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Abstract. In this note we present a family of irreducible polynomials
that can be used to speed up square root extraction in fields of charac-
teristic two. This generalizes a family of trinomials discussed by Fong et
al. and the results are not limited to trinomials. In fact, we show for the
first time pentanomials (polynomials with five nonzero terms) and ep-
tanomials (polynomials with seven nonzero terms) allowing fast square
root computation. We call such polynomials square root friendly.
The obvious application is to point halving methods for elliptic curves
and divisor halving methods for hyperelliptic curves.
We also note the existence of square root friendly trinomials of a given
degree when we already know that an irreducible trinomial of the same
degree exists, and formulate a conjecture on the degrees of the terms of
square root friendly polynomials.
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1 Introduction

The topic of this paper is square root extraction in binary fields. The
seminal work [11] shows how to extract square roots very efficiently in
polynomial basis representation when the odd degree field extension of
F2 is defined by a suitable irreducible trinomial.

If p(X) is an irreducible polynomial of degree d used to define the
extension field F2d/F2, we consider the polynomial in X representing the
square root of the image of X in F2d . If this polynomial has low weight
and/or degree, then general square roots can be extracted in F2d effi-
ciently. We call such a polynomial p(X) square root friendly. (The defini-
tion is not very precise because concrete bounds on weight and degree are
not given.) In this paper we show sufficient conditions for an irreducible
polynomial of odd degree d to yield a low weight

√
X. In particular, we

give examples of pentanomials and eptanomials, but in at least one case,
that of F2233 , that can be defined by trinomials, we show how one can
perform square root computations even faster than in [11].



As the motivation comes from elliptic curve cryptography, in particu-
lar from point halving based methods for scalar multiplication, we begin
in Section 2 by recalling point and divisor halving and how square root
computations come into play. Then, in Section 3 our sufficient conditions
are introduced. Square root friendly polynomials for several useful (and
used in practice) binary fields are given in Section 4, together with a
result about the existence of square root friendly trinomials, and a con-
jecture about the degrees of the non-leading terms of square root friendly
polynomials.

2 Halving and Square Roots

2.1 Point and Divisor Halving

Let E be an elliptic curve defined over F2d by a Weierstrass equation

E : y2 + xy = x3 + ax2 + b

with a, b ∈ F2d and having a subgroup G ≤ E(F2d) of large prime order.
Since computing the double of any given point P is the most common

operation in a scalar multiplication performed by double-and-add meth-
ods, an important direction of research consists in optimizing doubling
formulæ (for surveys on scalar multiplication methods and elliptic curve
operations see, for example [4, Chs. 9 and 13] or [12, Ch. 3]).

Point halving [13, 18], on the other hand, consists in computing a
point R whose double is P , i.e. such that 2R = P . To a point P with
affine coordinates (x, y) we associate the quantity λP = x + y

x . Let P =
(x, y) and R = (u, v) be points of E(F2d) \ {0} with 2R = P . The affine
coordinates of P and R are related as follows:

λR = u +
v

u
(1)

x = λ2
R + λR + a (2)

y = u2 + x(λR + 1) (3)

In order find R we have to solve (2) for λ, (3) for u, and finally (1) for v.
Thus we have to perform the following operations:

(i) Solve λ2
R + λR = a + x for λR (4)

(ii) Put t = y + x(λR + 1)

(iii) Find u with u2 = t (5)

(iv) Put v = t + uλR .
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Point halving, being the inverse operation of the doubling, is an auto-
morphism of G. Therefore, given a point P ∈ G, there is a unique R ∈ G
such that 2R = P . Thus, equations (4) and (5) can always be solved in
F2d . But, they do not determine a unique solution: Solving them will al-
ways yield two distinct points R1 and R2 such that R1 −R2 is the unique
point of order 2 of the curve. An additional check is required to determine
the unique solution in G. Knudsen [13] and Schroeppel [17, 18] show how
to perform all these steps and checks in an efficient way. According to the
analysis in [11], halving is about two times faster than doubling. We refer
the reader to [13, 17, 18, 11] for details, including the usage of halving in
place of doubling in scalar multiplication algorithms.

Birkner [8] has devised a divisor halving formula for genus two curves
based on the doubling formulae by Lange and Stevens [15]. Birkner and
Thériault [9] have dealt with genus three divisors. The performance of all
known halving formulæ depends (to a variable degree) on the performance
of square root extraction.

Further uses of point halving to speed up scalar multiplication on the
special class of elliptic Koblitz Curves [14] are found in [3, 5] and [6].

2.2 Square Root Extraction

In what follows will be only concerned with square root extraction for
binary fields represented via a polynomial basis: Let p(X) be an irre-
ducible polynomial of odd degree d, and the field F2d be constructed as
the quotient ring F2[X]/(p(X)). We identify X with its own image in F2d .

The reason behind this is that in software applications it is customary
to use a polynomial basis representation for the field extension F2d/F2

instead of a normal basis [2], because in the latter representation the cost
of a software multiplication is much higher than with a polynomial basis.

But, whereas with a normal basis a square root computation is just a
shift of the bits internal representation of the field element by one position,
matters are more complicated with polynomial bases.

In fact, even the cost of a squaring is no longer negligible. If α =∑d−1
i=0 aiX

i then α2 =
∑d−1

i=0 aiX
2i which, as a polynomial in X, has degree

no longer necessarily bounded by d, and modular reduction modulo p(X)
is necessary. Its cost is very low, but cannot be completely ignored.

Things are even more complicated for square roots. Whereas squaring
just consists in “spacing” the bits of the original element with zeros, the
bits of a generic field element cannot be just “squeezed”.
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The classic method for computing
√

α is based on Fermat’s little theo-
rem α2d

= α, hence
√

α = α2d−1

. This requires d−1 squarings. In general,
the cost of this operation is that of several field multiplications.

A more efficient method stems from the observation that
√

α can be
expressed in terms of ζ :=

√
X . If

α =
d−1∑

i=0

aiX
i

we separate the even exponents from the odd exponents

α =

d−1

2∑

i=0

a2iX
2i +

d−3

2∑

i=0

a2i+1X
2i+1 =

d−1

2∑

i=0

a2iX
2i + X ·

d−3

2∑

i=0

a2i+1X
2i

and, since square root extraction in fields of even characteristic is a linear
operation:

√
α =

d−1

2∑

i=0

a2iX
i + ζ ·

d−3

2∑

i=0

a2i+1X
i . (6)

Therefore, once ζ has been computed on a per-field basis, the computation
of a generic square root is reduced to “bits extraction and packing”,
a “rectangular” multiplication of a degree ≤ d − 1 polynomial ζ with

a polynomial
∑(d−3)/2

i=0 a2i+1X
i of degree ≤ (d − 1)/2, and a modular

reduction. Intuitively, the cost should approach a half of the cost of a
field multiplication, and this is confirmed by the analysis in [11, 13].

3 New Defining Polynomials

As we have just seen, efficient square root computation depends on the
efficiency of the multiplication of a generic degree ≤ (d−1)/2 polynomial
by ζ =

√
X. If ζ is a very sparse element, for example of weight two

or four (i.e. it has just two or four nonzero terms), then this product
can be computed by a few shift and xor operations. In [11] two types of
trinomials have been shown that allow this. The kind that interests us is

p(X) = Xd + Xm + 1

with m odd. Then X = Xd+1 + Xm+1 with d + 1 and m + 1 even, and

ζ = X(d+1)/2 + X(m+1)/2 ,
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and p(X) is square root friendly. In fact, this idea is much more general.
Assume we have an irreducible polynomial p(X) defining F2d over F2

of the form
p(X) = X · U(X)2 + 1 (7)

where U is a polynomial of degree (d−1)/2 and even weight. Then, ζ has
a very simple form in F2d : from

X2 · U(X)2 + X = 0

we obtain
ζ = X · U(X) ,

and ζ is represented by a polynomial of degree 1 + d−1
2 = d+1

2 in X.
Note at this point that the polynomial product

ζ ·
d−3

2∑

i=0

a2i+1X
i

has degree bounded by d+1
2 + d−3

2 = d−1, therefore no polynomial reduc-
tion is required.

Hence, irreducible polynomials of form (7) are square root friendly.

Definition. An irreducible polynomial of the form (7) is called a special
square root friendly polynomial.

We do not know whether there are irreducible polynomials which are
not trinomials, not of form (7), and for which

√
X has small weight. For

trinomials Xd + Xm + 1 with even m one has to check on a case by case
basis [11].

However, examples of special square root friendly polynomials abound.
For example X163 + X65 + X35 + X33 + 1 is irreducible, and under this
representation ζ has weight 4. On the other hand, the standard NIST
polynomial [16] X163 +X7 +X6 +X3 +1 defines a ζ of weight 79. Chang-
ing polynomial is in fact easy without introducing incompatibilities in
the practical use: we just change the base used for representation of the
field elements before and after the whole scalar multiplication. The cost
is comparable to a polynomial basis multiplication, and the conversion
routines require each a matrix that occupies O(d2) bits of storage (see for
instance [10], where the particular base change is to and from a normal
basis representation, but the results are the same). Therefore this over-
head is essentially negligible with respect to the full cost of the operation
that is in the order of magnitude of thousands of field multiplications. The
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bulk of the computation is then performed in the “easy” representation,
the inputs and outputs are given in the “standard” representation.

The cost of a square root extraction implemented by using the sparse
version of ζ offered by the above polynomials can be roughly estimated us-
ing, for example, already published results. For example in [11], Example
3.12, the NIST-recommended trinomial

p(X) = X233 + X74 + 1

for the finite field F2233 is used. Even though the term X74 does not have
an even exponent, ζ has a sparse representation

ζ = (X32 + X117 + X191)(X37 + 1) .

By means of this representation, finding a root via equation (6) requires
roughly 1/8 of the time of a field multiplication. As we shall show in the
next section we can choose

p(X) = X233 + X159 + 1

and in this case

ζ = X117 + X80 .

In this case it is clear that much fewer shift operations and XOR oper-
ations are required to multiply by ζ. Furthermore, as already remarked,
there is no need to perform a reduction modulo p(X) while with the stan-
dard polynomial this is in many cases (such as the one depicted above for
F2233) necessary. First implementation results show the cost of a square
root to be about 8% of that of a multiplication.

Similar formulæ for cube root computations are found in [1] – their
results are easily partially generalised to any odd characteristic.

4 Existence and other Properties

Square root friendly polynomials are easy to find. For example, for ex-
tension degree d = 163, a simple computer program immediately yields
several examples.

In Table 1 we list special square root friendly polynomials of several
degrees. The degrees have been taken from the NIST list of recommended
binary curves and from the extension degrees used in [7]. All these exten-
sion degrees are interesting because they are either used in standards for
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elliptic curve cryptography or they represent good choices for extension
degrees for defining hyperelliptic curve for cryptographic applications.

When no trinomial is available, a pentanomial is used. We always
report the polynomial with least degree sediment (the sediment of an
univariate polynomial is the polynomial itself with the leading term re-
moved). In particular, observe that also efficient trinomials are available.
Only in a handful of cases is the special square root friendly polynomial
with least degree sediment the same as the standard one, i.e. the irre-
ducible polynomial with least degree sediment but without the restriction
on being square root friendly.

Degree Irreducible tri/pentanomial ζ =
√

X Standard?

47 X47 + X5 + 1 X24 + X3 Yes
53 X53 + X19 + X17 + X15 + 1 X27 + X10 + X9 + X8 No
59 X59 + X21 + X17 + X15 + 1 X30 + X11 + X9 + X8 No
67 X67 + X25 + X17 + X5 + 1 X34 + X13 + X9 + X3 No
71 X71 + X9 + 1 X36 + X5 No
73 X73 + X25 + 1 X37 + X13 Yes
79 X79 + X9 + 1 X40 + X5 Yes
83 X83 + X29 + X25 + X3 + 1 X42 + X15 + X13 + X2 No
89 X89 + X51 + 1 X45 + X26 No
97 X97 + X33 + 1 X49 + X17 No
101 X101 + X35 + X31 + X3 + 1 X51 + X18 + X16 + X2 No
107 X107 + X37 + X33 + X23 + 1 X54 + X19 + X17 + X12 No
109 X109 + X43 + X41 + X23 + 1 X55 + X22 + X21 + X12 No
127 X127 + X + 1 X64 + X Yes
131 X131 + X45 + X41 + X9 + 1 X66 + X23 + X21 + X5 No
137 X137 + X21 + 1 X69 + X11 Yes
139 X139 + X53 + X33 + X25 + 1 X70 + X27 + X17 + X13 No
149 X149 + X51 + X47 + X9 + 1 X75 + X26 + X24 + X5 No
157 X157 + X55 + X47 + X11 + 1 X79 + X28 + X24 + X6 No
163 X163 + X57 + X49 + X29 + 1 X82 + X29 + X25 + X15 No
179 X179 + X61 + X57 + X41 + 1 X90 + X31 + X29 + X21 No
199 X199 + X67 + 1 X100 + X34 No
211 X211 + X73 + X69 + X35 + 1 X106 + X37 + X35 + X18 No
233 X233 + X159 + 1 X117 + X80 No
239 X239 + X81 + 1 X120 + X41 No
251 X251 + X89 + X81 + X3 + 1 X126 + X45 + X41 + X2 No
269 X269 + X91 + X87 + X61 + 1 X135 + X46 + X44 + X31 No
283 X283 + X97 + X89 + X87 + 1 X142 + X49 + X45 + X44 No
409 X409 + X87 + 1 X205 + X44 Yes
571 X571 + X193 + X185 + X5 + 1 X286 + X97 + X93 + X3 No

Table 1. Some special square root friendly trinomials and pentanomials.

For the extension degrees for which there are no trinomials we have
computed also the special square root friendly eptanomials with smallest
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degree sediment – the idea was, that perhaps one can find good eptanomi-
als with a sediment of significantly lower degree than the best pentanomi-
als, to improve modular reduction. These eptanomials are given in Ta-
ble 2. The interesting observation here seems to be that sediment degree
differences are very limited, so the eptanomials do not bring advantages.

Degree Irreducible eptanomial ζ =
√

X

53 X53 + X19 + X15 + X5 + X3 + X + 1 X27 + X10 + X8 + X3 + X2 + X

59 X59 + X21 + X17 + X13 + X3 + X + 1 X30 + X11 + X9 + X7 + X2 + X

67 X67 + X25 + X17 + X7 + X3 + X + 1 X34 + X13 + X9 + X4 + X2 + X

83 X83 + X29 + X25 + X7 + X5 + X3 + 1 X42 + X15 + X13 + X4 + X3 + X2

101 X101 + X35 + X31 + X9 + X7 + X + 1 X51 + X18 + X16 + X5 + X4 + X

107 X107 + X37 + X33 + X15 + X9 + X7 + 1 X54 + X19 + X17 + X8 + X5 + X4

109 X109 + X39 + X31 + X9 + X5 + X3 + 1 X55 + X20 + X16 + X5 + X3 + X2

131 X131 + X45 + X41 + X13 + X9 + X + 1 X66 + X23 + X21 + X7 + X5 + X

139 X139 + X49 + X41 + X7 + X5 + X3 + 1 X70 + X25 + X21 + X4 + X3 + X2

149 X149 + X51 + X47 + X9 + X7 + X + 1 X75 + X26 + X24 + X5 + X4 + X

157 X157 + X55 + X47 + X15 + X9 + X3 + 1 X79 + X28 + X24 + X8 + X5 + X2

163 X163 + X57 + X49 + X15 + X9 + X + 1 X82 + X29 + X25 + X8 + X5 + X

179 X179 + X61 + X57 + X13 + X9 + X5 + 1 X90 + X31 + X29 + X7 + X5 + X3

211 X211 + X73 + X65 + X13 + X11 + X3 + 1 X106 + X37 + X33 + X7 + X6 + X2

251 X251 + X85 + X81 + X7 + X5 + X3 + 1 X126 + X43 + X41 + X4 + X3 + X2

269 X269 + X91 + X87 + X15 + X13 + X11 + 1 X135 + X46 + X44 + X8 + X7 + X6

283 X283 + X97 + X89 + X13 + X9 + X + 1 X142 + X49 + X45 + X7 + X5 + X

571 X571 + X193 + X185 + X15 + X11 + X3 + 1 X286 + X97 + X93 + X8 + X6 + X2

Table 2. Some special square root friendly eptanomials.

Theorem. Let d be an odd positive integer. If an irreducible trinomial
p(X) over F2 of degree d exists, then p(X) can be chosen of the form (7),
i.e. where all the non-vanishing exponents are odd.

Proof. Let
Xd + Xm + 1

be an irreducible trinomial with d > m > 0 and m even. Then it is easy
to prove that the polynomial

Xd + Xd−m + 1

is also irreducible – but d − m is odd. In fact, let q(X) be a monic poly-
nomial over F2 with q(X) = 1, i.e. non-vanishing constant term. Define

q̂(X) = Xdeg qq(X−1)
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to be the inversion of q(X). It ie easy to see that q̂(X) is a monic poly-
nomial with non-vanishing constant term. Then, a factorization q(X) =
g(X)h(X) implies q̂(X) = ĝ(X)ĥ(X). Applying this result to q(X) =
Xd+Xd−m +1 proves that it must be irreducible, otherwise p(X) = q̂(X)
would be reducible, too. ⊓⊔

Existence results for pentanomial-defined fields are still an open ques-
tion. However, on the basis of the above table and further experimental
results, we formulate the following conjecture:

Conjecture I. Let d be an odd prime integer such that there exist no
irreducible trinomials of degree d over F2, but irreducible pentanomials of
degree d exist. Then irreducible pentanomials of the form

Xd + Xc + Xb + Xa + 1

where d > c > b > a > 0, and a, b, c are odd, also exist. Furthermore, let
p(X) be such a polynomial with c smallest. Then c ≈ d/3.

An alternative conjecture is the following one:

Conjecture II. Let d be an odd natural number and c be the minimum
of the degrees of the sediments of all (special) square root friendly poly-
nomials of degree d. Then |c − d/3| is small.

Further open questions are: how to find polynomials like the above
that are also efficient for almost-inverse computations; to balance the
possibly increased modular reduction cost with the savings obtained in
other parts of the computations. These will be the subject of future work.
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March, 2005, as well as to Nicolas Thériault and Peter Birkner for further
discussions on the matter during a stay at the Fields Institute, Toronto,
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