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Abstract. In this paper, we present a new identity-based encryption (IBE) scheme
using bilinear pairings. Our IBE scheme enjoys the same Key Extraction and De-
cryption algorithms with the famous IBE scheme of Boneh and Franklin (BF-IBE
for short), while differs from the latter in that it has modified Setup and Encryption
algorithms.
Compared with BF-IBE, we show that ours are more practical in a multiple private
key generator (PKG) environment, mainly due to that the session secret gID could
be pre-computed before any interaction, and the sender could encrypt a message
using gID prior to negotiating with the intended recipient(s). As an application
of our IBE scheme, we also derive an escrowed ElGamal scheme which possesses
certain good properties in practice.
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1 Introduction

The idea of identity(ID)-based cryptography was first introduced by Shamir in 1984 [7].
The basic idea behind an ID-based cryptosystem is that end users can choose an arbitrary
string, for example their email addresses or other online identifiers, as their public key.
The corresponding private keys are created by binding the identity with a master secret
of a trusted authority (called private key generation, or PKG for short). This eliminates
much of the overhead associated with key management.

In 2001, Boneh and Franklin [2] gave the first fully functional solution for ID-based
encryption (IBE) using the bilinear pairing over elliptic curves. Based on pairings, Sakai
and Kasahara presented another IBE (SK-IBE for short) scheme by using another Key
Extraction algorithm in 2003 [8]. However, the Boneh-Franklin scheme (BF-IBE for short)
has received much more attention in recent years.

In this paper, we give a new IBE scheme based on bilinear pairings. Our scheme has
the same Key Extraction and Decryption algorithms with BF-IBE, while differs from the
latter in that it has different Setup and Encryption algorithms. We show that ours are more
practical in a multiple private key generator (PKG) environment. Parallel to [2], we also
derive an escrowed ElGamal [4] encryption scheme from our IBE scheme. Furthermore, we
show how the derived ElGamal encryption enables a dual decrptor public key encryption
(PKE) scheme.

We note that SK-IBE due to Sakai and Kasahara [8] has a better performance than
BF-IBE and ours. Especially, SK-IBE are also very practical in multiple PKG environ-
ments. However, its applicability to some circumstance are not comparable to BF-IBE,
e.g. , it seems very hard to derive from it an escrowed ElGamal encryption scheme. In this
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regard, we do not compare the new IBE with SK-IBE for now.

Paper Organization. The rest of this paper is structured as follows. In the next section,
we give the necessary definition for bilinear pairings. Section 3 describes our IBE scheme.
In Section 4, we present a new escrowed ElGamal encryption scheme. Section 5 contains
a brief conclusion and indicates our ongoing work.

2 Bilinear Pairings

In this section, we describe in a more general format the basic definition and properties of
the pairing: more details can be found in [2].

Let G1 be a cyclic additive group generated by an element P , whose order is a prime
p, and G2 be a cyclic multiplicative group of the same prime order p. We assume that the
discrete logarithm problem (DLP) in both G1 and G2 are hard.

Definition 1. An admissible pairing e is a bilinear map e : G1×G1 → G2, which satisfies
the following three properties:

1. Bilinear: If P, Q ∈ G1 and a, b ∈ Z∗p, then e(aP, bQ) = e(P, Q)ab;
2. Non-degenerate: e(P, P ) 6= 1;
3. Computable: If P, Q ∈ G1, one can compute e(P, Q) ∈ G2 in polynomial time.

3 New IBE Scheme and Its Fitness for Multiple PKG
Environments

For the problem of inherent key escrow, the difficulty of establishing secure channels for
private key distribution, and to avoid the single point of failure of using only one PKG,
it is well-known that (single-PKG) IBE is only well suitable for use in relatively small
and close organizations, i.e. with each organization has its own private key generator,
generating private keys for the principal within its domain.

For an IBE to be used in a multiple PKG environment (or, cross domains), all that is
needed is the availability of standard pairing-friendly curves and a common group generator
point P . We note that this is a reasonable requirement. In fact, elliptic curves, suitable
group generator points and other cryptographic tools have been standardized for non-IBE
applications, for example in the NIST FIPS standards [6]. Once these group generator
points and curves have been agreed upon, each PKG can generate its own random master
secret.

3.1 Description of the Scheme

Let G1 and G2 be groups of prime order p, and let e : G1 × G1 → G2 be the bilinear
pairing. P is a generator points of G1. The IBE system works as follows.

Setup. Given a security parameter k, the PKG does the following:

1. Chooses a random s ∈ Zp, calculates PPub = s−1P ∈ G1
1.

2. Picks a cryptographic hash functions H1 : {0, 1}∗ → G∗1, a cryptographic hash function
H2 : G2 → {0, 1}n for some n.

1 Note that in BF-IBE, the public key of PKG is PPub = sP ∈ G1 instead.
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The message space is M = {0, 1}n. The ciphertext space is C = G∗1 × {0, 1}n. The
public params are < q,G1,G2, e, P, PPub, n, H1,H2 > and the master key is s.

Key Extraction. This algorithm is identical to that of BF-IBE. To generate a private key
for identity ID ∈ {0, 1}∗, the PKG first computes QID = H1(ID) ∈ G∗1, and then sets the
private key dID to be dID = sQID where s is the master key.

Encryption. To encrypt message m ∈ M, the sender picks randomly a r ∈ Zp, using the
receiver’s identity ID to compute QID = H1(ID) ∈ G∗1, sets the ciphertext to be

C = 〈rPPub, m⊕H2(gr
ID)〉, where gID = e(P, QID) ∈ G∗2.

Decryption. This algorithm is identical to that of BF-IBE. To decrypt a ciphertext C =
〈U, V 〉 ∈ C, using the private key dID of the identity ID computes

m = V ⊕H2(e(U, dID)).

Consistence: The recipient can correctly decrypt C to get m since

e(U, dID)
= e(rs−1P, sQID)
= e(P, QID)r.

3.2 Its Fitness for Multiple PKG Environments

As mentioned above, an IBE scheme is often used across multiple PKGs, namely for each
organization (e.g., a company), it has its own PKG. In many cases, a principal may need
to encrypt messages to principals from different domains. For example, for a salesman
of company A, he may need to encrypt messages to Bob from company B, Carol from
company C, or Emmy who he does not know which company she is belonging to by now.

Now we compare our new IBE with BF-IBE [2] in such an environment. The Setup
algorithm in our IBE requires one more fast inverse operation in Zp than BF-IBE, and
the Key Extraction and Decryption algorithms in the two IBE schemes are the same. In the
following, we discuss what significance our different Encryption algorithm could bring in
practice.

In BF-IBE [2], the session secret, i.e. th term gID is computed as gID = e(PPub, QID),
in which PPub is the public key of the intended receiver’s PKG. We emphasize that in a
multiple PKG environment, before computing the second part of the ciphertext, i.e. V ,
and especially, the term gID (requires a relatively expensive pairing evaluation) which are
the main operations of the overall encryption, BF-IBE requires the sender to first get to
know the following two things:

– which organization the receiver is from, and
– the public key associated with the corresponding PKG.

Compared with BF-IBE, the biggest difference of our IBE is that in the Encryption algo-
rithm, the terms V and especially, gID = e(P, QID) are computed independently from
any PKG’s public key. Consequently, in our IBE, the sender can compute the pairing (and
V ) before getting the public key of the receiver’s PKG, in the case that (s)he knows which
organization the receiver is from. Interestingly, the sender can even pre-compute gID and
V before (s)he knows which organization the receiver is from!
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Therefore, our scheme enables a type of efficient “on the move” IBE in a multiple PKG
environment, which requires very small on-online work for the sender (i.e. encryptor).

We emphasize that this feature is particularly useful in (ID-based) broadcasting (or
multiple-recipient) encryption scenario, namely with most of the expensive computation
pre-computed, the overall performance will be upgraded to a large extent.

4 Escrowed ElGamal Encryption

Parallel to [2], in this section we introduce a new ElGamal encryption system in which a
single escrow key enables the decryption of ciphertexts encrypted under any public key.

Description of the Scheme:
Our ElGamal escrow encryption works as follows:

Setup. Given a security parameter k, the escrow authority (EA) does the following:
1. Chooses a random s ∈ Zp, calculates two points Q1 = sP and Q2 = s−1P ∈ G1

2.
2. Chososes a cryptographic hash functions H : G2 → {0, 1}n for some n.

The message space is M = {0, 1}n. The ciphertext space is C = G∗1 × {0, 1}n. The
public params are < q,G1,G2, e, n, P, Q1, Q2,H > and the escrow key is s.

Key Generation. Same as in [2], a user generates a public/private key pair for herself
by picking a random x ∈ Zq and computing PPub = xP ∈ G1. Her private key is x,
her public key is PPub.

Encryption. To encrypt message m ∈ M, the sender picks randomly a r ∈ Zp, sets the
ciphertext to be

C = 〈rQ2, m⊕H2(gr)〉, where g = e(P, PPub) ∈ G∗2.
Decryption. To decrypt a ciphertext C = 〈U, V 〉 ∈ C, using the private key x of the

identity ID computes
m = V ⊕H2(e(U, xQ1)).

Escrow Decryption. To decrypt a ciphertext C = 〈U, V 〉, using the escrow key s of the
EA computes

m = V ⊕H2(e(U, PPub)s).

Consistence: The two recipients can correctly decrypt C to get m since

e(U, xQ1)
= e(rQ2, xQ1)
= e(rs−1P, xsP )
= e(rP, xP )
= e(P, PPub)r

= gr

and

e(U, PPub)s

= e(rs−1P, PPub)s

= e(rP, PPub)
= e(P, PPub)r

= gr.

2 Note that in BF-IBE, the public key of EA is one point Q = sP ∈ G1 instead.



Practical IBE in Multi-PKG Environments and Its Applications 5

Compared with the scheme in [2], our escrow ElGamal requires the EA to publish one
more point as its public key. An advantage of our scheme is that the sender can choose a
designated EA (from multiple EAs) after (s)he finished most of the operations of encrypt-
ing a message. This provides the sender with more flexibility in practice.

A Simple and Direct Application:
If we look the escrow authority (EA) in the above escrowed ElGamal scheme as an

ordinary principal (who has his/her own private and public key pair), it can be then used
as a dual decryptor PKE scheme, i.e., a single ciphertext can be decrypted independently
by two different principals. However, unlike in conventional setting, we require at least one
of the recipient to publish two points (e.g. Y1, Y2) as his/her public key, in the form of
Y1 = αP and Y2 = α−1P (assuming α is the private key of the recipient).

A good property of this scheme is that the sender can encrypt the message before (s)he
picks up the second recipient. In other words, after the encryption has been down, the
sender can change his/her mind on who the second recipient will be.

More interestingly, the sender can efficiently add more such “second recipient”, each
time (s)he adds one, only one scalar multiplication is needed, without any expensive pairing
computation. However, we note that the size of the ciphertext will grow linearly.

5 Conclusion and Ongoing Work

The rapid world-wide development of electronic transactions, largely associated with the
growth of the Internet, stimulates a strong demand for fast, secure and cheap public
key schemes. In this paper, we gave a practical IBE scheme suitable for multiple PKG
environments. Additionally, we proposed a related escrow ElGamal encryption scheme.

Ongoing work includes studying the formal security of the proposed two encryption
schemes, namely to prove the security of them in the random oracle model [3] (provided
that the Bilinear Diffie-Hellman (BDH) problem is hard), and exploring its merits in
constructing Certificate-Based Encryption (CBE) [5] and Certificateless Public Key En-
cryption (CL-PKE) schemes [1].
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