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Abstract. We discuss irreducible polynomials that can be used to speed
up square root extraction in fields of characteristic two. We call such
polynomials square root friendly. The obvious applications are to point
halving methods for elliptic curves and divisor halving methods for hy-
perelliptic curves.
We note the existence of square root friendly trinomials of a given degree
when we already know that an irreducible trinomial of the same degree
exists, and formulate a conjecture on the degrees of the terms of square
root friendly polynomials. We also give a partial result that goes in the
direction of the conjecture.
Irreducible polynomials p(X) such that the square root ζ of a zero x of
p(X) is a sparse polynomial are considered and those for which ζ has
minimal degree are characterized. In doing this we discover a surprising
connection these polynomials and those defining polynomial bases with
an extremal number of trace one elements.
We also show how to improve the speed of solving quadratic equations
and that the increase in the time required to perform modular reduction
is marginal and does not affect performance adversely. Experimental re-
sults confirm that the new polynomials mantain their promises; These
results generalize work by Fong et al. to polynomials other than trinomi-
als. Point halving gets a speed-up of 20% and the performance of scalar
multiplication based on point halving is improved by at least 11%.

Keywords: Binary fields, Polynomial basis, Square root extraction, Trace
computation, Quadratic equations, Point halving, Divisor halving.

1 Introduction

The main topic of this paper is square root extraction in binary fields,
even though also other operations are considered.

In [19] it is shown that square root extraction can be accelerated if a
suitable irreducible trinomial is used to define a field extension of F2.

Let p(X) be the irreducible polynomial of degree d used to define the
extension field F2d/F2. If the polynomial in X representing the square root



of the image x of X in F2d has low weight and/or degree, then general
square roots can be extracted in F2d efficiently. In this case we call p(X)
square root friendly. (This definition will be made more precise later.)

We give here sufficient conditions for an irreducible polynomial of
odd degree d to yield a low weight

√
x. In particular, we give examples

of pentanomials and eptanomials, but in at least one case, that of F2233 ,
that can be defined by trinomials, we show how one can perform square
root computations even faster than in [19].

The paper is logically divided in two parts, the first one about math-
ematical aspects (Section 2) and the second part about implementation
issues and performance (Section 3).

As the main motivation comes from elliptic curve cryptography, in
particular from point halving based methods for scalar multiplication,
in § 2.1 background material about square roots is provided and in § 2.2
point and divisor halving are recalled. In § 2.3 we classify the odd degree
polynomials with low degree

√
x and consider the trace spectra of the

corresponding polynomial bases. § 2.4 deals with the case of even degree
polynomials. Polynomials for several useful (and used in practice) binary
fields are presented in § 2.5, together with observations about the scarcity
of other types of polynomials with similar properties, a result about the
existence of square root friendly trinomials, a conjecture about the de-
grees of the non-leading terms of square root friendly polynomials, and a
theorem that supports the conjecture itself.

Finally, we move to practical aspects. Not only square root extrac-
tion is implemented (§ 3.1), but also the computation of traces over F2

(§ 3.2) and solving quadratic equations in F2d (§ 3.3). These routines are
benchmarked showing gains, whereas multiplication and squaring either
experience a negligible slowdown or even a minimal speedup. The costs
of various elliptic curve group operations and scalar multiplication algo-
rithms using different reduction polynomials for the definition field are
also given. The discussion of these results (§ 3.4) also provides the con-
clusion to the paper. In particular, we prove that a performance gain of
around 20% can be expected for the point halving alone, with a speed
increase in excess of 11% for scalar multiplication.

2 Mathematics

2.1 Background on Polynomial Bases and Square Roots

Let p(X) be an irreducible polynomial of odd degree d, and the field
F2d be constructed as F2[X]/(p(X)). Let x be the image of X in F2d .
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We consider here polynomial basis representation because we are solely
concerned with software applications.

Whereas with a normal basis [4] a square root computation is just
a shift of the bits internal representation of the field element by one
position, whose cost is basically negligible with respect to that of a mul-
tiplication, matters are different with polynomial bases. Even the cost of
a squaring becomes no longer negligible. Indeed, if α =

∑d−1
i=0 aix

i, then

α2 =
∑d−1

i=0 aix
2i need to be reduced modulo p(X). The costs are low, but

cannot be completely ignored.
Things are more complicated for square roots. Even though squaring

just consists in “spacing” the bits of the original element with zeros,
the bits of a generic field element cannot be just “compressed”. Using
Fermat’s little theorem α2d

= α, we can compute
√

α = α2d−1

. This
requires d − 1 squarings, and for large d the cost is that of several field
multiplications. In fact, it can be faster to change to a normal basis (we
need only to store the change-of-base matrix: the conversion time is then
approximately equivalent to one field multiplication, and this method
requires to store O(d2) bits [21] – see also [18]), perform the square root
extraction in that representation, then convert back to polynomial basis.

A more efficient method stems from the observation that
√

α can be
expressed in terms of ζ :=

√
x. If

α =

d−1
∑

i=0

aix
i

we separate the even exponents from the odd exponents

α =

(d−1)/2
∑

i=0

a2ix
2i +

(d−3)/2
∑

i=0

a2i+1x
2i+1 = (αeven)2 + x · (αodd)2

where

αeven =

(d−1)/2
∑

i=0

a2ix
i and αodd =

(d−3)/2
∑

i=0

a2i+1x
i

and, since square root in a field of even characteristic is a linear operation:

√
α = αeven + ζ · αodd (1)

Therefore, once ζ has been computed on a per-field basis, the compu-
tation of a generic square root is reduced to “bits extraction and packing”,
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a “rectangular” multiplication of a degree ≤ d − 1 polynomial ζ with a

polynomial
∑(d−3)/2

i=0 a2i+1x
i of degree ≤ (d − 1)/2 in x, and a modular

reduction. Intuitively, the cost should approach a half of the cost of a field
multiplication and this is confirmed by the analysis in [19, 22].

2.2 Point and Divisor Halving

Let E be an elliptic curve defined over F2d by a Weierstrass equation

E : Y 2 + XY = X3 + aX2 + b

with a, b ∈ F2d and having a subgroup G ≤ E(F2d) of large prime order.
Since computing the double of any given point P is the most common

operation in a scalar multiplication performed by double-and-add meth-
ods, an important direction of research consists in optimizing doubling
formulæ (for surveys on scalar multiplication methods and elliptic curve
operations see, for example [9, Chs. 9 and 13] or [20, Ch. 3]).

Point halving [22, 27], on the other hand, consists in computing a point
R whose double is P , i.e. such that 2R = P . Given a point P ∈ G, there
is a unique R ∈ G with 2R = P . Halving is an automorphism of G.

In order to perform this operation one needs to solve a quadratic
equation of the form λ2 + λ + α = 0 for λ, extract a square root, perform
two multiplications and some additions. Note that there are two points
R1 and R2 on the curve with 2R1 = 2R2 = P . To determine which one is
in G, an additional check involving a trace computation is required. We
refer the reader to [22, 27, 19] for details, including the usage of halving
in place of doubling in scalar multiplication algorithms. According to the
analysis in [19], halving is about two times faster than doubling.

Birkner [13] has a divisor halving formula for genus two curves based
on the Lange–Stevens doubling formulae [24]. Birkner and Thériault [14]
deal with genus three divisors. The performance of all known halving
formulæ depends (to a variable degree) on the performance of square root
extraction. Further uses of point halving to speed up scalar multiplication
on (elliptic) Koblitz Curves [23] are found in [7, 10] and [11].

2.3 Square-Root Friendly Polynomials (Mostly Odd Degree)

Let the extension degree d be odd. The speed of square root computation
depends on the efficiency of the multiplication of a generic polynomial of
degree ≤ (d − 1)/2 by ζ =

√
x. If ζ is very sparse, for example of weight

two or four (i.e. it has just two or four nonzero terms), then this product
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can be computed by a few shift and XOR operations. In [19] two types of
trinomials have been shown that allow this. The kind that interests us is

p(X) = Xd + Xm + 1

with m odd. Then x = xd+1 + xm+1 with d + 1 and m + 1 even, and

ζ = x(d+1)/2 + x(m+1)/2 ,

and p(X) is square root friendly. In fact, this idea is much more general.
Assume the irreducible polynomial p(X) defining F2d over F2 has form

p(X) = X · U(X)2 + 1 (2)

where U is a polynomial of degree (d − 1)/2 and even weight w (hence
p(X) has weight w + 1). Then, ζ has a very simple form in F2d : from
x2 · U(x)2 + x = 0 we obtain

ζ = x · U(x) ,

and ζ is represented by a polynomial of degree 1 + (d− 1)/2 = (d + 1)/2
and weight w. Furthermore, note that the polynomial product

ζ ·
(d−3)/2
∑

i=0

a2i+1x
i

has degree bounded by (d+1)/2+(d−3)/2 = d−1, therefore no polynomial
reduction is required if a square root is computed by formula (1). Hence,
irreducible polynomials of form (2) are square root friendly.

Note that the low degree of ζ not only guarantees that no modular
reduction is necessary, but puts also a bound on the complexity of the
multiplication by ζ (even though its sparseness has an even bigger in-
fluence). It is therefore interesting to ask whether there are irreducible
polynomials p(X) that lead to a ζ of even lower degree. This cannot hap-
pen, and requiring the degree of the polynomial representing ζ to be at
most (d + 1)/2 in fact almost characterizes the polynomials (2).

Theorem 1. Let the field extension F2d/F2 be defined by an irreducible
polynomial p(X) of odd degree d, and let x be the image of X in F2d.
Suppose that ζ :=

√
x is a polynomial of degree at most (d + 1)/2 in x.

Then the degree of ζ is exactly (d + 1)/2 and either

(i) p(X) = 1 + X · U(X)2 and ζ = x · U(x) for some U(X) ∈ F2[X] of
degree exactly (d − 1)/2; or
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(ii) p(X) = 1 + (X + 1) · X2 · W(X)2 and ζ = 1 + (x + 1) · x · W(x) for
some W(X) ∈ F2[X] of degree exactly (d − 3)/2.

Proof. Let ζ = V(x) where V(X) ∈ F2[X]. Suppose that degV ≤ (d −
1)/2. Then the relation ζ = V(x) implies V(x)2 + x = 0 and thus x
would be a zero of the polynomial V(X)2 + X of degree at most d − 1,
contradicting the fact that x has degree d.

From now on let degV = (d + 1)/2.

If X|V(X), then x is a root of 1 + V(X)2

X that has degree d. Therefore
this polynomial is p(X) and we are in the first case with U(X) = V(X)/X.

Now let X ∤ V(X), which implies V(0) = 1. Since x is a root of
X +V(X)2 it is p(X)|X +V(X)2 and and (X +1) · p(X) = (X +V(X)2).
We add X + 1 to both sides of the last equality and exploit the linearity
of squaring to get (X +1) · (1+p(X)) = (1+V(X))2.. In turn this implies
that X + 1 divides 1 + V(X), and since X|(1 + p(X)), also X divides
1 + V(X). Hence V(X) = 1 + (X + 1) · X · W(X) for some polynomial
W(X) ∈ F2[X] and we are in the second case. ⊓⊔

Definition 1. An irreducible polynomial of form (2) is called a special
square root friendly (SSRF) polynomial of type I.

An irreducible polynomial

p(X) = 1 + (X + 1) · X2 · W(X)2 (3)

for some W(X) ∈ F2[X] of degree exactly (d − 3)/2 is called a special
square root friendly polynomial of type II.

Example 1. The irreducible polynomial X163 +X57 +X49 +X29 +1 is of
type I, and the corresponding ζ has weight four. On the other hand, the
standard NIST polynomial [26] X163 + X7 + X6 + X3 + 1 defines a ζ of
weight 79 (cf. Appendix A).

We do not know whether there are other families of irreducible poly-
nomials which are not trinomials, not of one of the forms (2) or (3), and
for which

√
x has small weight. Even for trinomials Xd+Xm+1 with even

m one has to check on a case by case basis, but examples are known [19].
Still, SSRF polynomials abound: see § 2.5.

Remark 1. Changing polynomial is easy without introducing incompat-
ibilities in cryptographic applications: we just change the base used for
representation of the field elements before and after the bulk of the com-
putation. In general the cost of one conversion is, as as for the conversion
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between normal and polynomial bases, about one field multiplication.
Therefore this overhead is essentially negligible with respect to the full
cost of a scalar multiplication, that is in the order of magnitude of hun-
dreds to thousands of field multiplications (see for example § 5.3 of [5]).

Remark 2. The cost of a square root extraction implemented by using the
sparse version of ζ offered by the above polynomials can be roughly esti-
mated using, for example, already published results. For example in [19],
Example 3.12, the NIST-recommended trinomial

p(X) = X233 + X74 + 1 (4)

for the finite field F2233 is used. Even though the term X74 does not have
an odd exponent, ζ has a sparse representation

ζ = (x32 + x117 + x191)(x37 + 1) .

By this, finding a root via equation (1) requires roughly 1/8 of the time of
a field multiplication. As we shall show in the next section we can choose

p(X) = X233 + X159 + 1

and in this case
ζ = x117 + x80 .

The number of shift operations and XOR operations required to multiply
by ζ is thus reduced. Furthermore, as already remarked, there is no need
to perform a reduction modulo p(X) while with non-square root friendly
polynomials this is always necessary, even with the polynomial (4). Im-
plementation results show the cost of a square root to be less than 9% of
that of a multiplication. See § 3.4 for precise results.

Remark 3. Similar formulæ for cube root computations are found in [1]
– their results are easily partially generalised to any odd characteristic.

Remark 4. Type I SSRF polynomials enjoy another very useful property.
In [2] it is proved: If F2d is defined by an irreducible polynomial p(X)
whose non constant terms all have odd exponents, then the trace of a field
element α represented as

∑d−1
i=0 aix

i with respect to the polynomial basis
induced by p(X) is its constant term a0. In other words, the only trace-
one element in the polynomial basis defined by p(X) is 1. This is very
important in the applications: for instance, as remarked in § 2.2, a trace
computation is necessary to correctly halve a point. It is especially for-
tunate that the same family of polynomials makes both square roots and
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trace computations faster. Type II SSRF polynomials do not enjoy this
property, however they are not relevant for the applications, as we shall
see at the beginning of Subsection 2.5. It is interesting to observe that
this type of polynomials was also investigated in [2], because all element
of the polynomial basis, except at most for 1, have trace one, but the
connection to the type I SSRF polynomials, due to the common minimal-
ity of degree of

√
x, is new and surprising. The following theorem is (a

slight extension of) Theorem 10 from [2]. For the reader’s convenience,
we provide also a proof (omitted in [2]).

Theorem 2 ([2, Theorem 10]). Let p(X) =
∑d

i=0 ad−iX
i be an irre-

ducible polynomial over F2 of degree d (with a0 = ad = 1) and let x be
the image of X in F2d.

If d is odd, then Tr(1) = 1, otherwise Tr(1) = 0.
Tr(αk) = 1 for all 1 ≤ k < d if and only if a2i = a2i+1 for i with

0 ≤ i ≤ ⌊d/2⌋ − 1.

Proof. We begin by recalling a few known facts. Let p(X) = Xd +
a1X

d−1 + . . . + ad−1X + ad be an irreducible polynomial of degree d
over F2, and let x the image of p(X) in F2d . Define

sk = Tr(αk) for 0 ≤ k < d . (5)

Then by Newton’s identity [25, Theorem 1.75], we have

sk + sk−1a1 + sk−2a2 + . . . + s1ak−1 + kak = 0 (6)

for 1 ≤ k < d.
From the definition of the trace we see at once that Tr(1) = d mod 2.
Suppose first that sk = 1 for all 1 ≤ k < d. From identity (6) with

k = 1 it follows that s1+a1 = 0, i.e. a1 = 1. Now consider a2i and suppose
that for 0 ≤ j < i we have a2j = a2j+1 (this is true for j = 0). From (6)
with k = 2i we see that

s2i + s2i−1a1 + s2i−2a2 + s2i−3a3 + . . . + s2a2i−2 + s1a2i−1 + 2ia2i = 0

or, in other words

(1 + a1) + (a2 + a3) + . . . + (a2i−2 + a2i−1) + 2ia2i = 0 .

Since a1 = 1 and a2j = a2j+1, for all j with 0 ≤ j < i we see that the last
relation reduces to 2ia2i = 0, that is satisfied for all values of a2i. Then,
consider again (6), but this time with k = 2i + 1

s2i+1 + s2ia1 + . . . + s3a2i−2 + s2a2i−1 + s1a2i + (2i + 1)a2i+1 = 0 .
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Then

(1 + a1) + (a2 + a3) + . . . + (a2i−2 + a2i−1) + a2i + (2i + 1)a2i+1 = 0

that becomes a2i + (2i + 1)a2i+1 = 0, in other words a2i = a2i+1.
By following the above arguments in the inverse order, it is easy to

see that if p(X) satisfies a2i = a2i+1 then sk = 1 for all 1 ≤ k < d. ⊓⊔

Note that the above theorem holds for all d, i.e. it is not restricted to
odd d. In § 2.4 we investigate the even degree case.

2.4 Square-Root Friendly Polynomials of Even Degree

Since, as already remarked, Theorem 2 holds also for even degree d, in this
Subsection we shall consider the case where the degree d of the extension
is even. Square roots can be computed in an entirely analogous way to
the odd degree case by suitably defining αeven and αodd. In this case, the
polynomials defining αeven and αodd both have degree (d − 2)/2.

Theorem 3. Let Xd +Xm +1 with d even, m odd and m < d be an irre-
ducible polynomial over F2, and x the image of X in F2d = F2[X]/(p(X)).
Then √

x = x
2d−m+1

2 + x
d−m+1

2 + x
m+1

2 . (7)

If m = d/2 (with m odd) note that
√

x = x
3

4
d+ 1

2 .

The proof is trivial and omitted. In [2] it is proved that there are
⌊(d − 1)/(d − m)⌋ trace one elements in the polynomial basis associated
to Xd + Xm + 1. It is Tr(xi) = 1 for 0 ≤ i < d if and only if (d − m) | i.

In particular, if m ≤ d/2 there is exactly one trace one element,
namely xd−m. These trinomials, if they exist, are good for trace compu-
tation as well as square root extraction – even though in the last case
modular reduction of the product ζ ·αodd will be necessary, unless m = 1,
in which case ζ = xd/2 + 1.

Since trinomials do not exist for all extension degrees, we need to
characterize generic polynomials with good properties. This is done in
the next theorem.

Theorem 4. Let d be even, and let the field extension F2d/F2 be defined
by p(X) an irreducible polynomial of degree d. Suppose that ζ =

√
x =

V(x) where V(X) ∈ F2[X] is a polynomial of degree d/2.
Then p(X) = V(X)2 + X with V of even weight and V(0) = 1. Fur-

thermore, the only trace one element in the polynomial basis associated
to p(X) is xd−1.
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Proof. If
√

x = V(x) with V(X) ∈ F2[X] and deg(V) = d/2, then upon
squaring the relation

√
x = V(x) we obtain V(x)2 + x = 0. Since x

is a root of V(X)2 + X and of the irreducible polynomial p(X) of the
same degree, we see that p(X) = V(X)2 + X. The other properties of V
are now immediate. The statement about the trace spectrum is a simple
application of identity (6). ⊓⊔

Since deg(V) = d/2 we have that ζ ·αodd has degree d−1 and thus does
not need to be reduced. These polynomials are good for trace computation
and square root computation.

By allowing flexibility in the choice of the weight, we have examples
for all degrees. There are trinomials, such as X46 + X + 1, for which√

x = x23 + 1, and also pentanomials, like X48 + X38 + X4 + X + 1, for
which clearly

√
x = x24 + x19 + x2 + 1.

Increasing the degree of V(X) even just by one is enough to obtain
trace spectra that are no longer extremal, even though they still show an
interesting periodicity.

Theorem 5. Let d be even, and let the field extension F2d/F2 be defined
by p(X) an irreducible polynomial of degree d. Suppose that ζ =

√
x =

V(x) where V(X) ∈ F2[X] is a polynomial of degree d/2 + 1.

Then

V(X) = (X2 + X + 1) · X · W(X) + X + 1

and

p(X) = (X2 + X + 1) · X2 · W(X)2 + 1

for a suitable polynomial W(X) of degree d/2 − 1 and even weight. The
trace spectrum [Tr(xi) : i = 0, 1, 2, ..., d− 1] of p(X) is periodic and equal
to [0, 1, 1, 0, 1, 1, . . .].

Proof. If
√

x = V(x) with V(X) ∈ F2[X] and deg(V) = d/2 + 1. We
obtain this that either V(X)2 + X = (X2 + 1) · p(X), or V(X)2 + X =
(X2 + X + 1) · p(X). In the first case it would be X2 + 1|V(X)2 + X but
since X2 + 1|X2i + 1 for all i this would imply X2 + 1|V(1) + X which is
impossible by degree considerations.

Hence X2 +X +1|V(X)2 +X, which implies that X2 +X +1 divides
V(X)2 + X2 + 1, (V(X) + X + 1)2, and thus finally V(X) + X + 1. Hence
V(X) = (X2+X+1)·W0(X)+X+1 and p(X) = (X2+X+1)·W0(X)2+1
with W0(X) of even weight and X|W0(X). Hence, if we set W0 = X ·W:
V(X) = (X2 + X + 1) · X · W(X) + X + 1 and p(X) = (X2 + X + 1) ·
X2 · W(X)2 + 1 with W(X) of even weight.
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The statement about the trace spectrum is a straightforward applica-
tion of identity (6). ⊓⊔

2.5 Existence and Degrees of the Terms

With applications in sight, let us focus again on SSRF polynomial of odd
degree. Such polynomials are easy to find. For example, for extension
degree d = 163, a simple Magma [16] script determined all 713 (special)
type I SSRF pentanomials of degree 163 in less than one minute.

But, there are no type II SSRF pentanomials of degree 163. The first
(in lexycographic order) eptanomial of degree 163 is X163 +X162 +X59 +
X58 + X3 + X2 + 1 However, Type II SSRF trinomials and pentanomials
exist. For type II, 1 + X126 + X127 is a type II trinomial with ζ = 1 +
x63 +x64. For fields not defined by trinomials, we know only a few type II
pentanomials. For degree 43, for example, we have X43+X42+X29+X28+
1, for which of course ζ = x22 + x21 + x15 + x14 + 1. For prime degrees
under 500 for which no irreducible trinomial exists (but pentanomials
exist), the only prime degrees for which type II SSRF pentanomials exist
are: 13, 43, 59, 101, 109, 157, 173, 181, 269, 311, 397, 461, and 491.

The difficulty in finding type II SSRF polynomials is not a concern.
For the applications, the most important SSRF polynomials are those of
Type I, because in general they have reasonably low degree sediment (the
sediment of an univariate is obtained by removing its leading term). A
type II SSRF polynomial of degree d has form Xd + Xd−1 + . . . + 1 and
in general reduction modulo these polynomials is not efficient.

One way of finding good ones would be to try to find a type II SSRF
polynomial p(X) of maximum weight, for which (X + 1) · p(X) has a
low weight, and mimic the reduction procedures explained in [3]. Since
pentanomials are always found, this approach is interesting if we find
(X + 1) · p(X) of weight four. If

pd,m(X) = 1 +
∑

1≤i≤d−1
i6=m

X2i + X2i+1

for any d and ≤ m ≤ (d− 3)/2, we see that (X + 1) · pd,m(X) has weight
four only if m = 1. Then pd,1(X) is irreducible and of prime degree for
d = 31, 97, 151, 577, 7879 and for no other degree below 10000. In the
first four cases, irreducible trinomials exist, and degree 7879 requires a
pentanomial.

In Table 1 we list (Type I) SSRF polynomials of several degrees. The
degrees have been taken from the NIST list of recommended binary curves
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Degree Irreducible tri/pentanomial ζ =
√

x Standard?

47 X47 + X5 + 1 x24 + x3 Yes
53 X53 + X19 + X17 + X15 + 1 x27 + x10 + x9 + x8 No
59 X59 + X21 + X17 + X15 + 1 x30 + x11 + x9 + x8 No
67 X67 + X25 + X17 + X5 + 1 x34 + x13 + x9 + x3 No
71 X71 + X9 + 1 x36 + x5 No
73 X73 + X25 + 1 x37 + x13 Yes
79 X79 + X9 + 1 x40 + x5 Yes
83 X83 + X29 + X25 + X3 + 1 x42 + x15 + x13 + x2 No
89 X89 + X51 + 1 x45 + x26 No
97 X97 + X33 + 1 x49 + x17 No
101 X101 + X35 + X31 + X3 + 1 x51 + x18 + x16 + x2 No
107 X107 + X37 + X33 + X23 + 1 x54 + x19 + x17 + x12 No
109 X109 + X43 + X41 + X23 + 1 x55 + x22 + x21 + x12 No
127 X127 + X + 1 x64 + x Yes
131 X131 + X45 + X41 + X9 + 1 x66 + x23 + x21 + x5 No
137 X137 + X21 + 1 x69 + x11 Yes
139 X139 + X53 + X33 + X25 + 1 x70 + x27 + x17 + x13 No
149 X149 + X51 + X47 + X9 + 1 x75 + x26 + x24 + x5 No
157 X157 + X55 + X47 + X11 + 1 x79 + x28 + x24 + x6 No
163 X163 + X57 + X49 + X29 + 1 x82 + x29 + x25 + x15 No
179 X179 + X61 + X57 + X41 + 1 x90 + x31 + x29 + x21 No
199 X199 + X67 + 1 x100 + x34 No
211 X211 + X73 + X69 + X35 + 1 x106 + x37 + x35 + x18 No
233 X233 + X159 + 1 x117 + x80 No
239 X239 + X81 + 1 x120 + x41 No
251 X251 + X89 + X81 + X3 + 1 x126 + x45 + x41 + x2 No
269 X269 + X91 + X87 + X61 + 1 x135 + x46 + x44 + x31 No
283 X283 + X97 + X89 + X87 + 1 x142 + x49 + x45 + x44 No
409 X409 + X87 + 1 x205 + x44 Yes
571 X571 + X193 + X185 + X5 + 1 x286 + x97 + x93 + x3 No

Table 1. Some special square root friendly trinomials and pentanomials.

and from the extension degrees used in [12]. All these extension degrees
are interesting because they are either used in standards for elliptic curve
cryptography or they represent good choices for extension degrees for
defining hyperelliptic curve for cryptographic applications.

When no trinomial is available, a pentanomial is listed. We always
report the polynomial with least degree sediment. Only in a handful of
cases is the SSRF polynomial with least degree sediment the same as the
standard one, i.e. the irreducible polynomial with least degree sediment
but without the restriction on being square root friendly.

We first note that if an irreducible trinomial of a given odd degree
exists, then we can always find one which is square root friendly.
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Theorem 6. Let d be an odd positive integer. If an irreducible trinomial
p(X) = Xd + Xm + 1 over F2 of degree d exists, then p(X) can be chosen
of form (2), i.e. where the exponent m of the middle term is odd.

Proof. Let Xd + Xm + 1 be an irreducible trinomial with d > m > 0
and m even. Then it is easy to prove that the polynomial Xd + Xd−m +
1 is also irreducible – but d − m is odd. In fact, let q(X) be a monic
polynomial over F2 with q(X) = 1, i.e. non-vanishing constant term. Let
q∗(X) = Xdeg qq(X−1) be the reciprocal polynomial of q(X). It ie easy
to see that q∗ is a monic polynomial with non-vanishing constant term.
Then, a factorization q(X) = g(X)h(X) implies q∗(X) = g∗(X)h∗(X).
Applying this result to q(X) = Xd + Xd−m + 1 proves that it must be
irreducible, otherwise p(X) = q∗(X) would be also reducible. ⊓⊔

Existence results for pentanomial-defined fields are still an open ques-
tion. However, on the basis of Table 1 and further experimental results,
we found further evidence for an observation of Ahmadi and Menezes:
In [2] they list irreducible pentanomials p(X) having only non-constant
terms with odd exponent for which the sediment has lowest degree, and
observe that if d ≡ ±3 (mod 8), the degree of the sediment is at least d/3,
whereas if d ≡ ±1 (mod 8), then the degree of the sediment is usually
quite small. In fact, if a trinomial exists for degree d, then a square-root
friendly pentanomial with a sediment of degree much lower than d/3 usu-
ally also exists.

For the extension degrees for which there are no trinomials we com-
puted not only the SSRF pentanomials but also the eptanomials with
smallest degree sediment – the idea was, that perhaps one can find good
eptanomials with a lower degree sediment than the best pentanomials, to
improve modular reduction: they are given in Table 2. Similar searches for
polynomials with nine and eleven terme have been performed. We imme-
diately observe here that sediment degree differences are very limited, so
the eptanomials do not bring advantages. The same observation applies
to polynomials with nine or eleven terms. A pattern in the distribution
of degrees of the second term of the sediment of SSRF polynomials up
to degree 3000 and with up to eleven terms prompts us to formulate the
following conjecture:

Conjecture 1. Let d be an odd positive integer, and c be the minimum
of the degrees of the sediments of all square root friendly polynomials
of degree d. Further, let c′ be the minimum of the degrees of the second
highest degree term of all the sediments of degree c of square root friendly
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Degree Irreducible eptanomial ζ =
√

x

53 X53 + X19 + X15 + X5 + X3 + X + 1 x27 + x10 + x8 + x3 + x2 + x

59 X59 + X21 + X17 + X13 + X3 + X + 1 x30 + x11 + x9 + x7 + x2 + x

67 X67 + X25 + X17 + X7 + X3 + X + 1 x34 + x13 + x9 + x4 + x2 + x

83 X83 + X29 + X25 + X7 + X5 + X3 + 1 x42 + x15 + x13 + x4 + x3 + x2

101 X101 + X35 + X31 + X9 + X7 + X + 1 x51 + x18 + x16 + x5 + x4 + x

107 X107 + X37 + X33 + X15 + X9 + X7 + 1 x54 + x19 + x17 + x8 + x5 + x4

109 X109 + X39 + X31 + X9 + X5 + X3 + 1 x55 + x20 + x16 + x5 + x3 + x2

131 X131 + X45 + X41 + X13 + X9 + X + 1 x66 + x23 + x21 + x7 + x5 + x

139 X139 + X49 + X41 + X7 + X5 + X3 + 1 x70 + x25 + x21 + x4 + x3 + x2

149 X149 + X51 + X47 + X9 + X7 + X + 1 x75 + x26 + x24 + x5 + x4 + x

157 X157 + X55 + X47 + X15 + X9 + X3 + 1 x79 + x28 + x24 + x8 + x5 + x2

163 X163 + X57 + X49 + X15 + X9 + X + 1 x82 + x29 + x25 + x8 + x5 + x

179 X179 + X61 + X57 + X13 + X9 + X5 + 1 x90 + x31 + x29 + x7 + x5 + x3

211 X211 + X73 + X65 + X13 + X11 + X3 + 1 x106 + x37 + x33 + x7 + x6 + x2

251 X251 + X85 + X81 + X7 + X5 + X3 + 1 x126 + x43 + x41 + x4 + x3 + x2

269 X269 + X91 + X87 + X15 + X13 + X11 + 1 x135 + x46 + x44 + x8 + x7 + x6

283 X283 + X97 + X89 + X13 + X9 + X + 1 x142 + x49 + x45 + x7 + x5 + x

571 X571 + X193 + X185 + X15 + X11 + X3 + 1 x286 + x97 + x93 + x8 + x6 + x2

Table 2. Some special square root friendly eptanomials.

polynomials of degree d. Then

3 c − d = c − c′ =

{

8 if d ≡ 1 (mod 3)

4 if d ≡ 2 (mod 3) .

A first result in this direction has already been proved by Bluher [15]
using a result of Swan [28] (that in fact goes back to Stickelberger). Her
result is: The odd degree polynomial p(X) = Xd +

∑

i∈S Xi + 1 in F2[X],
where S ⊂ {i : i odd , 0 < i < d/3} ∪ {i : i ≡ d (mod 4), 0 < i < d}
has no repeated roots; if d = ±1 (mod 8), then f has an odd number of
irreducible factors; and if d = ±3 (mod 8), then f has an even number of
irreducible factors. In fact, by adapting the proof given in [3] of Bluher’s
result, it is possible to prove the following theorem:

Theorem 7. Let d be an odd positive integer and the polynomial p(X) ∈
F2[x] have degree d and satisfy one of the following conditions:

1. If d ≡ 1 (mod 3), then p(X) is either of the form

– Xd + X
d+8

3 +
∑

j∈J

Xj + 1 where J =
{

j : j odd, 1 ≤ j < d−19
3

}

– or Xd +
∑

j∈J ′

Xj + 1 where J ′ =
{

j : j odd, 1 ≤ j ≤ d+5
3

}

;
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2. If d ≡ 2 (mod 3), then p(X) is either of the form

– Xd + X
d+4

3 +
∑

j∈J

Xj + 1 where J =
{

j : j odd, 1 ≤ j ≤ d−11
3

}

– or Xd +
∑

j∈J ′

Xj + 1 where J ′ =
{

j : j odd, 1 ≤ j ≤ d+1
3

}

.

Then p(X) is square-free. Furthermore, if d ≡ ±1 mod 8 then p(X) has
an odd number of irreducible factors, whereas d ≡ ±3 mod 8 then p(X)
has an even number of irreducible factors and therefore must be reducible.

Remark 5. We already mentioned in Remark 4 that in [2] the polynomials
we study are proven to permit efficient computation of traces. In Con-
jecture 9 of [2] it is also speculated that if an irreducible pentanomial of
degree d exists, then an irreducible pentanomial of the same degree defin-
ing a polynomial basis with only one trace-one element also exists. In the
similar vein we could try to restrict our Conjecture 1 to pentanomials,
but we have the following example for degree 1987:

X1987 + X665 + X661 + X549 + 1 .

This polynomial has minimal degree sediment, and the sediment has min-
imal degree second term among all irreducible pentanomials with minimal
degree sediment. We have d ≡ 1 (mod 3) and 3 c− d = 8, but the second
term of the sediment has degree 661, not 657. On the other hand, with
eptanomials we find following irreducible

X1987 + X665 + X657 + X25 + X21 + X9 + 1 ,

and we know of no other irreducibles of the form

X1987 + Xc + Xc′ + other lower odd degree terms + 1

with c smaller than 665 or with c = 665 and c′ smaller than 657.

3 Practical Aspects

For several binary fields F2d we implemented a few operations, including
(but not only) multiplication, squaring, square roots, and also trace and
half-trace computations (the latter is used for solving quadratic equa-
tions). For multiplication and squaring we implemented generic routines
as well as routines that have been optimized for each degree, by (par-
tially) unrolling all loops and avoiding superfluous operations, especially
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those involving most significant bits of operands that are known to be
zero. For example, the routines for 83 and 89 bit fields, as well as those
for 193 and 191 bit fields are different and have different performance,
despite the fact that in the first two examples the inputs all fit in 3 words
of 32 bits, and in the second they all fit in 6 words. Our implementation
was written in the C programming language, the compiler used was gcc

version 4.0.1. In fact the new routines are an extension of the library
described in [8] (some performance discrepances are due to the fact that
some other routines have been improved in the meantime) and as such in
the current version processes the operands with a 32-bit granularity.

Depending on the nature of the chosen reduction polynomial we im-
plemented some routines such as modular reduction and square root ex-
traction in different ways. In a few cases we implement the same field
twice using two different reduction polynomials in order to compare the
different situations.

3.1 Extracting a Square Root

To implement square root extraction of a field element α we use formula
(1): the only part that changes between different implementations is how
the multiplication ζ ·αodd is realized. Furthermore, among the square root
friendly polynomials we only consider the SSRF polynomials of type I.

To compute αeven and αodd from α we use a 16-bit to 8-bit look-
up table to compress the bits. Using a trick due to Robert Harley, this
table is stored in 256 consecutive bytes by compressing the input i as
(i + i >> 7)& 0xff.

If the reduction polynomial p(X) is not SSRF of type I, then the
Hamming weight of the square root is counted at the time of initialization
of the library - hence only once. If this weight is low enough then a simple
routine that XORs together shifted copies of αodd according to which
bits in ζ are set is used. If the weight is higher than a certain threshold,
then a comb binary polynomial multiplication method is used, where the
precomputations relative to ζ are performed only once, at initialization
time. A reduction modulo p(X) is then performed, if necessary.

By means of this we can always keep the time of the multiplication ζ ·
αodd to just under a half of the time of a generic field multiplication: Note,
however, that this time can be substantially higher than the time required
for the per-field, ad-hoc optimized implementation of multiplication, as
our experimental results in § 3.4 show.

In the case where the degree d reduction polynomial p(X) is square
root friendly, we also have a simple routine that XORs together shifted
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copies of αodd according to which bits in ζ are set, but since the weight is
very low and known, the routine can be unrolled completely. Furthermore,
as already mentioned, in this case no modular reduction is necessary. This
routine is the one that delivers the best performance.

3.2 Trace Computation

We follow here [19] and [2]. For generic binary fields, to compute the trace
from F2d to F2 we use the fact that the trace is linear. In other words, once
we have computed Tr(xi) for all i with 0 ≤ i < d, in order to compute
the trace of an element α ∈ F2d , α =

∑d−1
i=0 aix

i where the ai ∈ F2, we
have

Tr (α) =

d−1
∑

i=0

ai Tr(xi) .

The latter sum can be implemented by a componentwise multiplication
(hence, a logical AND operation) of the bit vector representing the element
α with a bit vector whose i-th component (starting with the zeroth com-
ponent!) is the trace of xi, called the trace vector, followed by a bit count
modulo 2. Both operations can be performed very efficiently. The trace
vector is of course computed once for each field.

However, when a square root friendly polynomial is used to represent
the field Fd with d odd, the trace vector contains just one bit set, namely
the least significant bit, and Tr (α) = a0.

We therefore implemented two different routines: the first one uses a
trace vector and the second one just polls the value of a single bit.

3.3 Solving Quadratic Equations (Half-Traces)

In order to solve quadratic equations of the form

λ2 + λ = α (8)

for λ ∈ F2d where α ∈ F2d we implement just one generic routine, that
takes the element c as an input as well as a precomputed table.

The half-trace operator on F2d (d odd) is defined as

H(α) =

(d−1)/2
∑

i=0

α22i

and it is easily verified that it is F2-linear, and that H(α) satisfies H(α)2+
H(α) = α + Tr(α). Therefore, in order to solve equation (8) we first have
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to check whether Tr(α) = 0. Only in that case (8) is solvable: Then we
compute the half-trace H(α) of α and H(α), H(α) + 1 are the solutions.

One optimization consists in removing the coefficients of even powers
of x as detailed in [19]: We write H(α) = H(α′) + β where α′ has fewer
nonzero coefficients than α. This can be done by observing that H(x2i) =
H(xi)+x2i+Tr(x2i). We can thus reduce the amount of stored half-traces
of powers of x by half.

Our approach differs from the one in [19] in that we do not make
ad-hoc attempts to minimize memory requirements. Instead, we reduce
the number of half-traces to be accumulated by increasing the amount of
precomputations. We compute and store H(ℓ0x

8i+1 + ℓ1x
8i+3 + ℓ2x

8i+5 +
ℓ3x

8i+7) for all i ≥ 0 such that 8i + 1 ≤ d − 2 and all (ℓ0, ℓ1, ℓ2, ℓ3) ∈
F4

2 r {(0, 0, 0, 0)} such that the degree of the argument of H is at most
d−2. By means of this we reduce by a factor 32/15 the expected number
of table lookups and additions of half-traces.

3.4 Results, Conclusions

We benchmarked our implementation. Table 3 collects the timings of
our routines on a PowerPC G4 running at 1.5 Ghz. (Table 4 shows the
timings of the same 32-bit code on on an Intel Core 2 Duo CPU running
at 1.83 Ghz.) Several field operations are timed, and the costs relative to
a field multiplication are provided. The reduction polynomials are given
as well as if they are square root friendly or not.

We have chosen degrees in various more or less evenly spaced ranges
to fulfil the following requirements: the “classical” extension degrees 163,
191, and 233 must be included, fields around integer submultiples of these
sizes should also be taken into account (that’s the reason for degrees in
the ranges 40-50 and 80-100, and 127), and we should provide examples of
fields where the “standard” polynomial (either in the sense that it comes
from standard documents, or that it is the most common one used for
computations in computer algebra systems) already is square root friendly
as well as cases where it is not – in the latter scenario we also choose a
second defining polynomial that is SSRF of type I. Furthermore, all these
combination of cases should happen with trinomial defined fields as well
as when pentanomials are used. The “submultiples” ranges are relevant
because of Trace Zero Varieties coming from elliptic curves [17, 6], and
future investigation will consider the use of point and divisor halving for
these algebraic groups.

Our implementation shows some interesting results.
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Field Reduction Sqrt Operation Timings (µsec) Costs relative to one Mul
(Bits) Polynomial Frnd Mul Sqr Inv Sqrt Trace Eq Sqr Inv Sqrt Trace Eq

41 41,3,0 Yes .084 .013 .448 .015 .007 .129 .160 5.340 .178 .078 1.536

43 43,6,4,3,0 No .090 .016 .453 .327 .020 .128 .179 5.010 3.619 .227 1.422

43 43,17,9,5,0 Yes .090 .017 .454 .018 .007 .126 .186 5.029 .196 .072 1.400

47 47,5,0 Yes .089 .013 .478 .015 .007 .128 .150 5.344 .167 .083 1.438

83 83,7,4,2,0 No .212 .030 .915 .383 .023 .191 .141 4.313 1.806 .107 .901

83 83,29,25,3,0 Yes .214 .045 .925 .054 .007 .192 .209 4.316 .254 .034 .897

89 89,38,0 No .253 .023 .958 .354 .023 .200 .089 3.782 1.398 .092 .791

89 89,51,0 Yes .253 .024 .958 .025 .007 .201 .093 3.782 .098 .027 .794

97 97,6,0 No .311 .028 1.598 .401 .025 .256 .091 5.139 1.289 .081 .823

97 97,33,0 Yes .304 .024 1.576 .028 .006 .252 .080 5.191 .091 .020 .829

127 127,1,0 Yes .418 .053 1.814 .062 .007 .288 .127 4.345 .149 .016 .689

163 163,7,6,3,0 No .819 .086 5.317 .679 .033 .388 .105 6.491 .829 .040 .474

163 163,57,49,29,0 Yes .821 .090 5.327 .095 .007 .391 .110 6.491 .116 .009 .476

191 191,9,0 Yes .896 .083 5.804 .093 .008 .429 .093 6.474 .104 .009 .479

223 223,33,0 Yes 1.198 .098 12.865 .113 .006 .501 .082 10.737 .094 .005 .418

233 233,74,0 No 1.336 .101 14.599 .918 .037 .582 .076 10.925 .687 .028 .436

233 233,159,0 Yes 1.330 .090 14.593 .117 .006 .584 .068 10.971 .088 .005 .439

Table 3. Operations in some Binary Fields on a PowerPC G4 running at 1.5 Ghz. Mul,
Sqr, Inv, Sqrt, Tr and Eq denote multiplication, squaring, field inversion, square root
extraction, trace and half-trace computation respectively.

1. The claims made in [19] about the speed of optimized square root
extraction for fields defined by suitable trinomials are extended to
pentanomials. Our results show for fields of 163, 191, and 233 bits an
even further reduced Sqrt/Mul ratio. The gain with respect to generic
implementations of square roots ranges from 8 to 20, and it is higher
for smaller fields (a recurring theme, cf. [8]).

2. Multiplication and squaring may get marginally slower because the
SSRF polynomials usually do not have minimal degree sediments,
and thus the reduction routine is more complex. The differences are
minimal, field squaring paying a slightly higher toll than field multipli-
cation. – the reason is due to the higher relative increase of complex-
ity for a simple routine such as squaring, which in turn causes, for
instance, less efficient register coloring in the C compiler. The com-
plexity increase in the reduction routine is relatively small, see for
instance Appendix B – in particular with respect to the number of
machine operations required to perform a multiplication.

Sometimes a small performance improvement (presumably due to ran-
domness) is observed. Field inversion and half-trace computation are
unaffected by the choice of polynomial.

3. Computing traces with type I SSRF polynomials takes nearly negli-
gible time.
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Field Reduction Sqrt Operation Timings (µsec) Costs relative to one Mul
(Bits) Polynomial Frnd Mul Sqr Inv Sqrt Trace Eq Sqr Inv Sqrt Trace Eq

41 41,3,0 Yes .061 .012 1.367 .020 .009 .067 .203 22.569 .338 .154 1.108

43 43,6,4,3,0 No .065 .017 1.383 .227 .018 .067 .257 21.214 3.486 .271 1.029

43 43,17,9,5,0 Yes .067 .017 1.405 .024 .009 .067 .250 20.950 .361 .139 1.000

47 47,5,0 Yes .063 .012 1.491 .021 .009 .067 .194 23.532 .338 .147 1.059

83 83,7,4,2,0 No .184 .037 2.744 .277 .017 .126 .198 14.877 1.503 .091 .685

83 83,29,25,3,0 Yes .181 .036 2.752 .034 .009 .126 .198 15.195 .185 .049 .698

89 89,38,0 No .203 .035 2.869 .265 .017 .133 .172 14.103 1.302 .082 .654

89 89,51,0 Yes .205 .040 2.849 .037 .010 .132 .197 13.923 .180 .049 .645

97 97,6,0 No .224 .031 3.690 .284 .018 .187 .137 16.448 1.267 .081 .831

97 97,33,0 Yes .235 .049 3.651 .037 .009 .185 .209 15.536 .157 .038 .787

127 127,1,0 Yes .308 .038 4.378 .043 .009 .217 .124 14.225 .140 .030 .703

163 163,7,6,3,0 No .468 .067 6.891 .449 .019 .317 .142 14.734 .960 .040 .677

163 163,57,49,29,0 Yes .473 .070 6.891 .073 .009 .315 .149 14.560 .154 .020 .665

191 191,9,0 Yes .658 .059 7.609 .063 .007 .354 .089 11.568 .096 .011 .538

223 223,33,0 Yes .854 .066 10.846 .078 .009 .420 .077 12.699 .092 .010 .492

233 233,74,0 No .952 .086 12.175 .597 .021 .464 .090 12.787 .627 .022 .488

233 233,159,0 Yes .944 .089 12.355 .081 .008 .464 .094 13.084 .086 .008 .492

Table 4. Operations in some Binary Fields on an Intel Core 2 Duo running at 1.83 Ghz.

4. In [19] computing an half-trace requires approximately 2/3 the time
of a field multiplication, but for fields of the same sizes our ratios are
often lower than 1/2, because we use a lot of precomputations.

In Table 5 we give estimates of the costs relative to one field multipli-
cation of elliptic curve group addition, doubling, halving and scalar mul-
tiplication using various algorithms. We have used the operations counts
from [5, § 5.2], but the ratios between field operations come from our
Table 3 for the Power PC G4. We can see that the use of type I SSRF
polynomials has a noticeable impact on scalar multiplication performance
based on point halving. Point halving alone is sped up by about 20%, and
the whole scalar multiplication by about 14% for curves defined over F2163

and by 11% if the base field is F2233 . These improvements are much larger
that the difference in field multiplication performance (a 2.5 h loss for
F2163 , a 4.5 h gain for F2233). Similar improvements can be achieved on
the Yao-like scalar multiplication algorithms from [5].

Square root friendly polynomials should be used when implementing
formulæ that make heavy use of square root extraction in fields of char-
acteristic two. For solving quadratic equations then we advise to increase
the amount of precomputed half-traces to improve performance. In par-
ticular, the improvements in scalar multiplication performance based on
point halving obtained in [19] by using special trinomial can be carried
over to fields defined by pentanomials. Around 20% can be expected for
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Field Group Operations Scalar Multiplication

Degree
Sqrt Affine Coords. Mixed A + LD Affine Coords. Mixed
Frnd Add,Dbl Hlv mixed A Dbl D& A H& A D& A

163 N 8.596 3.343 8.525 5.175 1550.3 834.5 1137.2

163 Y 8.601 2.601 8.550 5.200 1551.4 715.0 1141.1

191 Y 8.567 2.592 8.465 5.115 1801.3 825.0 1310.7

233 N 13.001 3.151 8.380 5.030 3369.4 1291.0 1588.6

233 Y 13.039 2.532 8.340 4.990 3379.2 1149.4 1579.8

Table 5. Costs of elliptic curve group operations and scalar multiplication relative
to those of a field multiplication. Add, resp. Dbl, Hlv mean Addition, resp. Dou-
bling, Halving, and D &A, resp. H& A means windowed scalar multiplication based
on Double-and-Add, resp. Halve-and-Add. Scalar multiplications methods use affine
coordinates as well as mixed affine-Lopez-Dahab coordinates.

the point halving alone, with an impact of 11% to 14% on the entire scalar
multiplication.
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A Some values of ζ

In this appendix we provide two comparisons of the values of ζ when type
I SSRF polynomials are used and when they are not.
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A.1 Degree 83

For the field F283 we choose p(X) = X83 + X29 + X25 + X3 + 1. The
corresponding expression for ζ is x42 + x15 + x13 + x2.

Computer algebra systems, like Magma [16] , usually suggest to use
the polynomial p(X) = X83 +X7 +X4 +X2 +1 instead. But, in this case
ζ = x82+x80+x79+x77+x76+x74+x73+x71+x70+x68+x67+x65+x64+
x62 +x61 +x59 +x58 +x56 +x55 +x53 +x52 +x50 +x49 +x47 +x46 +x44 +
x43 +x41 +x39 +x38 +x36 +x35 +x33 +x32 +x30 +x29 +x27 +x26 +x24 +
x23+x21+x20+x18+x17+x15+x14+x12+x11+x9+x8+x5+x4+x3+1.
The internal representation of ζ, given in hexadecimal notation where the
most significant bits are to the left, is 5b6db 6db6dadb6db6db39, that has
weight 54. It shows some intriguing patterns.

A.2 Degree 163

To define F2163 we choose X163 + X57 + X49 + X29 + 1, and we have
ζ = x82 + x29 + x25 + x15 of weight four.

On the other hand, if the standard polynomial p(X) = X163 + X7 +
X6+X3+1 is used, then ζ = x162+x159+x156+x153+x150+x147+x144+
x141 + x138 + x135 + x132 + x129 + x126 + x123 + x120 + x117 + x114 + x111 +
x108+x105 +x102+x99 +x96+x93+x90+x87+x84+x81 +x79+x78+x76+
x75 +x73 +x72 +x70 +x69 +x67 +x66 +x64 +x63 +x61 +x60 +x58 +x57 +
x55+x54+x52+x51+x49+x48+x46+x45+x43+x42+x40+x39+x37+x36+
x34+x33+x31+x30+x28+x27+x25+x24+x22+x21+x19+x18+x16+x15+
x13+x12+x10+x9+x7+x5+x4, of weight 79. The internal representation
of ζ is 4 92492492492492492492db6db6db6db6db6db6b0.

B Comparing some modular reduction routines

The use of a square root friendly polynomial can slow down modular
reduction, but we already observed that this performance loss is minimal.
This is explained by the fact that even though reduction does become
more expensive, the amount of additional operations is rather small.

As an example, we report here the reduction code for the two degree
163 polynomials which we used. The input is given as eleven 32-bit words
rA,r9,r8,...,r1,r0 and the reduced output is computed in place in the
six least significant words r5,r4,r3,r2,r1,r0.

To reduce modulo X163 +X7 +X6 +X3 +1, the number of necessary
logical operations between CPU registers is 74. Reduction modulo X163 +
X57 + X49 + X29 + 1 takes 89 logical operations.
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#define bf_mod_163_7_6_3_0(rA,r9,r8,r7,r6,r5,r4,r3,r2,r1,r0) do { \
/* reduce rA */ \
r5 ^= (rA) ^ ((rA) << 3) ^ ((rA) << 4) ^ ((rA) >> 3); \
r4 ^= ((rA) << 29); \
/* reduce r9 */ \
r5 ^= ((r9) >> 29) ^ ((r9) >> 28); \
r4 ^= (r9) ^ ((r9) << 3) ^ ((r9) << 4) ^ ((r9) >> 3); \
r3 ^= ((r9) << 29); \
/* reduce r8 */ \
r4 ^= ((r8) >> 29) ^ ((r8) >> 28); \
r3 ^= (r8) ^ ((r8) << 3) ^ ((r8) << 4) ^ ((r8) >> 3); \
r2 ^= ((r8) << 29); \
/* reduce r7 */ \
r3 ^= ((r7) >> 29) ^ ((r7) >> 28); \
r2 ^= (r7) ^ ((r7) << 3) ^ ((r7) << 4) ^ ((r7) >> 3); \
r1 ^= ((r7) << 29); \
/* reduce r6 */ \
r2 ^= ((r6) >> 29) ^ ((r6) >> 28); \
r1 ^= (r6) ^ ((r6) << 3) ^ ((r6) << 4) ^ ((r6) >> 3); \
r0 ^= ((r6) << 29); \
/* reduce the 29 most significant bits of r5 */ \
r6 = (r5) >> 3; r5 &= 0x00000007; \
r0 ^= (r6) ^ ((r6) << 3) ^ ((r6) << 6) ^ ((r6) << 7); \
r1 ^= ((r6) >> 26) ^ ((r6) >> 25); \

} while (0)

#define bf_mod_163_57_49_29_0(rA,r9,r8,r7,r6,r5,r4,r3,r2,r1,r0) do { \
/* reduce rA */ \
r6 ^= ((rA) << 22) ^ ((rA) << 14); \
r5 ^= ((rA) << 26) ^ ((rA) >> 3); \
r4 ^= ((rA) << 29); \
/* reduce r9 */ \
r6 ^= ((r9) >> 10) ^ ((r9) >> 18); \
r5 ^= ((r9) << 22) ^ ((r9) << 14) ^ ((r9) >> 6); \
r4 ^= ((r9) << 26) ^ ((r9) >> 3); \
r3 ^= ((r9) << 29); \
/* reduce r8 */ \
r5 ^= ((r8) >> 10) ^ ((r8) >> 18); \
r4 ^= ((r8) << 22) ^ ((r8) << 14) ^ ((r8) >> 6); \
r3 ^= ((r8) << 26) ^ ((r8) >> 3); \
r2 ^= ((r8) << 29); \
/* reduce r7 */ \
r4 ^= ((r7) >> 10) ^ ((r7) >> 18); \
r3 ^= ((r7) << 22) ^ ((r7) << 14) ^ ((r7) >> 6); \
r2 ^= ((r7) << 26) ^ ((r7) >> 3); \
r1 ^= ((r7) << 29); \
/* reduce r6 */ \
r3 ^= ((r6) >> 10) ^ ((r6) >> 18); \
r2 ^= ((r6) << 22) ^ ((r6) << 14) ^ ((r6) >> 6); \
r1 ^= ((r6) << 26) ^ ((r6) >> 3); \
r0 ^= ((r6) << 29); \
/* reduce the 29 most significant bits of r5 */ \
r6 = (r5) >> 3; r5 &= 0x00000007; \
r2 ^= ((r6) >> 7) ^ ((r6) >> 15); \
r1 ^= ((r6) << 25) ^ ((r6) << 17) ^ ((r6) >> 3); \
r0 ^= ((r6) << 29) ^ (r6); \

} while(0)
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