
A Linear Distinguisher for Dragon

Joo Yeon Cho and Josef Pieprzyk

Centre for Advanced Computing – Algorithms and Cryptography,
Department of Computing, Macquarie University,

NSW, Australia, 2109
{jcho,josef}@ics.mq.edu.au

Abstract. Dragon stream cipher is one of the focus ciphers which have reached Phase
2 of the eSTREAM project. In this paper, we present a new method of building a
linear distinguisher for Dragon. The distinguisher is constructed by exploiting the
biases of two S-boxes and the modular addition which are basic components of the
nonlinear function F . The bias of the distinguisher is estimated to be around 2−75.8

which is better than the bias of the distinguisher presented by Englund and Maximov.
We claim that Dragon is distinguishable from a random cipher by using around 2151.6

keystream words and 259 memory.
Keywords : Stream Ciphers, eSTREAM, Dragon, Modular Addition.

1 Introduction

Dragon [1] is a word-oriented stream cipher submitted to the eSTREAM project [4]. Dragon
is one of the focus ciphers (Software) which are included in Phase 2 of the eSTREAM.
During Phase 1, Englund and Maximov presented a distinguishing attack against Dragon.
Their distinguisher is constructed using around 2155 keystream words and 296 memory [2].

In this paper, Unlike Englund and Maximow, we use a different approach to find more
efficient distinguisher. In a nut shell, we first derive linear approximations for the basic
nonlinear blocks used in the cipher, namely, for two S-boxes and for modular additions.
Next we combine those approximations and build a linear approximation for the whole state
update function F . While combining these elementary approximations we use two basic
operations that we call cutting and bypassing. The bypassing operation replaces the original
element by its approximation but the cutting operation replaces some combination of internal
variables by zero. Finally, we design the distinguisher by linking the approximation of the
update function F with the observable variables for two consecutive clocks.

The bias of our distinguisher is estimated to be around 2−75.8 when 259 bits of internal mem-
ory are guessed. Hence, we claim that Dragon is distinguishable from the random process
with around 2151.6 words data complexity and with 259 memory complexity. This complexity
is better than the one presented in [2] which needs 2155 data and 296 memory. Our distin-
guisher is also described explicitly by showing the best approximations of the nonlinear
components of the cipher. In contrast, the previous best attack by Englund and Maximov
used a statistical argument to evaluate a bias of the function F .

This paper is organized as follows. Section 2 presents a brief description of Dragon. In Section
3, a series of linear approximations of nonlinear components of Dragon is presented. And
then, a distinguisher is built by combining the approximations properly. Section 4 concludes
the work.

2 J. Y. Cho, J. Pieprzyk

2 A brief description of Dragon

Dragon consists of a 1024-bit nonlinear feedback register, a nonlinear state update function,
and a 64-bit internal memory. Dragon produces a 64-bit (two words) output every clock.
The nonlinear state update function, which is called the function F , takes six state words
(192-bit) as input and produces six words (192 bits) as output. Among the output words
of F function, two words are used as new state words and two words are produced as a
keystream. The detail structure of the F function is displayed in Figure 1.

a b c d e f

a′ b′ c′ d′ e′ f ′

g

g

g

gg g

g g g

g g
g

G1

G2

G3

H2H1 H3

? ? ? ? ? ?

- - -

- -

�

-

-

�

� � �

-

-

�

- -

�

Fig. 1. F function

Suppose that the 32-bit input x is split into four bytes such as x = x0||x1||x2||x3 where xi

denotes a single byte. Then, the functions G and H that are used inside the F function are
constructed by using two 8×32 s-boxes, which are called as S1 and S2, in the following way.

G1(x) = S1(x0) ⊕ S1(x1) ⊕ S1(x2) ⊕ S2(x3)

G2(x) = S1(x0) ⊕ S1(x1) ⊕ S2(x2) ⊕ S1(x3)

G3(x) = S1(x0) ⊕ S2(x1) ⊕ S1(x2) ⊕ S1(x3)

H1(x) = S2(x0) ⊕ S2(x1) ⊕ S2(x2) ⊕ S1(x3)

H2(x) = S2(x0) ⊕ S2(x1) ⊕ S1(x2) ⊕ S2(x3)

H3(x) = S2(x0) ⊕ S1(x1) ⊕ S2(x2) ⊕ S2(x3)

Using the F function, the keystream is generated as follows.

1. Input : {B0, B1, . . . , B31} and M = (ML||MR)
2. a = B0, b = B9, c = B16, d = B19, e = B30 ⊕ ML, f = B31 ⊕ MR where M = MR||ML.
3. (a′, b′, c′, d′, e′, f ′) = F (a, b, c, d, e, f)
4. B0 = b′, B1 = c′ and Bi = Bi−2, 2 ≤ i ≤ 31,M = M + 1
5. Output : k = (a′||e′)

For a complete description of Dragon, we refer the reader to the paper [1].

A Linear Distinguisher for Dragon 3

3 A linear distinguisher for Dragon

Let n be a non-negative integer. Given two vectors x = (xn−1, . . . , x0) and y = (yn−1, . . . , y0)
where x, y ∈ GF (2n), let x ·y denote a standard inner product defined as x ·y = xn−1yn−1⊕
. . . ⊕ x0y0. A linear mask is a constant vector that is used to compute an inner product of
a n-bit string.

Let us assume that we have a function f : {0, 1}m → {0, 1}n for some positive integers m
and n. Given a linear output mask Γ ∈ GF (2n) and a linear input mask Λ ∈ GF (2m), the
bias of an approximation Γ · f(x) = Λ · x is measured as follows.

ǫf (Γ,Λ) = 2−n(#(Γ · f(x) ⊕ Λ · x = 0) − #(Γ · f(x) ⊕ Λ · x = 1))

where x ∈ GF (2m) and runs through all possible values. Then, Pr[Γ · f(x) = Λ · x] =
1
2 (1 + ǫf (Γ,Λ)). Note that given q independent approximations holding each bias of ǫ, the
combination of q approximations has the bias of ǫq according to the well-known Piling-up
Lemma [3].

This section is organized as follows. First, we derive effective approximations for the two S-
boxes that are used to construct them. Next we do similar work for the modular addition and
find best linear approximations for it. Finally, we show how to combine the approximations
found to construct the distinguisher.

3.1 Approximations of functions G and H

According to the structure of the functions G and H, the essential components of the func-
tions G and H are the two S-boxes: S1 and S2. Hence, the linear approximations of the
functions G and H can be constructed by combining approximations of S1 and S2 appro-
priately. For our distinguisher which will be described next section, we need to compute
the biases of the approximations displayed in Table 1. Note that the approximations of the

approximation bias

Γ · G1(x) = Γ · x ǫG1
(Γ, Γ)

Γ · G2(x) = Γ · x ǫG2
(Γ, Γ)

Γ · H1(x) = 0 ǫH1
(Γ, 0)

Γ · H2(x) = 0 ǫH2
(Γ, 0)

Γ · H3(x) = 0 ǫH3
(Γ, 0)

Table 1. Required approximations of G, H for the distinguisher

function G use an input and an output masks which are identical, while those of function
H use only an output mask. The reason for this will be explained in Subection 3.2.

We call the approximations of the form Γ ·G(x) = Γ ·x by-passing approximations, whereas
the approximations of the form Γ · H(x) = 0 cutting approximations.

Approximations of the function H Assume that a 32-bit x is a uniformly distributed
random variable and is divided into four bytes. In other words, we have x = x0||x1||x2||x3,
where xi is a single byte. Then, the approximation Γ · H1(x) = 0 can be represented as

Γ · H1(x) = Γ · S2(x0) ⊕ Γ · S2(x1) ⊕ Γ · S2(x2) ⊕ Γ · S1(x3) = 0 (1)

4 J. Y. Cho, J. Pieprzyk

Hence, the bias ǫH1
(Γ, 0) can be computed as

ǫH1
(Γ, 0) = ǫS2

(Γ, 0)3 × ǫS1
(Γ, 0),

where ǫSi
(Γ, 0) is the bias of an approximation Γ · Si(xj) = 0. Since Γ · H2 and Γ · H3 are

equivalent to Γ · H3, their biases are identical to that of H1, i.e. ǫH1
(Γ, 0) = ǫH2

(Γ, 0) =
ǫH3

(Γ, 0).

Approximations of the function G Assume that a 32-bit variable x is a uniformly
distributed random variable and is divided into four bytes so that x = x0||x1||x2||x3, where
xi is a byte. Also, assume that a mask Γ is divided into four submasks so Γ = Γ0||Γ1||Γ2||Γ3,
where Γi ∈ {0, 1}8. Then, the approximation Γ · x = Γ · G(x) can be decomposed into

Γ · (G1(x) ⊕ x) = (Γ · S1(x0) ⊕ Γ0 · x0) ⊕ (Γ · S1(x1) ⊕ Γ1 · x1) ⊕

(Γ · S1(x2) ⊕ Γ2 · x2) ⊕ (Γ · S2(x3) ⊕ Γ3 · x3)

= 0

Hence, the bias ǫG(Γ, Γ) can be computed as follows

ǫG(Γ, Γ) = ǫS1(x0)(Γ, Γ0) × ǫS1(x1)(Γ, Γ1) × ǫS1(x2)(Γ, Γ2) × ǫS2(x3)(Γ, Γ3),

where ǫSi(xj)(Γ, Γj) denotes the bias of the approximation Γ · Si(xj) ⊕ Γj · xj = 0.

Linear approximations of modular addition Let x and y be uniformly distributed
random vectors, where x, y ∈ GF (2n) for a positive n. Given a mask Γ ∈ GF (2n), the bias
of modular addition, which is denoted by ǫ+(Γ, Γ), is defined as follows.

Pr[Γ · (x + y) = Γ · (x ⊕ y)] =
1

2
(1 + ǫ+(Γ, Γ)). (2)

We also define that, given a vector x, the Hamming weight of x is defined as the number of
nonzero coordinates of x.

Theorem 1. Let n and m are positive integers. Assume that Γ = (γn−1, · · · , γ0) where

γi ∈ {0, 1} and the Hamming weight of Γ is m. Let WΓ denote a vector of bit positions

where γi = 1. So, WΓ = (wm−1, · · · , w0) where 0 ≤ wj ≤ n.

If m is even, then,

ǫ+(Γ, Γ) = 2−d1 where d1 =

m/2−1
∑

i=0

(w2i+1 − w2i) (3)

If m is odd, then

ǫ+(Γ, Γ) = 2−d2 where d2 =

(m−1)/2
∑

i=1

(w2i − w2i−1) + w0 (4)

Proof. See Appendix A.

For example, if Γ = 0x00000C49, the Hamming weight of Γ is 5 and WΓ = (11, 10, 6, 3, 0).
Hence, ǫ+(Γ, Γ) = 2−[(11−10)+(6−3)] = 2−4.

Corollary 1. Let m be a positive integer. Given a mask vector Γ whose Hamming weight

is m, the approximation Γ · (x + y) = Γ · (x ⊕ y) has at most a bias of 2−(m−1)/2.

Proof. See Appendix B.

A Linear Distinguisher for Dragon 5

3.2 Linear approximation of F function

According to the state update method of Dragon, there is the following relation between
two state words chosen at clock t and t + 15. 1

B0[t] = B30[t + 15], t = 0, 1, . . . (5)

We know that a = B0 and e = B30 ⊕ ML where a and e are two words out of six input
words of the F function. Then, we try to find the linear approximations Γ · a′ = Γ · a and
Γ · e′ = Γ · e where a′ and e′ are two output words of the F function that are produced as
a keystream.

We regard the outputs of the functions G and H as independent and uniformly distributed
random variables. This assumption is reasonable since each G or H function has unique
input parameters at given clock t so that the output of the functions G and H are mutually
independent. Hence, the functions G and H are described without input parameters in the
following expressions.

The approximation of a
′ As illustrated in Figure 1, an output word a′ is expressed as

follows.

a′ = [(a + (e ⊕ f)) ⊕ H1] ⊕ [(e ⊕ f ⊕ G2) + (H2 ⊕ ((a ⊕ b) + c))]

Due to the linear property of Γ , we know that

Γ · a′ = Γ · [(a + (e ⊕ f)) ⊕ H1] ⊕ Γ · [(e ⊕ f ⊕ G2) + (H2 ⊕ ((a ⊕ b) + c))].

By applying Approximation (2), we get

Γ · [(e ⊕ f ⊕ G2) + (H2 ⊕ ((a ⊕ b) + c))] = Γ · (e ⊕ f ⊕ G2) ⊕ Γ · [(H2 ⊕ ((a ⊕ b) + c))]

which holds with the bias of ǫ+(Γ, Γ). Hence, we have

Γ · a′ = Γ · [(a + (e ⊕ f)) ⊕ H1] ⊕ Γ · (e ⊕ f ⊕ G2) ⊕ Γ · [H2 ⊕ ((a ⊕ b) + c)].

Next, the two types of approximations are used in our analysis: First, cutting approximations
are used for the functions H1 and H2. That is, we use Γ ·H1 = 0 and Γ ·H2 = 0 which hold
the biases of ǫH1

(Γ, 0) and ǫH2
(Γ, 0), respectively. Intuitively, these approximations allow

to simplify the form of the final approximation of the function F by using replacing the
output variables by zeros. Second, by-passing approximations are used for the function G2.
That is, we use Γ · G2 = Γ · [(a ⊕ b) + c] that has a bias of ǫG2

(Γ, Γ). In this category of
approximations we are able to replace input variables by a combination of output variables
(and vice versa). The replacement is specified by the by-passing approximation. Then, we
have

Γ · a′ = Γ · [(a + (e ⊕ f))] ⊕ Γ · (e ⊕ f ⊕ [(a ⊕ b) + c]) ⊕ Γ · [(a ⊕ b) + c]

= Γ · [(a + (e ⊕ f))] ⊕ Γ · (e ⊕ f)

Finally, by applying Approximation (2) for the modular addition, we obtain

Γ · a′ = Γ · a (6)

1 This relation was also observed in [2].

6 J. Y. Cho, J. Pieprzyk

We know that Γ · [(a + (e⊕f))] = Γ ·a⊕Γ ·(e⊕f) holds the bias of ǫ+(Γ, Γ). Therefore, the
bias of Approximation (6) can be computed from the biases of the component approximations
as follows:

ǫa′(Γ, Γ) = ǫ+(Γ, Γ)2 × ǫH1
(Γ, 0) × ǫH2

(Γ, 0) × ǫG2
(Γ, Γ)

Since the 32-bit word a′ is an upper part of a 64-bit keystream output at each clock, Ap-
proximation (6) is equivalent to the following expression.

Γ · k0[t] = Γ · B0[t] (7)

where k0[t] denotes the upper part of a 64-bit k at clock t.

The approximation of e
′ As depicted in Figure 1, an output word e′ is described as

e′ = [((a + (e ⊕ f)) ⊕ H1) + (c ⊕ d ⊕ G1)] ⊕ [H3 ⊕ ((c ⊕ d) + e)]

Similarly to the case of a′, we would like to obtain an approximation Γ · e′ = Γ · e. To do
this, we first apply Approximation (2) for modular addition and as the result we get

Γ · e′ = Γ · [(a + (e ⊕ f)) ⊕ H1] ⊕ Γ · (c ⊕ d ⊕ G1) ⊕ Γ · [H3 ⊕ ((c ⊕ d) + e)]

Next, we apply the cutting approximations for functions H1,H3 and the by-passing approx-
imation for the function G1. That is, we use the following approximations

Γ · H1 = 0, Γ · H3 = 0, Γ · G1 = Γ · [a + (e ⊕ f)]

that hold with the biases of ǫH1
(Γ, 0), ǫH3

(Γ, 0) and ǫG1
(Γ, Γ), respectively. These approxi-

mations are plugged into the above relation and we obtain the following result

Γ · e′ = Γ · [(a + (e ⊕ f))] ⊕ Γ · (c ⊕ d ⊕ [a + (e ⊕ f)]) ⊕ Γ · [(c ⊕ d) + e]

= Γ · (c ⊕ d) ⊕ Γ · [(c ⊕ d) + e].

Finally, by applying Approximation (2) for modular addition, we can conclude that output
e′ and input e satisfy the following approximation

Γ · e′ = Γ · e (8)

with the bias of

ǫe′(Γ, Γ) = ǫ+(Γ, Γ)2 × ǫH1
(Γ, 0) × ǫH3

(Γ, 0) × ǫG1
(Γ, Γ).

Since the 32-bit word e′ is a lower part of a 64-bit keystream output k at each clock,
Approximation (8) is equivalent to the following expression.

Γ · k1[t] = Γ · (B30[t] ⊕ ML[t]) (9)

where k1[t] and ML[t] denote the lower part of a 64-bit k and the upper part of a 64-bit
memory word M at clock t, respectively.

A Linear Distinguisher for Dragon 7

Building the distinguisher According to Equation (5), Approximations (7) and (9) can
be combined in such a way that

Γ · k0[t] = Γ · B0[t] = Γ · B30[t + 15] = Γ · (k1[t + 15] ⊕ ML[t + 15])

By guessing (partially) the initial value of M , we can build the following distinguisher.

Γ · k0[t] = Γ · (k1[t + 15]) (10)

For the correctly guessed initial value of M , the distinguisher (10) shows the bias of

ǫD(Γ, Γ) = ǫa′(Γ, Γ) × ǫe′(Γ, Γ)

= ǫ+(Γ, Γ)4 × ǫH1
(Γ, 0)2 × ǫH2

(Γ, 0) × ǫH3
(Γ, 0) × ǫG1

(Γ, Γ) × ǫG2
(Γ, Γ) (11)

3.3 Searching for best linear mask

We implemented our mask search for the function F to achieve the biggest bias of the
distinguisher (10). The space of a linear mask Γ contains 232 − 1 elements. For each mask
Γ , the following procedure is performed to compute the bias given by Expression (11).

Step 1. For an input x that varies from 0 to 255, measure the biases of Γ · S1(x) = 0 and
Γ · S2(x) = 0, respectively. Then, compute ǫH1

(Γ, 0), ǫH2
(Γ, 0) and ǫH3

(Γ, 0).
Step 2. The mask Γ is divided into four submasks Γ = Γ0||Γ1||Γ2||Γ3. For an input x that

varies from 0 to 255, measure the bias of Γ · S1(x) = Γi · x and Γ · S2(x) = Γi · x for
some 0 ≤ i ≤ 3. Then, compute the biases ǫG1

(Γ, Γ) and ǫG2
(Γ, Γ).

Step 3. Compute ǫ+(Γ, Γ) using Theorem 1.
Step 4. Finally, compute ǫD(Γ, Γ).

Time complexity for searching We assume that given x, finding S1(x) or S2(x) takes a
single time unit. For each mask Γ , we can compute ǫH1

(Γ, 0) by measuring the biases of two
S-boxes, which requires 28 × 2 time units. The biases ǫH2

(Γ, 0) and ǫH3
(Γ, 0) are the same

as the ǫH1
(Γ, 0). For the bias ǫG1

(Γ, Γ), we need to decompose the function G1 into four
blocks, which are measured individually. This requires 28 × 4 time units. Equivalently, we
need the same time complexity for measuring the bias ǫG2

(Γ, Γ). Hence, the total complexity
(measured by the time units needed to compute the biases) is

232 × (28 × 2 + ×28 × 4 + 28 × 4) = 5 × 241

3.4 Our results

We searched for a linear mask which maximizes the bias (11). Due to Corollary 1, the bias
ǫ+(Γ, Γ) decreases exponentially as the Hamming weight of a linear mask increases. Hence,
there is a better chance to achieve higher bias when the Hamming weight is smaller.

In result, we found that the best linear approximation of the function F is using the dis-
tinguisher (10) with the mask Γ = 0x0600018d. The bias of the distinguisher in this case
is 2−75.8 as listed in Table 2. In order to remove the impact of the unknown state of the
internal memory on the bias, we need to guess the first 27 bits of initial value of ML and
32 bits of MR. Hence, we need to store all possible values of the internal state which takes
227+32 = 259 bits.

Table 3 shows that the biases of the functions G and H are much higher than those ex-
pected by the designers of Dragon (see Section 5.5 in [1]). Hence, the complexity of linear
cryptanalysis expected by designers is incorrect.

8 J. Y. Cho, J. Pieprzyk

Γ ǫH(Γ, 0) ǫG1
(Γ, Γ) ǫG2

(Γ, Γ) ǫ+(Γ, Γ) ǫa′(Γ, Γ) ǫe′(Γ, Γ) ǫD(Γ, Γ)

0x0600018d 2−3 −2−8.58 2−13.59 2−15.91 −2−39.1 −2−36.7 2−75.8

Table 2. The biases of the distinguisher

Γ ǫS1(x0)(Γ, Γ0) ǫS1(x1)(Γ, Γ1) ǫS1(x2)(Γ, Γ2) ǫS2(x3)(Γ, Γ3) ǫG1
(Γ, Γ)

0x0600018d −2−4.42 2−2.30 2−3.19 −2−3.68 2−13.59

ǫS1(x0)(Γ, Γ0) ǫS1(x1)(Γ, Γ1) ǫS2(x2)(Γ, Γ2) ǫS1(x3)(Γ, Γ3) ǫG2
(Γ, Γ)

−2−4.42 2−2.30 2−6 −2−3.19 2−15.91

ǫS1
(Γ, 0) ǫS2

(Γ, 0) ǫH1
(Γ, 0) ǫH2

(Γ, 0) ǫH3
(Γ, 0)

2−2.30 −2−2.09 −2−8.58 −2−8.58 −2−8.58

Table 3. The biases of the functions G and H used in the distinguisher

4 Conclusion

In this paper, we presented a new distinguisher for Dragon. Since the amount of observations
for the distinguishing attack is by far larger than the limit of keystream available from a
single key, our distinguisher leads only to a theoretical attack on Dragon. However, our
analysis shows that some approximations of the functions G and H have larger biases than
the ones expected by the designers. As far as we know, our distinguisher is the best one for
Dragon published so far in open literature. In addition, we present an efficient algorithm to
compute the biases of approximations of modular additions, which may be useful for other
distinguishing attacks that use modular addition.

Acknowledgment We wish to thank Matt Henricksen for invaluable comments. The au-
thors were supported by ARC grants DP0451484 and DP0663452. This work was also sup-
ported by Macquarie University ARC Safety Net Grant.

References

1. E. Dawson, K. Chen, M. Henricksen, W. Millan, L. Simpson, H. Lee, and S. Moon, Dragon: A

fast word based stream cipher, eSTREAM, ECRYPT Stream Cipher Project, Report 2005/006,
2005, http://www.ecrypt.eu.org/stream.

2. H. Englund and A. Maximov, Attack the Dragon., Progress in Cryptology - INDOCRYPT 2005,
Lecture Notes in Computer Science, vol. 3797, Springer, 2005, pp. 130–142.

3. M. Matsui, Linear cryptoanalysis method for DES cipher., Advances in Cryptology - EURO-
CRYPT ’93, Lecture Notes in Computer Science, vol. 765, Springer, 1993, pp. 386–397.

4. ECRYPT NoE, eSTREAM - the ECRYPT stream cipher project, Available at
http://www.ecrypt.eu.org/stream/, 2005.

A Proof of Theorem 1

Suppose that z = x + y where x = (xn−1, · · · , x0), y = (yn−1, · · · , y0) and z = (zn−1, · · · , z0).
Then, each zi bit is expressed a function of xi, · · · , x0 and yi, · · · , y0 bits as follows.

z0 = x0 ⊕ y0, zi = xi ⊕ yi ⊕ xi−1yi−1 ⊕

i−2
∑

j=0

xjyj

i−1
∏

k=j+1

(xk ⊕ yk), i = 1, · · · , n

A Linear Distinguisher for Dragon 9

If we define the carry R(x, y) as

R(x, y)0 = x0y0, R(x, y)i = xiyi ⊕

(i−1)
∑

j=0

xjyj

i
∏

k=j+1

(xk ⊕ yk), i = 1, 2, . . .

Then, it is clear that zi = xi ⊕ yi ⊕ R(x, y)i−1 for i > 0. By the definition, R(x, y)i has the
following recursive relation.

R(x, y)i = xiyi ⊕ (xi ⊕ yi)R(x, y)i−1 (12)

First, we examine the bias of the Γ of which the Hamming weight is 2, i.e. m = 2. Without
loss of generality, we assume that γi = 1 and γj = 1 where 0 ≤ j < i < n. Then, by Relation
(12), Approximation (2) is expressed as

Γ · (x + y) ⊕ Γ · (x ⊕ y) = zi ⊕ zj ⊕ (xi ⊕ yi) ⊕ (xj ⊕ yj)

= R(x, y)i−1 ⊕ R(x, y)j−1

= xi−1yi−1 ⊕ (xi−1 ⊕ yi−1)R(x, y)i−2 ⊕ R(x, y)j−1

Let us denote pi−1 = Pr[R(x, y)i−1 ⊕ R(x, y)j−1 = 0]. Since xi and yi are assumed as
uniformly distributed random variables, the probability pi−1 is split into the three cases as
follows.

pi−1 =

Pr[R(x, y)j−1 = 0], if (xi−1, yi−1) = (0, 0)
Pr[1 ⊕ R(x, y)j−1 = 0], if (xi−1, yi−1) = (1, 1)
Pr[R(x, y)i−2 ⊕ R(x, y)j−1 = 0], if (xi−1, yi−1) = (0, 1), (1, 0)

Clearly, Pr[R(x, y)j−1 = 0] = 1 − Pr[1 ⊕ R(x, y)j−1 = 0]. Hence, we get

pi−1 =
1

4
+

1

2
Pr[R(x, y)i−2 ⊕ R(x, y)j−1 = 0] =

1

4
+

1

2
pi−2

If j = i− 1, then Pr[R(x, y)i−2 ⊕R(x, y)j−1 = 0] = 1. Hence, pi−1 = 1
4 + 1

2 = 3
4 . Otherwise,

pi−2 is determined recursively by the same technique used as above until pj−1 is reached.

Hence, we obtain the following result.

pi−1 =
1

4
(1 + · · · + 2−(i−j−1)) + 2−(i−j) =

1

2
(1 + 2−(i−j)) (13)

Therefore, the ǫ+(Γ, Γ) is determined by only the difference between two position i and j
of Γ .

Next, we consider the case that Γ has an arbitrary Hamming weight, which is denoted m.
Assume that we convert m into an even number m′ by using the following technique.

– If m is even, then set m′ = m.
– If m is odd and γ0 = 0, then set γ0 = 1 and m′ = m + 1.
– If m is odd and γ0 = 1, then set γ0 = 0 and m′ = m − 1.

In result, the Γ is transformed to Γ ′ which has the Hamming weight of m′. Since the modular
addition is linear for the least significant bit, ǫ+(Γ, Γ) = ǫ+(Γ ′, Γ ′). Hence, a new position
vector for Γ ′ is defined as WΓ ′ = (wm′

−1, · · · , w0) where 0 ≤ wj ≤ n.

10 J. Y. Cho, J. Pieprzyk

Now, we decompose Γ ′ into a combination of sub-masks which have the Hamming weight
of 2. That is, Γ is expressed as

Γ = Ωm′/2−1 ⊕ · · · ⊕ Ω0

where Ωk is a sub-mask which has the nonzero coordinates only at position w2k and w2k+1

for k = 0, 1, · · · , m′

2 − 1. Clearly, the number of such sub-masks is m′

2 . For example, if
Γ = (0, 0, 1, 1, 0, 1, 1), then Γ = Ω1 ⊕ Ω0 = (0, 0, 1, 1, 0, 0, 0) ⊕ (0, 0, 0, 0, 0, 1, 1).

From (13), we know that the bias of Ωk · (x + y) ⊕ Ωk · (x ⊕ y) is only determined by the
difference w2k+1−w2k. Hence, according to the Piling-up Lemma [3], the bias of Γ ·(x + y)⊕

Γ · (x ⊕ y) is obtained by combining the m′

2 approximations independently. Note that the
there are no inter-dependencies among sub-masks. Therefore, the claimed bias is computed
as

ǫ+(Γ, Γ) = 2−[wm′
−1

−wm′
−2

]+···+[w1−w0]

If m′ is replaced by m, we obtain the claimed bias. ⊓⊔

B Proof of Corollary 1

Recall Theorem 1. If m is even, then,

d1 =

m/2−1
∑

i=0

(w2i+1 − w2i) ≤

m/2−1
∑

i=0

1 = m/2

If m is odd, then,

d2 =

(m−1)/2
∑

i=1

(w2i − w2i−1) + w0 ≤

(m−1)/2
∑

i=1

1 = (m − 1)/2

Since 2−m/2 < 2−(m−1)/2, the bias ǫ+(Γ, Γ) ≤ 2−(m−1)/2. ⊓⊔

