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Abstract. In this paper, we present a new identity-based encryption (IBE)
scheme using bilinear pairings. Our IBE scheme enjoys the same Key-Extraction
and Decryption algorithms with the famous IBE scheme of Boneh and Franklin
(BF-IBE for short), while differs from the latter in that it has modified Setup
and Encryption algorithms.

Compared with BF-IBE, we show that ours are more practical in a multiple
private key generator (PKG) environment, mainly due to that the session secret
gID could be pre-computed before any interaction, and the sender could encrypt
a message using gID prior to negotiating with the intended recipient(s). As an
application of our IBE scheme, we also derive an escrowed ElGamal scheme
which possesses certain good properties in practice. We prove that our scheme
meets chosen ciphertext security in the random oracle model, assuming the in-
tractability of a modified version of the Bilinear Diffie-Hellman (BDH) problem.

Keywords: identity-based encryption (IBE), public key encryption (PKE), es-
crowed ElGamal, bilinear pairings, provable security

1 Introduction

The concept of identity(ID)-based cryptography was first introduced by Shamir in 1984
[15]. The basic idea behind an ID-based cryptosystem is that end users can choose an
arbitrary string, for example their email addresses or other online identifiers, as their
public key. The corresponding private keys are created by binding the identity with a
master secret of a trusted authority (called private key generation, or PKG for short).
This eliminates much of the overhead associated with key management.

In 2001, Boneh and Franklin [4] gave the first fully functional solution for ID-based
encryption (IBE) using the bilinear pairing over elliptic curves. Based on pairings, Sakai
and Kasahara presented another IBE (SK-IBE for short) scheme by using another Key
Extraction algorithm in 2003 [16]. However, the Boneh-Franklin scheme (BF-IBE for
short) has received much more attention in recent years.

In this paper, we give a new IBE scheme based on bilinear pairings. Our scheme
has the same Key-Extraction and Decryption algorithms with BF-IBE, while differs from
the latter in that it has different Setup and Encryption algorithms. We show that ours
are more practical in a multiple private key generator (PKG) environment. Parallel to
[4], we also derive an escrowed ElGamal [9] encryption scheme from our IBE scheme.
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Furthermore, we show how the derived ElGamal encryption enables a dual decrptor
public key encryption (PKE) scheme.

We note that SK-IBE due to Sakai and Kasahara [16] has a better performance
than BF-IBE and ours. Especially, SK-IBE are also very practical in multiple PKG
environments. However, its applicability to some circumstance (e.g., hierarchical IBE
and threshold decryption) are not comparable to BF-IBE. In particular, unlike the
BF-IBE and our new IBE, it seems very hard to derive from it an escrowed ElGamal
encryption scheme. In this regard, we do not compare the new IBE with SK-IBE for
now.

Paper Organization. The rest of this paper is structured as follows. In the next
section, we give the necessary definition for bilinear pairings and the related complexity
assumption. Section 3 describes our IBE scheme. Security results are given in Section 4,
we present a new escrowed ElGamal encryption scheme in Section 5 and finally Section
6 contains a brief conclusion.

2 Preliminaries

2.1 Pairings and mBDH Assumption

In this section, we describe in a more general format the basic definition and properties
of the pairing: more details can be found in [4].

Let G1 be a cyclic additive group generated by an element P , whose order is a
prime p, and G2 be a cyclic multiplicative group of the same prime order p. We assume
that the discrete logarithm problem (DLP) in both G1 and G2 are hard.

Definition 1 (Pairing). An admissible pairing e is a bilinear map ê : G1×G1 → G2,
which satisfies the following three properties:

1. Bilinear: If P, Q ∈ G1 and a, b ∈ Z∗p, then ê(aP, bQ) = ê(P, Q)ab;
2. Non-degenerate: ê(P, P ) 6= 1;
3. Computable: If P, Q ∈ G1, one can compute ê(P, Q) ∈ G2 in polynomial time.

Typically, the map e will be derived from either the Weil or Tate pairing on an
elliptic curve over a finite field. We refer to [2, 4, 5, 13] for a more comprehensive
description of how these groups, pairings and other parameters should be selected in
practice for efficiency and security.

Definition 2 (Bilinear Diffie-Hellman (BDH) Parameter Generator). As in
[4], we say that a randomized algorithm IG is a BDH parameter generator if IG takes
a security parameter k > 0, runs in time polynomial in k, and outputs the description
of two groups G1 and G2 of the same prime order q and the description of an admissible
pairing ê : G1 ×G1 → G2.

Definition 3 (Bilinear Diffie-Hellman (BDH) Problem ). Let G1, G2, P and e
be as above. The BDH problem in 〈G1,G2, e〉 is as follows: Given 〈P, aP, bP, cP 〉 with
uniformly random choices of a, b, c ∈ Z∗q , compute ê(P, P )abc ∈ G2.
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The security of our new pairing-based IBE scheme is based on the difficulty of the
following modified BDH problem. Note that this is nearly the standard BDH problem
with the only difference that a−1P (which is hard to compute from aP ) is also given
as input.

Definition 4 (Modified Bilinear Diffie-Hellman (mBDH Problem) [8]). Let
G1, G2, P and e be as above. The mBDH problem in 〈G1,G2, e〉 is as follows: Given
〈P, aP, a−1P, bP, cP 〉 with uniformly random choices of a, b, c ∈ Z∗q , compute ê(P, P )abc ∈
G2.

A real-valued function f(l) is negligible if for any integer k, |f(l)| < l−k for suffi-
ciently large l. The following mBDH assumption states that, roughly, this problem is
computational infeasible.

Definition 5 (Modified Bilinear Diffie-Hellman (mBDH) Assumption). As in
[4], if IG is a BDH parameter generator, the advantage AdvIG(B) that an algorithm B
has in solving the mBDH problem is defined to be the probability that the algorithm B
outputs ê(P, P )abc ∈ G2 when the inputs to the algorithm are G1,G2, ê, P, aP, a−1P, bP, cP
where 〈G1,G2, e〉 is IG′s output for large enough security parameter k, P is a random
generator of G1, and a, b, c ∈ Z∗q . The mBDH assumption is that AdvIG(B) is negligible
for all efficient algorithms B.

Here the probability is measured over the random choices of a, b, c ∈ Z∗q and the random
bits of B.

In Appendix A, we relate the hardness of the mBDH assumption to well-known
pairing-based “standard assumptions”. In particular we show that the mBDH assump-
tion is at least as weak as 2-BDHI. The BDHI (Bilinear Diffie-Hellman Inversion) as-
sumption was introduced by Boneh and Boyen [3] and its stronger variants (q-BDHI
for some polynomial q) already found numerous applications.

2.2 Definitions for Identity-Based Encryption

We start by fixing some notation and recalling basic concepts.

Definition 6 (Identity-Based Encryption (IBE)). An identity-based encryption
scheme handling identities of length (where is a polynomially-bounded function) is spec-
ified by four probabilistic polynomial time (PPT) algorithms:

– Setup: is a probabilistic algorithm run by a private key generator (PKG) that takes
as input a security parameter to output a public/private key pair (PPub, msk) for
the PKG (PPub is its public key and msk is its master key that is kept secret).

– Key-Extraction: is a key generation algorithm run by the PKG on input of a
master key msk and a user’s identity ID to return the user’s private key dID.

– Encrypt: is a probabilistic algorithm which takes as input a plaintext M , a recip-
ient’s identity ID and the PKG’s public key PPub to output a ciphertext C.

– Decrypt: is a deterministic decryption algorithm which takes as input a ciphertext
C and the private decryption key dID to return a plaintext M or a distinguished
symbol ⊥ if C is not a valid ciphertext.
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The security of an IBE scheme is defined by the following game between a challenger
C and an adversary A as first formalized in [4].

– Setup. C takes a security parameter k and runs the Setup algorithm. It gives A
the domain-wide parameters and keeps msk to itself.

– Find Stage. A issues queries as one of follows:
• Extraction query on IDi. C runs the Extract algorithm to generate dIDi

and
passes it to A.

• Decryption query on (IDi, Ci). C decrypts the ciphertext by finding dIDi
first

(through running Extract if necessary), and then running the Decrypt algo-
rithm. It responds with the resulting plaintext Mi.

– Challenge. Once A decides that Phase 1 is over, it outputs two equal length
plaintexts M0,M1, and an identity ID∗ (called the challenge identity) on which
it wishes to be challenged. The only constraint is that A must not have queried
the extraction oracle on ID∗ in Phase 1. C picks a random bit b ∈ {0, 1} and sets
C∗ = Encrypt(ID∗,Mb). It sends C∗ as the challenge to A .

– Guess Stage. A issues more queries as in Phase 1 but with two restrictions: (1)
Extraction queries cannot be issued on ID∗; (2) Decryption queries cannot be
issued on (ID∗, C∗).

– Output. Finally, A outputs a guess b′ ∈ {0, 1} and wins the game if b′ = b.

We refer to this type of adversary as an IND-ID-CCA adversary [4, 5]. If A cannot ask
decryption queries, we call it an IND-ID-CPA adversary. The advantage of an adversary
A against an IBE scheme is the function of security parameter k defined as:

AdvA(k) = |Pr[b′ = b]− 1/2|.
Definition 7 (IBE Security). An identity-based encryption (IBE) scheme is IND-ID-
CCA secure (resp. IND-ID-CPA) if for any IND-ID-CCA (resp. IND-ID-CPA) adversary,
AdvA(k) is negligible.

3 Proposed IBE Scheme

For the problem of inherent key escrow, the difficulty of establishing secure channels for
private key distribution, and to avoid the single point of failure of using only one PKG,
it is well-known that (single-PKG) IBE is only well suitable for use in relatively small
and close organizations, i.e. with each organization has its own private key generator,
generating private keys for the principal within its domain.

For an IBE to be used in a multiple PKG environment (namely, cross domains),
all that is needed is the availability of standard pairing-friendly curves and a common
group generator point P . We note that this is a reasonable requirement. In fact, el-
liptic curves, suitable group generator points and other cryptographic tools have been
standardized for non-IBE applications, for example in the NIST FIPS standards [14].
Once these group generator points and curves have been agreed upon, each PKG can
generate its own random master secret.

Now we describe our new IBE scheme — a “multiple PKG variant” of BF-IBE
(hereafter referred to as M-IBE). Following the exploration as in [5], we first give a
basic version of our scheme which is only chosen plaintext attack (CPA) secure. We then
extend the basic scheme to get security against adaptive chosen ciphertext attack (CCA)
in the random oracle model [6], using the second Fujisaki-Okamoto transformation [10].
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3.1 Basic M-IBE Scheme with CPA Security

Let G1 and G2 be groups of prime order p, and let ê : G1 × G1 → G2 be the bilinear
pairing. P is a generator points of G1. The basic M-IBE system works as follows.

Setup. Given a security parameter k, the PKG does the following:

1. Chooses a random s ∈ Zp, calculates PPub = s−1P ∈ G1
1.

2. Picks a cryptographic hash functions H1 : {0, 1}∗ → G∗1, a cryptographic hash
function H2 : G2 → {0, 1}n for some n.

The message space is M = {0, 1}n. The ciphertext space is C = G∗1 × {0, 1}n. The
public params are 〈q,G1,G2, ê, P, PPub, n, H1,H2〉 and the master key is s.

Key-Extraction. This algorithm is identical to that of BF-IBE. To generate a private
key for identity ID ∈ {0, 1}∗, the PKG first computes QID = H1(ID) ∈ G∗1, and then
sets the private key dID to be dID = sQID where s is the master key.

Encryption. To encrypt message m ∈ M, the sender picks randomly a r ∈ Zp, using
the receiver’s identity ID to compute QID = H1(ID) ∈ G∗1, sets the ciphertext to be

C = 〈rPPub, m⊕H2(gr
ID)〉, where gID = ê(P, QID) ∈ G∗2.

Decryption. This algorithm is identical to that of BF-IBE. To decrypt a ciphertext
C = 〈U, V 〉 ∈ C, using the private key dID of the identity ID computes

m = V ⊕H2(ê(U, dID)).

Consistence: The recipient can correctly decrypt C to get m since

ê(U, dID)
= ê(rs−1P, sQID)
= ê(P, QID)r.

3.2 Full M-IBE Scheme with CCA Security

In this subsection we extend the above basic M-IBE scheme to a full scheme with
adaptive chosen ciphertext security using the general transformation due to Fujisaki
and Okamoto (FO transformation) [10].

We borrow the description of the FO transformation from [11]. This conversion
starts from an IND-CPA encryption scheme and builds an IND-CCA scheme in the
random oracle model. If we denote by Epk(M, r) the encryption of M using the random
bits r under the public key pk, with set of messages M = {0, 1}n, set of coins R and
set of ciphertexts C, the new transformation is the scheme

Ehy
pk (M) = Epk(M ||r,H(M ||r)),

1 Note that in BF-IBE [4, 5], the public key of PKG is PPub = sP ∈ G1 instead.
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where M ||r ∈ {0, 1}n−k0 ×{0, 1}k0 and H : {0, 1}∗ → R is a hash function. To decrypt
a ciphertext C, one first obtains M ′||r′ using the original decryption algorithm, and
next checks if Epk(M ′||r′,H(M ′||r′)) = C. If this is so, outputs M ; otherwise outputs
reject symbol.

Now we describe the full M-IBE system thereby obtained.

Setup. Given a security parameter k, the PKG does the following:

1. Chooses a random s ∈ Zp, calculates PPub = s−1P ∈ G1.
2. Picks three cryptographic hash functions H1 : {0, 1}∗ → G∗1, H2 : G2 → {0, 1}n for

some n and H3 : {0, 1}∗ → Z∗p.

The message space is M = {0, 1}n−k0 . The ciphertext space is C = G∗1 × {0, 1}n.
The public params are 〈q,G1,G2, ê, P, PPub, n, H1,H2,H3〉 and the master key is s.

Key-Extraction. This algorithm is identical to that of the basic M-IBE scheme.

Encryption. To encrypt message m ∈ M, the sender picks randomly a σ ∈ {0, 1}k0 ,
using the receiver’s identity ID to compute QID = H1(ID) ∈ G∗1, sets r = H3(m,σ) ∈
Z∗p and finally sets the ciphertext to be

C = 〈rPPub, (m||σ)⊕H2(gr
ID)〉, where gID = ê(P, QID) ∈ G∗2.

Decryption. This algorithm is identical to that of Galindo’s BF-IBE variant [11]. To
decrypt a ciphertext C = 〈U, V 〉 ∈ C, using the private key dID of the identity ID do

1. Compute m = V ⊕H2(ê(U, dID)) = m||σ.
2. Parse m||σ and compute r = H3(m,σ). Check that U = rPPub. If not, reject the

ciphertext.
3. Output m.

Consistence: The consistence of this scheme directly follows that of the basic scheme.

3.3 Its Fitness for Multiple PKG Environments

As mentioned above, an IBE scheme is often used across multiple PKGs, namely for
each organization (e.g., a company), it has its own PKG. In many cases, a principal
may need to encrypt messages to principals from different domains. For example, for
a salesman of company A, he may need to encrypt messages to Bob from company
B, Carol from company C, or Emmy who he does not know which company she is
belonging to by now.

Now we compare our M-IBE with BF-IBE [4] in such an environment. The Setup
algorithm in M-IBE requires one more fast inverse operation in Zp than BF-IBE, and
the Key-Extraction and Decryption algorithms in the two IBE schemes are the same.
In the following, we discuss what significance our different Encryption algorithm could
bring in practice.
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In BF-IBE [4], the session secret, i.e. the term gID is computed as gID = ê(PPub, QID),
in which PPub is the public key of the intended receiver’s PKG. We emphasize that
in a multiple PKG environment, before computing the second part of the ciphertext,
i.e. V , and especially, the term gID (requires a relatively expensive pairing evaluation)
which are the main operations of the overall encryption, BF-IBE requires the sender
to first get to know the following two things:

– which organization the receiver is from, and
– the public key associated with the corresponding PKG.

Compared with BF-IBE, the biggest difference of M-IBE is that in the Encryption
algorithm, the terms V and especially, gID = ê(P, QID) are computed independently
from any PKG’s public key. Consequently, in M-IBE, the sender can compute the
pairing (and V ) before getting the public key of the receiver’s PKG, in the case that
(s)he knows which organization the receiver is from. Interestingly, the sender can even
pre-compute gID and V before (s)he knows which organization the receiver is from!

Therefore, our scheme enables a type of efficient “on the move” IBE in a multi-
ple PKG environment, which requires very small on-online work for the sender (i.e.
encryptor).

We emphasize that this feature is particularly useful in (ID-based) broadcasting (or
multiple-recipient) encryption scenario, namely with most of the expensive computation
pre-computed, the overall performance will be upgraded to a large extent.

4 Security Results

Now we evaluate the security of our full M-IBE scheme. We prove that the security of
it can reduce to the hardness of the mBDH problem. The reduction is similar to the
proof of BF-IBE [5]. However, we will take into account the reduction error found by
Galindo [11].

We prove the security of M-IBE scheme along the similar lines to that in [5, 11]. The
proof is completed in three steps that can be sketched as follow. 1) First we prove that
if there exists an IND-ID-CCA adversary, who is able to break the full M-IBE scheme
by launching the adaptive chosen ciphertext attacks as defined in the security model,
then there exists an IND-CCA adversary to break the BasicPubhy scheme defined
in Lemma 1 with the adaptive chosen ciphertext attacks. 2) Second, if such IND-
CCA adversary exists, then we show (in Lemma 2) that there must be an IND-CPA
adversary that breaks the corresponding BasicPub scheme (defined below). 3) Finally,
in Lemma 3 we prove that if the BasicPub scheme is not secure against an IND-CPA
adversary, then the mBDH assumption is flawed.

We first define the related non-ID-based public key encryption scheme BasicPub.
It is described by three algorithms: keygen, encrypt, decrypt.

keygen: Given a security parameter k, the PKG does the following:

1. Chooses a random s ∈ Zp, calculates PPub = s−1P ∈ G1 and P ′Pub = sP ∈ G1.
2. Picks a random QID ∈ G∗2.
3. Picks a cryptographic hash functions H2 : G2 → {0, 1}n for some n.
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The message space is M = {0, 1}n. The ciphertext space is C = G∗1 × {0, 1}n.
The public key is 〈q,G1,G2, ê, P, PPub, P

′
Pub, n, QID,H2〉 and the private key is

dID = sQID ∈ G∗1.
encrypt: To encrypt message m ∈ M, the sender picks randomly a r ∈ Zp and sets

the ciphertext to be

C = 〈rPPub, m⊕H2(gr
ID)〉, where gID = ê(P, QID) ∈ G∗2.

decrypt: To decrypt a ciphertext C = 〈U, V 〉 ∈ C, using the private key dID computes

m = V ⊕H2(ê(U, dID)).

The correctness of the above public key encryption scheme can be easily verified. We
refer to the full scheme of applying the Fujisaki-Okamoto transformation to BasicPub
as BasicPubhy.

The following lemma shows that an IND-ID-CCA attack on the full M-IBE scheme
can be converted to a IND-CCA attack on BasicPubhy. This means that private key
extraction queries do not help the adversary.

Lemma 1. Let A be an IND-ID-CCA adversary with advantage ε against the full M-
IBE scheme making at most qE private key extraction queries, qD decryption queries
and q1 hash queries. Then there is an IND-CCA adversary B that has advantage at least
ε
q1

(1− q1
qE

) ≈ ε
q1

against BasicPubhy. Its running time is tB ≤ tA+ cG1(qD + qE + q1),
where cG1 denotes the time of computing a random multiple in G1.

Proof. Use the same reduction as for Result 5 from [11], and the detailed proof will be
given in the full version of the paper. ut
Lemma 2. Let A be an IND-CCA adversary with advantage ε against BasicPubhy

making at most qD decryption queries and q2 hash queries. Then there is an IND-
CPA adversary B that has advantage at least (ε − q22−(k0−1))(1 − 1/p)qD ≈ ε against
BasicPubhy. Its running time is tB ≤ tA + q2(TBasicPub + logp), where TBasicPub
is the running time of Encrypt algorithm in BasicPub.

Proof. This result is obtained applying the Fujisaki-Okamoto transformation, and the
proof can be found in [10]. ut

We then show that BasicPub is IND-CPA secure if the mBDH assumption holds.

Lemma 3. Let A be an IND-CPA adversary with advantage ε against BasicPub mak-
ing at most q2 queries to H2. Then there is an algorithm B that has advantage at least
2ε/q2 in solving the mBDH problem. Its running time is tB = O(tA).

Proof. See Appendix B. ut
As in [11], in order to come up with the total concrete security, we bound any qi

with a single qH , and assume that qE = qD, since extraction and decryption operations
have roughly the same computational complexity. Composing the above reductions, we
are now ready to state the security of our full M-IBE scheme.

Theorem 1. The proposed full M-IBE scheme is (t, qH , qD, ε)-secure if the mBDH
problem on (G1,G2, ê) is

(t + cG1(2qD + qH) + qHO(log3p + logp), ε/q2
H))− secure.

Proof. This follows directly from Lemma 1, 2 and 3. ut
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5 Applications of M-IBE Scheme

5.1 Escrowed ElGamal Encryption

Parallel to [4], in this section we introduce a new ElGamal encryption system in which
a single escrow key enables the decryption of ciphertexts encrypted under any public
key.

Our escrowed ElGamal encryption scheme works as follows:

Setup. Given a security parameter k, the escrow authority (EA) does the following:
1. Chooses a random s ∈ Zp, calculates two points Q1 = sP and Q2 = s−1P ∈ G1

2.
2. Chooses a cryptographic hash functions H : G2 → {0, 1}n for some n.

The message space is M = {0, 1}n. The ciphertext space is C = G∗1 ×{0, 1}n. The
public params are 〈q,G1,G2, ê, n, P,Q1, Q2,H〉 and the escrow key is s.

Key Generation. Same as in [4], a user generates a public/private key pair for herself
by picking a random x ∈ Zq and computing PPub = xP ∈ G1. Her private key is
x, her public key is PPub.

Encryption. To encrypt message m ∈ M, the sender picks randomly a r ∈ Zp, sets
the ciphertext to be

C = 〈rQ2, m⊕H2(gr)〉, where g = ê(P, PPub) ∈ G∗2.
Decryption. To decrypt a ciphertext C = 〈U, V 〉 ∈ C, using the private key x of the

identity ID computes
m = V ⊕H2(ê(U, xQ1)).

Escrow Decryption. To decrypt a ciphertext C = 〈U, V 〉, using the escrow key s of
the EA computes

m = V ⊕H2(ê(U, PPub)s).

Consistence: The two recipients can correctly decrypt C to get m since

ê(U, xQ1)
= ê(rQ2, xQ1)
= ê(rs−1P, xsP )
= ê(rP, xP )
= ê(P, PPub)r

= gr

and

ê(U, PPub)s

= ê(rs−1P, PPub)s

= ê(rP, PPub)
= ê(P, PPub)r

= gr.

2 Note that in [5], the public key of the EA is one point Q = sP ∈ G1 instead.
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Compared with the scheme in [4], our escrowed ElGamal requires the EA to publish
one more point as its public key. An advantage of our scheme is that the sender can
choose a designated EA (from multiple EAs) after (s)he finished most of the opera-
tions of encrypting a message. This provides the sender with more flexibility in practice.

A Variant. If we look the escrow authority (EA) in the above escrowed ElGamal
scheme as an ordinary principal (who has his/her own private and public key pair),
it can be then used as a dual decryptor PKE scheme, i.e., a single ciphertext can be
decrypted independently by two different principals. However, unlike in conventional
setting, we require at least one of the recipient to publish two points (e.g. Y1, Y2) as
his/her public key, in the form of Y1 = αP and Y2 = α−1P (assuming α is the private
key of the recipient).

A good property of this scheme is that the sender can encrypt the message before
(s)he picks up the second recipient. In other words, after the encryption has been done,
the sender can change his/her mind on who the second recipient will be.

More interestingly, the sender can efficiently add more such “second recipient”, each
time (s)he adds one, only one scalar multiplication is needed, without any expensive
pairing computation. However, we note that the size of the ciphertext will grow linearly.

5.2 Efficient Across-Domain Multi-Receiver IBE

We now look at the multi-receiver setting, i.e., a sender wants to send a message to
n receivers. In 2004, Baek et al. [7] proposed a construction based on BF-IBE. We
note that their scheme only works well in a single PKG environment, namely with all
the n receivers getting their private keys from the same one PKG. However, in the
cross-domain context, the sender has to compute l pairings (assuming the n receivers
are from l domains) instead of 1 pairing.

In [17], based on the new IBE scheme, we present an efficient MR-IBE scheme
which works efficiently across domains. Notably, the new MR-IBE scheme requires
only 1 pairing computation for the sender when no matter how many domains the n
receivers are from.

6 Conclusions

In this paper, we gave a new IBE scheme (which we call M-IBE) that is provably
secure in the random oracle model. The security is based on a slightly stronger variant
of the Bilinear Diffie-Hellman assumption. We showed that the new scheme is more
practical than the famous IBE scheme due to Boneh and Franklin in multiple PKG
environment. As applications, we aslo proposed a related escrowed ElGamal encryption
scheme which has its distinct advantages over that in [4, 5]. Compared with the Boneh-
Franklin scheme, M-IBE scheme is even more practical in the multiple-receiver setting
[17].

Future work includes exploring the merits of our new IBE scheme in constructing
Certificate-Based Encryption (CBE) [12] and Certificateless Public Key Encryption
(CL-PKE) schemes [1].
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A mBDH Assumption Is Weaker Than 2-BDHI Assumption

Informally, the 2-BDHI problem [3] is as follows.

- Input: P, aP, a2P .
- Output: ê(P, P )1/a.

Assume there exists a polynomial-time adversary A that breaks the mBDH assump-
tion. We show that then there exists a polynomial-time adversary B with oracle access
to A that breaks the 2-BDHI assumption. Let 〈P, aP, a2P 〉 be an input instance of the
2-BDHI problem given to B. B’s goal is to output ê(P, P )1/a. B picks two random
values b, c and defines its output as U = V 1/(bc), where V is output from A as

V ← A(aP, P, a2P, bP, cP ).

We now show the correctness. Defining Q = aP, xQ = P, a = 1/x, x−1Q =
a2P, yQ = bP, zQ = cP , then we have y = b/a (yQ = yaP = bP ) and z = c/a
(zQ = zaP = cP ).

Consequently, we have 〈aP, P, a2P, bP, cP 〉 = 〈Q, xQ, x−1Q, yQ, zQ〉. Then

V = ê(Q,Q)xyz = ê(aP, aP )
1
a · b

a · c
a = ê(P, P )

bc
a .

Therefore, U = V
1
bc = ê(P, P )1/a.

B Proof of Lemma 3

The proof idea is largely based on that of Lemma 4.3 in [5]. Let A be an IND-CPA
adversary against BasicPub who makes at most q2 queries to random oracle H2 and
who has advantage ε. We show how to construct an algorithm B which interacts with
A to solve the mBDH problem.

Suppose B has an input 〈G1,G2, ê〉 and 〈P, a−1P, aP, bP, cP 〉 (where a, b, c ∈ Z∗q are
unknown to B). Let D = ê(P, P )abc ∈ G2 denote the solution to the mBDH problem
on these inputs.

Setup: Algorithm B creates the public key of BasicPub 〈q,G1,G2, ê, P, PPub, P
′
Pub, n,

QID,H2〉 by setting PPub = a−1P , P ′Pub = aP and QID = bP . Here H2 is a random
oracle controlled by B as described bellow. A is given the public key. Observe that
the unknown private key associated to the public key is dID = aQID = abP .

H2-queries: To simulate H2-queries byA, B maintains a list (H2-list) of pairs 〈Xj ,Hj〉.
To respond to an H2-query on X, B checks first if X = Xj for some Xj already
on the list. If it is, then B responds with Hj . Otherwise, B chooses H uniformly at
random from {0, 1}m and places 〈X, H〉 on the H2-list.

Challenge: A outputs two messages M0,M1 on which it wishes to be challenged. B
picks randomly a bit b ∈ {0, 1}, a string S ∈ {0, 1}m and defines C to be the
ciphertext of Mb, where C = 〈U, V 〉, with U = cP and V = Mb ⊕ S. It then gives
C to A as the challenge.
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Notice that, by definition, the decryption of C is V ⊕H(ê(cP, abP ))=V ⊕H(D).
(Recall that abP is unknown and D is the solution to the above mBDH problem.)

Guess: A outputs its guess b′ ∈ {0, 1}.

Output: At this point, B picks a random tuple 〈Xj ,Hj〉 from the H2-list and outputs
Xj as the solution to the given instance of mBDH problem.

It is easy to see that A’s view in B’s simulation is the same as in a real attack, in
other words, the simulation is perfect. So A’s advantage in this simulation will be ε.
We let H be the event that D is queried to H2 oracle during B’s simulation.

Notice that H2(D) is independent of A’s view, so if A never queries D to the H2

oracle in the above simulation, then the decryption of C is also independent of its view.
Therefore, in the simulation we have Pr[b = b′|¬H] = 1/2. By the definition of A, we
know that in the real attack (and also in the simulation) | Pr[b = b′] − 1/2 | ≥ ε. We
have the following bounds on Pr[b = b′]:

Pr[b = b′] = Pr[b = b′|¬H]Pr[¬H] + Pr[b = b′|H]Pr[H]
≤ Pr[b = b′|¬H]Pr[¬H] + Pr[H]

=
1
2
Pr[¬H] + Pr[H]

=
1
2

+
1
2
Pr[H],

Pr[b = b′] ≥ Pr[b = b′|¬H]Pr[¬H]

=
1
2
Pr[¬H]

=
1
2
(1− Pr[H])

=
1
2
− 1

2
Pr[H]).

Hence we have | Pr[b = b′]−1/2 | ≤ 1
2Pr[H]. By | Pr[b = b′]−1/2 | ≥ ε we know that

Pr[H] ≥ 2ε. Furthermore, by the definition of the event H, we know that D appears
in some tuple on the H2-list with probability at least 2ε. It follows that B outputs
the correct answer to the mBDH problem instance with probability at least 2ε/q2 as
required. ut


