
Cryptanalysis of White-Box DES
Implementations with Arbitrary External

Encodings

Brecht Wyseur1, Wil Michiels2, Paul Gorissen2, and Bart Preneel1

1 Katholieke Universiteit Leuven
Dept. Elect. Eng.-ESAT/SCD-COSIC,

Kasteelpark Arenberg 10, 3001 Heverlee, Belgium
{brecht.wyseur,bart.preneel}@esat.kuleuven.be

2 Philips Research Laboratories
Prof. Holstlaan 4, 5656 AA, Eindhoven, The Netherlands

{wil.michiels,paul.gorissen}@philips.com

March 21st, 2007

Abstract. At SAC 2002, Chow et al. [4] presented a method for imple-
menting the DES block cipher such that it becomes hard to extract the
embedded secret key in a white-box attack context. In such a context, an
attacker has full access to the implementation and the executing environ-
ment. In order to provide an extra level of security, an implementation
shielded with external encodings was introduced by Chow et al. and im-
proved by Link and Neumann [9]. Several attacks and improvements have
been presented on the implementation without these encodings, but until
February 2007, none were able to extract the shielded implementation.
In this paper, we present an algorithm to extract the secret key from the
implementation as presented by Link and Neumann. The cryptanalysis
is a differential attack on the obfuscated round, with the advantage that
it is independent of the shielding external encodings. Therefore it can be
applied to any existing white-box DES implementation. We also imple-
mented this cryptanalysis which runs with a time complexity of 214, and
has a negligible space complexity.

1 Introduction

White-box cryptography attempts to protect secret keys embedded into the soft-
ware implementation of a block cipher. The attack model for these implemen-
tations is defined as the white-box attack model. In this model, an attacker is
considered to have full control over the implementation and its execution en-
vironment. This model is the opposite of the black-box attack model in which
an attacker can only use the input and output behaviour of cryptographic algo-
rithms in order to find the secret key.

For the black-box model, several strong cryptographic block ciphers have
been proposed, such as DES (Data Encryption Standard), its successor AES

(Advanced Encryption Standard) and many others. attacks have been presented
on reduced round versions. Cipher designers aim to reduce the number of rounds,
for which a cipher is secure, while cryptanalysists try to construct an attack
on as many rounds as possible. For AES-128 and AES-192, a 7 and 8 round
cryptanalysis has been presented respectively (out of 10 and 12 rounds). For
DES, 3 theoretical attacks already exist on the full 16 rounds, but until now
no practical attacks have been found. In a white-box attack model, this game
of design and cryptanalysis fails completely, since an attacker has access to the
round functions, and can thus perform a cryptanalysis on a chosen part of the
implementation representing a reduced number of round functions.

In 2002, Chow et al. [4] proposed a white-box implementation of DES. The
main idea is to implement the block cipher as a network of lookup tables. All
the operations of the block cipher, such as the key addition, are embedded into
these lookup tables, which are then randomised to obfuscate their behaviour.
This process of obfuscation obstructs attacks such as the cryptographic attacks
on a reduced number of rounds, timing attacks, cache attacks (e.g., [10]) or
implementation attacks [8].

Together with the white-box DES implementation proposal, Chow et al. [3]
described a white-box AES implementation. The design principles are similar
and shielding encodings are applied in the same way as they are applied to
white-box DES implementations. The encoded white-box AES implementation
has been cryptanalysed by Billet et al. [2] using algebraic properties of AES to
attack the implementation on the obfuscated round functions. Several publica-
tions described cryptanalysis results of ‘naked’ white-box DES implementations,
i.e., without the shielding (external) encodings. Chow et al. have indicated the
weakness of the naked variant in the original paper on DES white-box [4]. Ja-
cob et al. [7] and Link and Neumann [9] also presented attacks on this variant.
In [9], Link and Neumann present a white-box DES implementation that has no
external encodings and that is resistant to these three attacks. Both this naked
variant and the implementation of Chow et al. with external encodings have
withstood cryptanalysis.

In this paper, we describe the cryptanalysis of both these white-box DES
implementations. The work presented has been conducted independently from
Goubin et al. [6], who presented independent results at the time of writing this
paper. In their paper, Goubin et al. briefly describe a cryptanalysis of the white-
box DES implementation of Link and Neumann [9], which is then extended to
a cryptanalysis of the white-box DES implementation with external encodings,
through the analysis of the external input encoding. They can only deal with the
case of linear external encodings; our new method works independently of the
external encodings, and can thus be applied to white-box DES implementation
with arbitrary external encodings.

The attack presented in this paper targets the internal behaviour of the imple-
mentation; it is a differential cryptanalysis [1] on the obfuscated round functions,
which are accessible in a white-box environment, and it is independent of the
definition and implementation of the external encodings. Therefore, it applies

to both the naked white-box DES implementation of Link and Neumann [9],
and to the white-box DES implementation with external encodings as presented
by Chow et al.. We have also implemented this cryptanalysis and successfully
conducted several tests on binaries of white-box DES implementations.

The reminder of this paper is organised as follows: in Sect. 2 we give an
overview of the white-box implementation of DES as proposed by Chow et al. [4].
The core of this paper, the cryptanalysis of the resulting obfuscated cipher, is
described in Sect. 3. We have also implemented our attack and performed tests
on white-box DES binaries. The results and considerations of the implementation
are described in Sect. 4 and 5.

2 White-Box DES

For the sake of completeness and to synchronise with the terminology used in
the description of the cryptanalysis, an overview of DES and white-box DES is
presented in this section.

The Data Encryption Standard (DES) is a block cipher operating on 64-bit
blocks with a key length of 56 bits; it has been adopted by NIST in 1977 as
the encryption standard with the perspective of being fast, simple and secure.
Although its successor AES (Advanced Encryption Standard) is designed to meet
new security requirements and the evolution of computers, DES or variants like
3DES are still implemented and deployed in various applications, in particular
in the financial sector.

32

32

32 32

48 16

3232

48 16

16

P E

E

Lr−1 Rr−1

RrLr

S1...8

E

Yr

P

(a) (b)

Lr−1

RrXrLr

Rr−1

Dr

Xr−1Lr−1 Rr−1

select

k

S1...8
merge

Cr

Non-Linear Layer

Affine Layer

k

Fig. 1. (a) One round of DES (b) One round of white-box DES

DES is a Feistel cipher with 16 rounds, embedded between an initial per-
mutation IP before the rounds, and its inverse permutation IP−1 after the last
round. Fig. 1 (a) depicts one round of DES. It has the following building blocks:
an expansion operation E; an addition of a 48-bit round key Kr which is gen-
erated from the key schedule; 8 S-box operations Si (each S-box is a non-linear
mapping from 6 bit to 4 bit); and a bit permutation P .

The main idea of compiling DES as a white-box implementation is to express
DES as a sequence of lookup tables, and to obfuscate these tables by encoding
their inputs and outputs. In this section, we discuss the steps for implementing
DES with an embedded secret key, as described by Chow et al. [4] and improved
by Link et al. [9] and Wyseur and Preneel [12].

As the S-boxes are the only non-linear component of the round function, we
can divide the round into a non-linear layer, denoted by Cr, and a linear layer,
denoted by Dr. This is depicted by the dotted lines in Fig. 1 (a), while the
alternative representation is depicted in Fig. 1 (b).

2.1 T-boxes

The first layer of each white-box DES round consists of 12 T-boxes, which are
defined as {

T r
j = b0b1||b2b7||Sj(b2b3b4b5b6b7 ⊕ kr

j) (a) ∀j = 1 . . . 8
T r

j = b0b1b2b3||b4b5b6b7 (b) ∀j = 9 . . . 12

Here r denotes the round number (1 ≤ r ≤ 16), b0...7 represent the 8 input bits
to each T-box, and kr

j represents 6 bits of the round key. Fig. 2.1 depicts both
types of T-boxes.

These 12 T-boxes represent the function Cr of round r of the DES imple-
mentation. The first 8 T-boxes are called non-linear T-boxes, as they contain the
non-linear S-boxes. Furthermore, each of these 8 non-linear T-boxes passes on 2
bits of Lr−1, and the 2 outer input bits to the S-box. Due to the construction of
the DES S-boxes, which have a bijective relation between the 4 middle input bits
b3b4b5b6 and the output bits, these T-boxes are bijective 8-to-8 bit bijections.
This property is often referred to as having entropy 8. This design property is
needed to prevent the T-boxes to leak information as described by Chow et al. [4].
Variations on the design [12] can be introduced, such as rearranging bypass bits,
as long as the design properties are fulfilled.

The 8 non-linear T-boxes bypass 16 bits of Lr−1 and 16 bits of Rr−1 in total.
The other 16 bits of Lr−1 and 16 bits of Rr−1 are bypassed using 4 linear T-
boxes. We call these T r

j (∀j = 9 . . . 12) bypass T-boxes, and the 16 bits of Rr−1

they bypass we denote restricted bits, denoted by Rr−1.
A first randomisation we apply is to shuffle the 12 T-boxes of Cr such that

it is not straightforward to know which S-box is contained into which T-box.
As shuffling is a linear operation: we can implement this operation in the affine
operations Dr−1 (shuffle) and Dr (unshuffle). Denote with π the shuffle operation
which maps the T-box with internal S-box Si to Tπ(i).

Sj

kr
j

T r
j T r

j

(a) (b)

Lr−1 Xr−1 Lr−1 Rr−1

Lr−1 Rr−1YrLr−1 Rr−1

Fig. 2. The 2 types of T-boxes: (a) non-linear T-box with internal S-box (b) bypass
T-box

2.2 Implementing the linear operations

The transformation Dr is a linear transformation of 96 bits to 96 bits, and can
thus be implemented as a 96 × 96 bit matrix M multiplication y = Mx. In
order to implement this multiplication as a network of lookup tables, we use a
technique called matrix decomposition. The main strategy is to subdivide the
96×96 bit matrix M into m×n sub-matrices. Each sub-matrix m×n represents
how an n-bit sub-vector of the input vector affects an m-bit sub-vector of the
output vector. We implement each sub-matrix as a lookup table with 2n rows of
m bits.

In order to implement the full linear operation, the results of the outputs
of the sub-matrix lookup tables must be XOR-ed. Each XOR operation applies
to 2m bits and results into m bits. Putting it all together, implementing these
XOR operations as a lookup table of 22m rows of m bits results into the full
linear operation to be a network of lookup tables. Such a network is presented
in Fig. 2.2.

Although lookup tables occupy much more space than linear operations, we
need to implement the linear operations as lookup tables to apply non-linear
encodings to the network. For both security and optimisation purposes, Dr is
decomposed into 8×4 lookup tables (m = 4, n = 8). As every 8 bit T-box result
of Cr is then fed into 24 decomposed tables of the affine operation Dr, we can
fold this T-box with every of its following 8×4 lookup tables, and thus eliminate
the 8× 8 lookup tables, condensing the implementation. This optimisation step
has been suggested by Link et al. [9].

Output state (y)

Input state (x)

. . .

. . .

y xM

Fig. 3. Schematic overview how m bits of y can be computed from the x through a
network of lookup tables.

2.3 Re-indexing and delinearisation

The steps mentioned above transform DES into a network of lookup tables with
an embedded key. At this point, these lookup tables do not provide much security
as it is not difficult to extract the key from the content of the tables. To protect
this content, input/output encodings are applied to these lookup tables.

Let Λ be a lookup table, and f and g be random bijections. Then g ◦Λ ◦ f−1

is defined as its encoded version. We encode all lookup tables in the network,
in such a way that the output encoding is cancelled by the input decoding
incorporated into the next lookup table. Thus, consider a sequence of connected
lookup tables

Λn ◦ Λn−1 ◦ . . . ◦ Λ2 ◦ Λ1 .

Then, in a simplified description, these lookup tables are encoded with random
bijections fi, gi such that

(gn ◦ Λn ◦ g−1
n−1) ◦ (gn−1 ◦ Λn−1 ◦ g−1

n−2) ◦ . . . ◦ (g2 ◦ Λ2 ◦ g−1
1) ◦ (g1 ◦ Λ1 ◦ f1)

with fi = g−1
i−1. This is a simplified description, because in practice, these encod-

ings are the concatenation of small nibble encodings. As the lookup tables have
an output of m = 4 bits, the encodings cannot have a larger dimension. Note
that wider input and output encodings are not possible, as the delinearisation
cannot exceed the boundaries of the lookup tables they are applied to. Applying
all these encodings results into external encodings. Thus, a cipher is transformed
into a cipher with external encodings:

Ek → G ◦ Ek ◦ F.

Note that in the recommended variant as presented by Chow et al., F = M1◦M0

and G = M4 ◦ M3, where M0 and M4 are affine mixing bijections. A mixing

bijection is a bijective affine transformation which attempts to maximise the
dependency of each output bit on all input bits. M1 combines the initial DES
permutation IP and the expansion E, while M3 combines the final operations
such as the DES permutation P and the inverse initial permutation IP−1. Both
F and G are encoded with nibble encodings in order to make them non-linear.

Without these external encodings, a white-box implementation (that is, a
naked white-box implementation) becomes potentially vulnerable in the first and
last round. Attacks on a naked implementation have been presented in [4,9,7].

3 Cryptanalysis

A detailed examination of the white-box DES implementation as presented by
Chow et al. shows that, when encrypting a plaintext, the relation between the
internal states does not behave randomly. With the internal state before round r,
we denote the 96 bits that represent Lr−1||Xr−1||Rr−1, the input to the T-boxes
of round r, i.e., the 12-bytes vector vr

1||vr
2|| . . . vr

12, where vr
j is the encoded input

to an encoded T-box T r
j . Each state can only be encoded with a concatenation

of nibble encodings. Because wider input and output encodings are not feasible,
and the DES design properties that input bits affect only a limited amount of
output bits of the round function, we can observe that 8-bit chunks of the state
to round r do not affect all 8-bit chunks of the state to round r + 1.

This observation results into the main idea of our cryptanalysis: from the
propagation of a difference to the input of an encoded T-box, we obtain in-
formation about the internal behaviour of this difference. This information is
further refined using a repeated process of difference propagation observation,
until we have exactly identified a set of differences to the input of an encoded
T-box. From this set, we will be able to recover the DES key embedded into the
implementation.

Below, we present the steps to identify differences to the input of T-boxes,
and how this results into the recovery of the embedded secret key. In Sect. 3.1,
we identify the set of differences which represent flips of Rr−1 bits. This leads
to the identification of flips of the two middle input bits of S-boxes in round
r + 2, and further into the identification of single input bit flips to S-boxes in
round r + 3, described in Sect. 3.2. This information is then used in Sect. 3.3 to
identify the S-boxes contained inside the T-boxes, and the value of the input to
these S-boxes. In Sect. 3.4, we explain how this results into the recovery of the
embedded key.

Initialisation phase. During the initialisation of our cryptanalysis, we choose
a random plaintext and run it through the implementation, storing all internal
states. For this plaintext that we will deduce the corresponding inputs to the
S-boxes. The value of the initial plaintext itself is of no importance, because
the key recovery will only rely on the difference relation between the inputs
to the S-boxes. Hence, this cryptanalysis also works for the white-box DES

implementation with external encodings, for which an encoded plaintext is fed
into DES.

3.1 Finding restricted bit flips

Let T r
j be an arbitrary encoded T-box in round r, encoded with input encoding

fr
j and output encoding gr

j . Let vr
j denote its 8-bit input vector set by the

initialisation phase. In this section we present an algorithm to construct the set
SR(T r

j) = {∆v = vr
j ⊕ v′|v′ ∈ GF (2)8; v′ 6= vr

j ; fr
j (∆v) an Rr−1 bit flip} of all

input differences to the encoded T r
j which represent flips of one or two restricted

bits (|fr
j (∆v)| ∈ {1, 2}). Similarly, we define the sets SR(T r

j) and SR\R(T r
j). A

difference ∆v is applied to T-box T r
j as follows: substitute the jth byte of the

internal state before round r from vr
j into v′, and compute the round function

Dr ◦ Cr with this new internal state as input.
The algorithm consists of two parts: (1) constructing the set SR(T r

j) of all
differences which represent single bit flips and some double bit flips of Rr−1, and
(2) to divide this set into SR(T r

j) and SR\R(T r
j).

Finding single Rr−1 bit flips. Let ∆v : vr
j → vr

j ⊕∆v be a difference for the
input of T r

j while the inputs vr
l to the other T-boxes T r

l are set to the values
from the initialisation phase (∀l 6= j : ∆vr

l = 0). We observe the difference
propagation in the next rounds, and formulate two observations:

Observation 1 If ∆v represents a single bit flip of Rr−1, then in round r + 2,
at most 2 T-boxes are affected (i.e., its input changes).

Proof. When ∆v represents a single Rr−1 bit flip, then in round r+1 it represents
a single Lr bit flip, as the reader can deduce from Fig. 1(b). Because of the
expansion and selection operation, this will result into 2 bits flipped to round
r+2 (one of Xr+1 and one of Rr+1; or both Xr+1 flips). Thus at most 2 T-boxes
in round r + 2 are affected. ut

Observation 2 If ∆v represents flips of Lr−1 or Yr bits, then there is a large
probability that more than 2 T-boxes are affected in round r + 2.

If not more than 2 T-boxes are affected, we denote ∆v as a false positive. In
this case, the input to an S-box in round r+1 changes in at least one and at most
3 bits. The effect on the output bits of this S-box depends on its other input
bits, which depend on the inputs vr

l set at the initialisation phase. Therefore,
the number of affected T-boxes in round r + 2 will very likely change if we set
other inputs to T r

l .
Thus, if the number of affected T-boxes in round r + 2 is larger than 2, ∆v

does not represent a flip of Rr−1 bits (see Observation 1). If the number is smaller
than or equal to two, then we need to perform extra checks with other input bits
to remove false positives. With each extra check, the probability of having a false
positive reduces. In the implementation as presented by Chow et al., the total

differences representing Rr−1 bit flips for all the T-boxes of one round, is exactly
40: 16 single Rr−1 bit flips originating from Xr−1, 16 single Rr−1 bit flips, and
8 double Rr−1 bit flips. If

∑
j |SR(T r

j)| > 40, then extra checks are required to
remove the false positives. Note that we cannot distinguish some double flips of
Rr−1 bit flips from single bit flips. For the implementation of Chow et al., this is
the case when the bypass bits of both middle bits of an S-box are flipped. Thus,
8 double flips are detected for one round.

Algorithm 1 describes this procedure, where all input differences ∆v of T r
j

representing these flips are stored in the set SR(T r
j).

Algorithm 1 Selecting single Rr−1 bit flips

1: Set all vr
l

2: for all ∆v ∈ GF (2)8\{0} do
3: Compute 2 round functions
4: if # affected T-boxes ≤ 2 then
5: extra check: set new vr

l ; ∀l 6= j
6: Compute 2 round functions
7: if # affected T-boxes ≤ 2 then
8: ∆v → SR(T r

j)
9: end if

10: end if
11: end for

Split Rr−1 into Rr−1 and Rr−1\Rr−1 flips. Let ∆v represent flips of Rr−1

bits.

Observation 3 If ∆v ∈ SR(T r
j) represent a flip of Rr−1 bits, there are exactly

2 propagated differences in round r + 2. One difference will affect more than 2
T-boxes in round r + 4, while the other difference will affect at most 2 T-boxes
in round r + 4.

Proof. Let ∆v ∈ SR(T r
j) represent a (single or a double) flip of Rr−1 bits. Then,

in round r + 2, this will propagate to a flip of the two middle input bits of an
S-box Sm in T-box T r+2

m . Denote ∆m the propagated input difference to T r+2
m .

Furthermore, this flip will also be bypassed because of the selection operation
(see Fig. 1(b)). If this would be bypassed by T r+2

m as well, then this T-box has
entropy 7, in contradiction to the T-box design. Thus a second T-box T r+2

n is
affected, with input difference ∆n. Therefor, ∆v will affect exactly 2 T-boxes
T r+2

m , T r+2
n with input differences ∆m,∆n.

Consider the following DES S-box design properties [5]:

∆in = 0wxyz0 ⇒ |∆out| ≥ 2 (1)
|∆in| = 1 ⇒ |∆out| ≥ 2 (2)

with wxyz ∈ GF (2)4\{0}. Because of (1), ∆m represents a flip of at least two
Yr+2 bits at the output of the S-box. Due to the DES permutation P diffusion
property and (2), ∆m will affect more than 2 T-boxes in round r + 4. ∆n
represents a flip of bits of Rr+1, and affect no more than two T-boxes in round
r + 4 (see Observation 1). ut
Observation 4 If ∆v ∈ SR(T r

j) represents a flip of Rr−1\Rr−1 bits, then two
propagated differences in round r +2 will affect more than two T-boxes in round
r + 4.

Proof. If ∆v ∈ SR(T r
j) represents a single flip of Rr−1\Rr−1 bits, then for 2

S-boxes in round r + 2, exactly one bit will be affected. Because at most one
S-box can be contained in a T-box, exactly two T-boxes will be affected. Because
of (2), both will represent a flip of at least two Yr+2 bits. Because of the DES
permutation P diffusion property, both propagated differences in round r + 2
will then affect strictly more than two T-boxes in round r + 4. ut

Hence, we also have a tool to distinguish non-linear T-boxes. From Obser-
vation 3, we deduce that T-box T r+2

m is a non-linear T-box as it contains the
S-box Sm, while both affected T-boxes of Observation 4 are non-linear T-boxes
as well. In Algorithm 2, the splitting procedure using the latter two observations
is described. Note that during the algorithm, we also store the differences ∆m
representing flips of middle bits (b4b5) to an S-box Sm in the set SM (T r+2

m). Note
also that from Observation 3 and Observation 4, Observation 1 can be defined
more strictly to require exactly 2 T-boxes to be affected.

Algorithm 2 Split Rr−1 into Rr−1 and Rr−1\Rr−1 flips

1: for all ∆v ∈ SR(T r
j) do

2: Compute 2 round functions
3: ∆m, ∆n← propagated differences in round r + 2 of T r+2

m , T r+2
n m 6= n

4: δm← # affected T-boxes in round r + 4 propagated by ∆l in round r + 2.
5: δn← # affected T-boxes in round r + 4 propagated by ∆m in round r + 2.
6: if δm > 2 and δn = 2 then
7: ∆v → S

R(T r
j); ∆m→ SM (T r+2

m)
8: Denote T r+2

m as non-linear T-box
9: else if δm = 2 and δn > 2 then

10: ∆v → SR(T r
j); ∆n→ SM (T r+2

n)
11: Denote T r+2

n as non-linear T-box
12: else if δm > 2 and δn > 2 then
13: ∆v → SR\R(T r

j)

14: Denote both T r+2
m and T r+2

n as non-linear T-box
15: end if
16: end for

The combination of Algorithm 1 and Algorithm 2 results into the following
useful information:

Sr
R

= ∪jSR(T r
j) Differences representing restricted bit flips

Sr+2
M = ∪jSM (T r+2

j) Differences representing S-box middle bit flips
T r+2

π(1) . . . T r+2
π(8) The 8 non-linear T-boxes (π unkown)

Note that, using the set Sr
R

= ∪jSR(T r
j), we can efficiently compute the set

Sr+2

R
for round r + 2 without using Algorithm 1. As described in Observation 3,

from ∆v ∈ Sr
R
, we compute ∆n ∈ Sr+2

R
. Because of the one-to-one relation

between ∆v and ∆n; |Sr+2

R
| = |Sr

R
| = 24. We can conclude that we have all the

required differences for the set Sr+2

R
. Thus, when for two consecutive rounds, SR

is found, we can compute this set for all subsequent rounds using Observation 3
only.

Complexity. We define the complexity of the cryptanalysis as the number of
round functions of the white-box implementation that need to be computed. The
step described in this section has the highest complexity of our cryptanalysis.
Because of the lack of any prior information on internal flips, all differences have
to be computed through several rounds in order to gain this bit flip information.
In Algorithm 1, for all 12 T-boxes, and all 28 − 1 possible differences, the dif-
ference propagation needs to be computed through 2 rounds, which corresponds
to a total of 12 · (28 − 1) · 2 = 6120 round function computations. With prob-
ability ε, besides the 40 expected differences, λ false positives occur. Therefor,
ε · (40 + λ) extra checks need to be computed, with ε < 1 and λ = O(1). Algo-
rithm 2 requires for each difference of SR 6 round computations (2 for ∆v, 2 for
∆l and 2 for ∆m). Thus 240 round functions need to be computed. The reduced
version which only uses Observation 3 as mentioned above, only requires 144
round computations (6 round computations for each of the 24 differences of R).

In total, both algorithms together have complexity 12 · (28 − 1) · 2 + ε · (40 +
λ) · 2 ≤ 213 for one round r. When applying this for two consecutive rounds,
only 144 round function computations are required for each subsequent round.
Hence, the complexity of the algorithm to compute all the required information
for all the possible rounds is approximately 214.

3.2 Finding single bit flips

In Sect. 3.1, differences representing flips of the 2 middle bits (b4b5) of the S-
boxes of round r + 2 are found. Let T r+2

j be an arbitrary non-linear T-box in
round r + 2, and SM (T r+2

j) its set of middle bit flips. We have SM (T r+2
j) =

{∆m1,∆m2,∆m3} with ∆mi : vr+2
j → vj ⊕ ∆mi the 3 generated differences.

One can verify that, with the exception of S-box 8, each of the four output bits
of the S-box Sr+2

j are flipped at least once by going through one of the values
vr+2

j ⊕∆m1, v
r+2
j ⊕∆m2, v

r+2
j ⊕∆m3. Furthermore, as the middle bits are not

bypassed in the same T-box, no other output bits of the T-box are affected. Due
to the diffusion property of the DES permutation P, each of the four output bits
affects a different S-box in round r + 3 [5]. Thus, the propagated differences to

the T-boxes of round r + 3 caused by a difference of middle bit flips in round
r + 2 represent single bit flips.

This property is only violated for S-box 8. For the input 11b4b501, with b4

and b5 any possible bit, we cannot flip the rightmost output bit, which affects
S-box 5 and 6 in round r + 3. Thus, with a probability of 1/16, we do not find
all single bit flips of round r + 3. In this case, we can start the cryptanalysis all
over with another initial plaintext in order to find all single bit flips of round
r + 3. However, it will become clear in the next section, that it does not harm
not to have all information. This issue will thus not affect our cryptanalysis.

Algorithm 3 Finding single bit flips

1: for all ∆v ∈ SM (T r+2
π(j)) j = 1 . . . 8 (for non-linear T-boxes) do

2: Compute one round function
3: for all ∆wi propagated difference to a T-box T r+3

i do
4: ∆wi → SS(T r+3

i)
5: end for
6: end for

Complexity. The complexity of this step, described in Algorithm 3 is negligible
as for each ∆m ∈ Sr

M , one round function needs to be computed. Hence, for each
round, the complexity of this algorithm is 24.

3.3 Obtaining the inputs to the S-boxes

Let T r+3
j be an arbitrary non-linear T-box in round r+3. Using the acquired in-

formation from the steps above, we deploy a filter algorithm to identify the S-box
(Sπ−1(j)) in the T-box T r+3

j , and find the value of its 6 input bits (fr+3
j |2...7(vr

j)⊕
kr+3

j).
We define the set P(T r+3

j) = {(Sq, wl)|1 ≤ q ≤ 8, wl ∈ GF (2)6} of all possible
pairs of S-boxes and input vectors. Our goal is to reduce this set by comparison of
the number of affected T-boxes in round r+4 when a difference ∆vi ∈ SS(T r+3

j)∪
SM (T r+3

j) is applied to the input of T r+3
j , and the number of affected S-boxes in a

non-white-box DES simulation with a pair (Sq, wl) ∈ P(T r+3
j). We denote δi the

number of affected T-boxes when ∆vi is applied, and δ′i the number of affected S-
boxes in the simulation process with ∆wi, where ∆wi : wl → wl⊕fr+3

j |2...7(∆vi)
is the flip of the input bits to S-box Sq represented by ∆vi.

If (Sq, wl) is valid pair, it should satisfy the following conditions:

– There can only be one Sq for each round.
– ∆v7 = SM (T r+3

j)\SS(T r+3
j) is the flip of both middle bits, represented as

∆w7 = 001100, for which δ′7 can be computed. Because ∆v7 only affects bits
of Yr+3, δ7 must be equal to δ′7.

– {∆v3, ∆v4} = SM (T r+3
j) ∩ SS(T r+3

j) represent the two single flips of the
input bits to the S-box, but we do not know in which order. Moreover they
only affect bits of Yr+3, and thus we must have {δ′3, δ′4} = {δ3, δ4}.

– Similarly {δ′2, δ′5} ∈ {δ1, δ2, δ5, δ6}.
– The differences affecting the outer input bits affect bits of Rr+2, and therefore

the number of affected S-boxes can be smaller than the number of affected
T-boxes, which should be taken into account when comparing {δ′1, δ′6} to
{δ1, δ2, δ5, δ6}\{δ′2, δ′5}.

Any pair (Sq, wl) that does not fulfil these conditions is removed from the set
P(T r+3

j). If only pairs with one type Sq remain, then this Sq is the internal S-box
of T r+3

j (π(q) = j). Finding an internal S-box results into an avalanche effect in
finding solutions for other non-linear T-boxes, because S-boxes are unique in
the same round (first condition), and because of the relation between S-boxes of
consecutive rounds. E.g., S1 in round r does not affect S-box S1 and S7 in round
r + 1. Moreover, if for example S3 is identified in round r + 1, then S1 affects its
second input bit, which allows us to narrow the conditions (δ2 = δ′2).

As a result, the set P(T r+3
j) is reduced to a singleton (Sq, wl), where Sq =

Sπ−1(j) is the internal S-box and wl = fr+3
j |2...7(vr+3

j) the 6-bit input vector to
this S-box.

Complexity. For each non-linear T-box, and each of its 7 differences, one round
function is computed. The simulation process for each T-box needs to be per-
formed at most 26 · 8 = 29(= |P(T r

j)|) times. Each simulation requires the com-
putation of one single lookup table (S-box), while a white-box round requires
24 · (12 + 11) = 552 ∼ 29 lookup table computations. Thus for each T-box,
we can express the simulation complexity as one round function computation.
The total complexity to compute the inputs to all S-boxes of one round is thus
8 · (7 + 1) = 26.

3.4 Key recovery

Given that we have found a sufficient amount of inputs to S-boxes, we can
retrieve the embedded secret key using the following two different approaches:

– From the data expansion operation E, we know that prior to the key addi-
tion, the rightmost input bit of Sr

i equals the second leftmost bit of Sr
i+1,

while the left most bit of Sr
i+1 equals the second rightmost bit of Sr

i . This
results into two independent equations, each with 4 variables (two input bits
and their respective two key bits). Knowing the input bits from the algo-
rithm described in Sect. 3.3, and one key bit, we are able to compute the
other key bit.

– A second set of equations is built by following one bit i of Rr through several
rounds. In round r, after the expansion operation E and round key bit kr

j

addition, this bit is used as an input bit to an S-box Sr
j . In round r +1, this

bit is XOR-ed with the value of bit P−1(i), which is the output of an S-box
Sl. In round r + 2, after the expansion operation and a round key bit kr+1

j

addition, this bit is used as an input bit to an S-box Sj . This results into an
equation with three bits from S-boxes, and two round key bits. If all the bits
related to the S-boxes are known, and one key bit is known, we can compute
the other key bit.

Iterated use of these algorithms generates the DES key bits. When a new
round key bit is computed, we can pull this back through the DES key schedule.
This is possible, because the 48 bit round key is a fixed permutation of a subset
of the 56-bit DES key. New key bits in turn result into new round key bits, for
which the two described methods can be deployed.

The iterated recovery of key bits is initiated by guessing one single key bit.
As a result, two complementary keys k0 and k1 are computed. Using the comple-
mentation property DES exhibits, we can show both keys are a valid solution.
The complementation property of DES [11] is defined as

DESk =
⊕

1

◦DESk⊕1 ◦
⊕

1

,

where
⊕

1 represents the XOR with the all one vector. Then

G ◦DESk ◦ F = G ◦
⊕

1

◦DESk⊕1 ◦
⊕

1

◦F

G ◦DESk ◦ F = G′ ◦DESk⊕1 ◦ F ′ .

If F = M1 ◦ M0 and G = M4 ◦ M3, we can define F ′ = (
⊕

1 ◦M1) ◦ M0 and
G′ = M4 ◦ (M3 ◦

⊕
1). Thus, when k is the original DES key, and F,G the

external encodings used to build the white-box DES implementation, then the
complementary key k⊕1 is also a valid DES key with external encodings F ′, G′.

4 Implementation

We have implemented our cryptanalysis in C++, and conducted tests on a Pen-
tium M 2GHz. On average, about 6000 ≤ 213 obfuscated round functions of the
white-box DES implementation needed to be computed to check the difference
propagations. This is less than our complexity study indicated, due to some
extra optimisations we have applied. Finding bit flips of Rr−1 (Algorithm 1)
corresponds to the largest part of the complexity. Introducing criteria for round
r+1 in Observation 1 substantially improves the algorithm efficiency. Moreover,
we only need 8 consecutive obfuscated round functions for the attack to succeed.
There is no restriction which window of 8 round functions to chose.

The space complexity is negligible, as most space is used in Sect. 3.3 to
store the set P(T r

j) of candidate pairs (Si, wl). We can also choose to store the
simulations of these pairs. They can be pre-computed because simulation does
not require any information or the implementation or the key.

In the conducted tests on several white-box DES implementations, our crypt-
analysis algorithm extracted the DES key in 0.64 seconds. Due to the time re-
quired to generate a lot of random sequences for the random delinearisation
process, the time to generate a white-box DES implementation is comparable to
the time to extract the secret key from the implementation.

5 Conclusion

We have described how the embedded secret key of an encoded white-box DES
implementation can be extracted. This cryptanalysis applies to the implemen-
tation as presented by Link and Neumann [9], an improvement of the proposed
implementation of Chow et al. [4] which includes external encodings. We apply
a differential cryptanalysis on the obfuscated rounds. The external encodings
are not incorporated in the attack, hence our attack is independent from the
definition of these encodings, in contrast to the attack of Goubin et al. [6]. The
downside is that we did not present how to recover these external encodings as
we concentrate on the recovery of the secret key. However, reconstructing the
encodings is rather straightforward.

The success of this cryptanalysis originates from properties which are specific
to DES. The confusion property of the DES S-boxes, the diffusion property of
the DES permutation P and the design of the expansion operation are the foun-
dations to extract useful information. As a consequence, difference propagation
results into key extraction. The general conclusion leads to a bootstrap problem:
precisely what makes the cipher strong against attacks in the black-box model, is
what makes it weak in the white-box model. But, when designing a cipher which
can securely be implemented as a white-box implementation, protection against
black-box attacks needs to be incorporated as well, as attacks in a black-box
model are also possible in a white-box model. This indicates the challenge of
further research in white-box cryptography.

Acknowledgements

This work has been funded in part by a Ph.D. grant of the Institute for the
Promotion of Innovation through Science and Technology in Flanders (IWT-
Vlaanderen); the Concerted Research Action (GOA) Ambiorics 2005/11 of the
Flemish Government, the Research Foundation - Flanders (FWO-Vlaanderen);
and the Belgian Fundamental Research Network on Cryptology and Information
Security (IUAP - BCRYPT).

References

1. Eli Biham and Adi Shamir. Differential cryptanalysis of Snefru, Khafre, REDOC-
II, LOKI and Lucifer (extended abstract). Lecture Notes in Computer Science,
576, 1991.

2. Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi. Cryptanalysis of a white box
AES implementation. In Helena Handschuh and M. Anwar Hasan, editors, Selected
Areas in Cryptography, volume 3357 of Lecture Notes in Computer Science, pages
227–240. Springer, 2004.

3. Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot. White-
Box Cryptography and an AES Implementation. In Kaisa Nyberg and Howard M.
Heys, editors, Selected Areas in Cryptography, volume 2595 of Lecture Notes in
Computer Science, pages 250–270. Springer, 2002.

4. Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot. A
white-box DES implementation for drm applications. In Security and Privacy
in Digital Rights Management, ACM CCS-9 Workshop, DRM 2002, Washington,
DC, USA, November 18, 2002, Revised Papers, volume 2696 of Lecture Notes in
Computer Science, pages 1–15. Springer, 2002.

5. D. Coppersmith. The data encryption standard (DES) and its strength against
attacks. IBM J. Res. Dev., 38(3):243–250, 1994.

6. Louis Goubin, Jean-Michel Masereel, and Michael Quisquater. Cryptanalysis of
white box DES implementations. Cryptology ePrint Archive, Report 2007/035,
2007. http://eprint.iacr.org/.

7. Matthias Jacob, Dan Boneh, and Edward W. Felten. Attacking an obfuscated
cipher by injecting faults. In Digital Rights Management Workshop, pages 16–31,
2002.

8. Tim Kerins and Klaus Kursawe. A cautionary note on weak implementations
of block ciphers. In 1st Benelux Workshop on Information and System Security
(WISSec 2006), page 12, Antwerp,BE, 2006.

9. Hamilton E. Link and William D. Neumann. Clarifying obfuscation: Improving
the security of white-box DES. In ITCC (1), pages 679–684, 2005.

10. Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermea-
sures: The case of AES. In David Pointcheval, editor, CT-RSA, volume 3860 of
Lecture Notes in Computer Science, pages 1–20. Springer, 2006.

11. Charles P. Pfleeger. Security in computing. Prentice-Hall, Englewood Cliffs, New-
Jersey, 1989.

12. Brecht Wyseur and Bart Preneel. Condensed white-box implementations. In Pro-
ceedings of the 26th Symposium on Information Theory in the Benelux, pages 296–
301, Brussels,Belgium, 2005. Werkgemeenschap voor Informatie- en Communicati-
etheorie.

