 + (2p+ (2c1 + c2)2 − c22D)X2

− (4c1 + 2c2)pX + p2.

Let ` | n2 be an odd prime number. As in the case D ≡ 2, 3 (mod 4), the Fro-
benius ϕ is represented on JC [`] by a matrix M with the characteristic polynomial

PM (X) ≡ X4 − 4X3 + 6X2 − 4X + 1 (mod `).

Since P (X) ≡ PM (X) (mod `), it follows that

4c1 + 2c2 ≡ (2c1 + c2)2 − c22D ≡ 4 (mod `).

Assume ` > D. Then

c1 ≡ 1 (mod `), c2 ≡ 0 (mod `).

Now

c23(8a+ 4b) + c3c4 (4b(D + 1) + 8a)

+c24 (b(3D + 1) + 2a(D + 1)) ≡ 0 (mod `)

4c23b+ 8c3c4(a+ b) + c24 (b(D + 3) + 4a) ≡ 0 (mod `).

Therefore

4c23a+ 2c3c4b(D − 1) + c24(a+ b)(D − 1) ≡ 0 (mod `),(10)

4c23b+ 8c3c4(a+ b) + c24 (b(D + 3) + 4a) ≡ 0 (mod `).

It follows that

(b2(D − 1)− 4a(a+ b))(2c3c4 − c24) ≡ 0 (mod `).

Notice that

4a(a+ b)− b2(D − 1) = 4

(
a+ b

1 +
√
D

2

)(
a+ b

1−
√
D

2

)
> 0.

Now assume ` > 4a(a+ b)− b2(D − 1). Then

2c3c4 − c24 ≡ 0 (mod `).

Thus either c4 ≡ 0 (mod `) or c4 ≡ 2c3 (mod `).
Assume ` > a. If c4 ≡ 0 (mod `), then c23 ≡ 0 (mod `) by equation (10), i.e.

c3 ≡ 0 (mod `). This contradicts gcd(c3, c4) = 0. So c4 6≡ 0 (mod `). Then
c4 ≡ 2c3 (mod `). From equation (10) it follows that

c24(2b(D − 1) + aD) ≡ 0 (mod `),

i.e. c4 ≡ 0 (mod `) if ` > 2b(D − 1) + aD. But then c3 ≡ c4 ≡ 0 (mod `),
a contradiction. �
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Remark 8. The condition gcd(c3, c4) = 1 may be relaxed. In the proof of theorem 7,
we only need ` - gcd(c3, c4).

6. Examples

By theorem 7, large prime divisors of the order N = |JC(Fp)| will not divide the
divisor n2 of N . This is useful if we want to determine the possible cyclic subgroups
of JC(Fp).

Example 1. In K = Q
(
i
√

2 +
√

2
)
, the prime number

p = 15314033922152826237436247359259334919

is the complex norm of the number

ω = 3913314953099587393− 31
√

2

+ (4483312578 + 6978049007
√

2)i
√

2 +
√

2.

The CM method yields a hyperelliptic genus 2 curve C with Jacobian of order

N = 234519634968847474692278544362349582158321382804023011720188699330496198748.

Since N = 22 · 73 · 17 · 23 · 4993 · r, where

r = 87556173808919520163329861675989739433243040373597074857097140343

is a prime number, either

JC(Fp) ' Z/NZ or JC(Fp) ' Z/n3Z× Z/n4Z,

where n3 ∈ {2, 7, 14}.

Example 2. In K = Q
(
i
√

7 +
√

5
)
, the prime number

p = 14304107096878940330893123933

is the complex norm of the number

ω = − 119599766860084 + 5279155
√

5

+
(
13860963299 + 4898901569

√
5
)
i

√
7 +

√
5.

The CM method yields a hyperelliptic genus 2 curve C with Jacobian of order

N = 204607479838989309536748148297333557447111046976589088984.

Since N = 23 · 73 · 71 · r, where

r = 1050217015557576630891205130257738047915611254140091

is a prime number, either

JC(Fp) ' Z/n3Z× Z/n4Z,

where n3 ∈ {1, 2, 7, 14}, or

JC(Fp) ' Z/2Z× Z/n3Z× Z/n4Z,

where n3 ∈ {2, 14}.
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