
An Improved Distinguisher for Dragon

Joo Yeon Cho and Josef Pieprzyk

Centre for Advanced Computing – Algorithms and Cryptography,
Department of Computing, Macquarie University,

NSW, Australia, 2109
{jcho,josef}@ics.mq.edu.au

Abstract. Dragon stream cipher is one of the focus ciphers which have reached Phase
2 of the eSTREAM project. In this paper, we present a new method of building a linear
distinguisher for Dragon. The distinguisher is constructed by exploiting the biases of
two S-boxes and the modular addition which are basic components of the nonlinear
function F . The bias of the distinguisher is estimated to be around 2−75.32 which is
better than the bias of the distinguisher presented by Englund and Maximov. We have
shown that Dragon is distinguishable from a random cipher by using around 2150.6

keystream words and 259 memory. In addition, we present a very efficient algorithm
for computing the bias of linear approximation of modular addition.
Keywords : Stream Ciphers, eSTREAM, Dragon, Modular Addition.

1 Introduction

Dragon [1] is a word-oriented stream cipher submitted to the eSTREAM project [4]. Dragon
is one of the focus ciphers (Software) which are included in Phase 2 of the eSTREAM.
During Phase 1, Englund and Maximov presented a distinguishing attack against Dragon
[2]. Their distinguisher is constructed using around 2155 keystream words and 296 memory.

Unlike Englund and Maximov’s work, we use a different approach to find more efficient
distinguisher. In a nut shell, we first derive linear approximations for the basic nonlinear
blocks used in the cipher, namely, for two S-boxes and for modular additions. Next we
combine those approximations and build a linear approximation for the whole state update
function F . While combining these elementary approximations we use two basic operations
that we call cutting and bypassing. The bypassing operation replaces the original component
by its approximation but the cutting operation replaces the original component by zero.
Then, we design the distinguisher by linking the approximation of the update function F
with the observable output keystream for two specific clocks.

Building the best distinguisher is composed of two steps. First, all the linear masks for
the internal approximations are assumed to be identical. Hence, the mask for distinguisher
holding the strongest bias can be found easily. Next, the bias of the distinguisher is estimated
more accurately by considering the dependencies among internal approximations. This goal
is achieved by allowing the different internal masks to approximations that are used to build
the distinguisher.

In result, the bias of our distinguisher is estimated to be around 2−75.32 when 259 bits
of internal memory are guessed. Hence, we claim that Dragon is distinguishable from the
random process with around 2150.6 words data complexity and with 259 memory complexity.
This complexity is better than the one presented in [2]. Our distinguisher is also described
explicitly by showing the best approximations of the nonlinear components of the cipher. In

2 J. Y. Cho, J. Pieprzyk

contrast, the previous best attack by Englund and Maximov used a statistical argument to
evaluate a bias of the function F .

This paper is organized as follows. Section 2 presents a brief description of Dragon. In Sec-
tion 3, a series of linear approximations of nonlinear components of Dragon is presented.
And then, a distinguisher is built by combining the approximations. In Section 4, the distin-
guisher is improved by considering the dependencies of intermediate approximations. Section
5 concludes the work.

2 A brief description of Dragon

Dragon consists of a 1024-bit nonlinear feedback register, a nonlinear state update function,
and a 64-bit internal memory. Dragon uses two sizes of key and initialization vector that is
128 or 256 bits and produces a 64-bit (two words) output every clock. The nonlinear state
update function, which is called the function F , takes six state words (192-bit) as input
and produces six words (192 bits) as output. Among the output words of F function, two
words are used as new state words and two words are produced as a keystream. The detail
structure of the F function is displayed in Figure 1. Suppose that the 32-bit input x is split

a b c d e f

a′ b′ c′ d′ e′ f ′

g

g

g

gg g

g g g

g g
g

G1

G2

G3

H2H1 H3

? ? ? ? ? ?

- - -

- -

�

-

-

�

� � �

-

-

�

- -

�

Fig. 1. F function

into four bytes such as x = x0||x1||x2||x3 where xi denotes a single byte and || denotes a
concatenation. Then, the functions G and H that are components of the F function are
constructed by using two 8×32 S-boxes, which are called as S1 and S2, in the following way.

G1(x) = S1(x0) ⊕ S1(x1) ⊕ S1(x2) ⊕ S2(x3)

G2(x) = S1(x0) ⊕ S1(x1) ⊕ S2(x2) ⊕ S1(x3)

G3(x) = S1(x0) ⊕ S2(x1) ⊕ S1(x2) ⊕ S1(x3)

H1(x) = S2(x0) ⊕ S2(x1) ⊕ S2(x2) ⊕ S1(x3)

An Improved Distinguisher for Dragon 3

H2(x) = S2(x0) ⊕ S2(x1) ⊕ S1(x2) ⊕ S2(x3)

H3(x) = S2(x0) ⊕ S1(x1) ⊕ S2(x2) ⊕ S2(x3)

Using the F function, the keystream is generated as follows.

1. Input : {B0, B1, . . . , B31} and M = (ML||MR)
2. a = B0, b = B9, c = B16, d = B19, e = B30 ⊕ ML, f = B31 ⊕ MR where M = MR||ML.
3. (a′, b′, c′, d′, e′, f ′) = F (a, b, c, d, e, f)
4. B0 = b′, B1 = c′ and Bi = Bi−2, 2 ≤ i ≤ 31,M = M + 1
5. Output : k = (a′||e′)

For a complete description of Dragon, we refer the reader to the paper [1].

3 A linear distinguisher for Dragon

Let n be a non-negative integer. Given two vectors x = (xn−1, . . . , x0) and y = (yn−1, . . . , y0)
where x, y ∈ GF (2n), let x ·y denote a standard inner product defined as x ·y = xn−1yn−1⊕
. . . ⊕ x0y0. A linear mask is a constant vector that is used to compute an inner product of
a n-bit string.

Let us assume that we have a function f : {0, 1}m → {0, 1}n for some positive integers m
and n. Given a linear input mask Λ ∈ GF (2m) and a linear output mask Γ ∈ GF (2n), the
bias of an approximation Λ · x = Γ · f(x) is measured as follows.

ǫf (Λ, Γ) = 2−n(#(Λ · x ⊕ Γ · f(x) = 0) − #(Λ · x ⊕ Γ · f(x) = 1))

where x ∈ GF (2m) and runs through all possible values. Then, Pr[Λ · x = Γ · f(x)] =
1
2 (1 + ǫf (Λ, Γ)). Note that given q independent approximations each having the bias ǫ, the
combination of q approximations has the bias of ǫq according to the well-known Piling-up
Lemma [3].

3.1 Approximations of functions G and H

According to the structure of the functions G and H, the essential components of the func-
tions G and H are the two S-boxes: S1 and S2. Hence, the linear approximations of the
functions G and H can be constructed by combining approximations of S1 and S2 appropri-
ately. In particular, for our distinguisher which will be described next subsection, we need
special forms of approximations displayed in Table 1. Note that the approximations of the
function G use an input and an output masks which are identical, while those of function
H use only an output mask. The reason for this will be explained in Subsection 3.3. We
call the approximations of the form Γ · G(x) = Γ · x bypassing approximations, whereas
the approximations of the form Γ · H(x) = 0 cutting approximations. Table 1 shows the
examples of such approximations that hold high biases.

Approximations of the function H Assume that a 32-bit x is a uniformly distributed
random variable. If x is divided into four bytes such as x = x0||x1||x2||x3, where xi denotes
the i-th byte of x, then the approximation Γ · H1(x) = 0 can be represented as

Γ · H1(x) = Γ · S2(x0) ⊕ Γ · S2(x1) ⊕ Γ · S2(x2) ⊕ Γ · S1(x3) = 0

4 J. Y. Cho, J. Pieprzyk

approximation bias example

Γ · H(x) = 0 ǫH(0, Γ) ǫH(0, 0x4810812B) = −2−7.16

Γ · x = Γ · G1(x) ǫG1
(Γ, Γ) ǫG1

(0x09094102, 0x09094102) = −2−9.33

Γ · x = Γ · G2(x) ǫG2
(Γ, Γ) ǫG2

(0x90904013, 0x90904013) = −2−9.81

Table 1. Cutting and bypassing approximations of the function G and H

Hence, the bias ǫH1
(0, Γ) is computed as

ǫH1
(0, Γ) = ǫS2

(0, Γ)3 × ǫS1
(0, Γ),

where ǫSi
(0, Γ) denotes the bias of the approximation Γ · Si(xj) = 0. Due to the structure

of the function H, the approximations Γ · H1(x) = 0, Γ · H2(x) = 0 and Γ · H3(x) = 0
are isomorphic when the input x is an independent random variable. Hence, ǫH1

(0, Γ) =
ǫH2

(0, Γ) = ǫH3
(0, Γ).

Approximations of the function G A 32-bit x is assumed to be a uniformly distributed
random variable. If x is divided into four bytes such as x = x0||x1||x2||x3, and a mask
Γ is divided into four submasks such as Γ = Γ0||Γ1||Γ2||Γ3, where Γi ∈ {0, 1}8, then the
approximation Γ · x = Γ · G(x) can be decomposed into

Γ · (x ⊕ G1(x)) = (Γ0 · x0 ⊕ Γ · S1(x0)) ⊕ (Γ1 · x1 ⊕ Γ · S1(x1))

⊕(Γ2 · x2 ⊕ Γ · S1(x2)) ⊕ (Γ3 · x3 ⊕ Γ · S2(x3)) = 0

Hence, the bias ǫG(Γ, Γ) can be computed as follows

ǫG(Γ, Γ) = ǫS1(x0)(Γ0, Γ) × ǫS1(x1)(Γ1, Γ) × ǫS1(x2)(Γ2, Γ) × ǫS2(x3)(Γ3, Γ),

where ǫSi(xj)(Γ, Γj) denotes the bias of the approximation Γj · xj ⊕ Γ · Si(xj) = 0.

3.2 Linear approximations of modular addition

Let x and y be uniformly distributed random vectors, where x, y ∈ GF (2n) for a positive n.
Given a mask Γ ∈ GF (2n), a linear approximation of modular addition where an input and
an output masks are Γ is defined as follows:

Pr[Γ · (x + y) = Γ · (x ⊕ y)] =
1

2
(1 + ǫ+(Γ, Γ)). (1)

where the bias of the approximation is denoted by ǫ+(Γ, Γ). Also, given a vector x, the
Hamming weight of x is defined as the number of nonzero coordinates of x.

Theorem 1. Let n and m be positive integers. Given a linear mask Γ = (γn−1, · · · , γ0)
where γi ∈ {0, 1} we assume that the Hamming weight of Γ is m. If a vector WΓ =
(wm−1, wm−2 · · · , w0) denotes the bit positions of Γ where γi = 1, then a bias ǫ+(Γ, Γ)
is determined as follows.

If m is even, then,

ǫ+(Γ, Γ) = 2−d1 where d1 =

m/2−1
∑

i=0

(w2i+1 − w2i) (2)

An Improved Distinguisher for Dragon 5

If m is odd, then

ǫ+(Γ, Γ) = 2−d2 where d2 =

(m−1)/2
∑

i=1

(w2i − w2i−1) + w0 (3)

Proof. See Appendix A.

For example, if Γ = 0x0600018D, the Hamming weight of Γ is 7 and WΓ = (26, 25, 8, 7, 3, 2, 0).
Hence, ǫ+(Γ, Γ) = 2−[(26−25)+(8−7)+(3−2)] = 2−3.

Corollary 1. Let m be a positive integer. Given a mask vector Γ whose Hamming weight

is m, an approximation Γ · (x + y) = Γ · (x ⊕ y) has at most a bias of 2−(m−1)/2.

Proof. See Appendix B.

3.3 Linear approximation of F function

According to the state update rule of Dragon, there is the following relation between two
state words chosen at clock t and t + 15. 1

B0[t] = B30[t + 15], t = 0, 1, . . . (4)

We know that a = B0 and e = B30 ⊕ ML where a and e are two words out of six input
words of the F function. Then, we try to find the linear approximations Γ · a′ = Γ · a and
Γ · e′ = Γ · e where a′ and e′ are two output words of the F function that are produced as
a keystream.

We regard the outputs of the functions G and H as independent and uniformly distributed
random variables. This assumption is reasonable since each G or H function has unique
input parameters at given clock t so that the output of the functions G and H are mutually
independent. Hence, the functions G and H are described without input parameters in the
following expressions.

The approximation of a
′ As illustrated in Figure 1, an output word a′ is expressed as

follows.
a′ = [(a + (e ⊕ f)) ⊕ H1] ⊕ [(e ⊕ f ⊕ G2) + (H2 ⊕ ((a ⊕ b) + c))] (5)

Due to the linear property of Γ , we know that

Γ · a′ = Γ · [(a + (e ⊕ f)) ⊕ H1] ⊕ Γ · [(e ⊕ f ⊕ G2) + (H2 ⊕ ((a ⊕ b) + c))].

By applying Approximation (1), we get

Γ · [(e ⊕ f ⊕ G2) + (H2 ⊕ ((a ⊕ b) + c))] = Γ · (e ⊕ f ⊕ G2) ⊕ Γ · [(H2 ⊕ ((a ⊕ b) + c))]

which holds with the bias of ǫ+(Γ, Γ). Hence, we have

Γ · a′ = Γ · [(a + (e ⊕ f)) ⊕ H1] ⊕ Γ · (e ⊕ f ⊕ G2) ⊕ Γ · [H2 ⊕ ((a ⊕ b) + c)].

Next, the two types of approximations are used in our analysis: First, cutting approximations
are used for the functions H1 and H2. That is, we use Γ ·H1 = 0 and Γ ·H2 = 0 which hold

1 This relation was also observed in [2].

6 J. Y. Cho, J. Pieprzyk

the biases of ǫH1
(0, Γ) and ǫH2

(0, Γ), respectively. Intuitively, these approximations allow
to simplify the form of the final approximation of the function F by replacing the output
variables of a nonlinear component by zeros.

Second, bypassing approximations are used for the function G2. That is, we use Γ · G2 =
Γ · [(a⊕ b) + c] that has a bias of ǫG2

(Γ, Γ). In this category of approximations we are able
to replace a combination of output variables by the same combination of input variables.
Then, we have

Γ · a′ = Γ · [(a + (e ⊕ f))] ⊕ Γ · (e ⊕ f ⊕ [(a ⊕ b) + c]) ⊕ Γ · [(a ⊕ b) + c]

= Γ · [(a + (e ⊕ f))] ⊕ Γ · (e ⊕ f)

Finally, by applying Approximation (1) for the modular addition, we obtain

Γ · a′ = Γ · a (6)

We know that Γ · [(a + (e⊕f))] = Γ ·a⊕Γ ·(e⊕f) holds the bias of ǫ+(Γ, Γ). Therefore, the
bias of Approximation (6) can be computed from the biases of the component approximations
as follows:

ǫa′(Γ, Γ) = ǫ+(Γ, Γ)2 × ǫH1
(0, Γ) × ǫH2

(0, Γ) × ǫG2
(Γ, Γ).

Since the 32-bit word a′ is an upper part of a 64-bit keystream output at each clock, Ap-
proximation (6) is equivalent to the following expression.

Γ · k0[t] = Γ · B0[t] (7)

where k0[t] denotes the upper part of a 64-bit k at clock t.

The approximation of e
′ As depicted in Figure 1, an output word e′ is described as

e′ = [((a + (e ⊕ f)) ⊕ H1) + (c ⊕ d ⊕ G1)] ⊕ [H3 ⊕ ((c ⊕ d) + e)] (8)

Similarly to the case of a′, we would like to obtain an approximation Γ · e′ = Γ · e. To do
this, we first apply Approximation (1) for modular addition and as the result we get

Γ · e′ = Γ · [(a + (e ⊕ f)) ⊕ H1] ⊕ Γ · (c ⊕ d ⊕ G1) ⊕ Γ · [H3 ⊕ ((c ⊕ d) + e)]

Next, we apply the cutting approximations for functions H1,H3 and the bypassing approx-
imation for the function G1. That is, we use the following approximations

Γ · H1 = 0, Γ · H3 = 0, Γ · G1 = Γ · [a + (e ⊕ f)]

that hold with the biases of ǫH1
(0, Γ), ǫH3

(0, Γ) and ǫG1
(Γ, Γ), respectively. These approxi-

mations are plugged into the above relation and we obtain the following result

Γ · e′ = Γ · [(a + (e ⊕ f))] ⊕ Γ · (c ⊕ d ⊕ [a + (e ⊕ f)]) ⊕ Γ · [(c ⊕ d) + e]

= Γ · (c ⊕ d) ⊕ Γ · [(c ⊕ d) + e].

Finally, by applying Approximation (1) for modular addition, we can conclude that output
e′ and input e satisfy the following approximation

Γ · e′ = Γ · e (9)

with the bias of ǫe′(Γ, Γ) = ǫ+(Γ, Γ)2 × ǫH1
(0, Γ) × ǫH3

(0, Γ) × ǫG1
(Γ, Γ). Since the 32-bit

word e′ is a lower part of a 64-bit keystream output k at each clock, Approximation (9) is
equivalent to the following expression.

Γ · k1[t] = Γ · (B30[t] ⊕ ML[t]) (10)

where k1[t] and ML[t] denote the lower part of a 64-bit k and the upper part of a 64-bit
memory word M at clock t, respectively.

An Improved Distinguisher for Dragon 7

3.4 Building the distinguisher

According to Equation (4), Approximations (7) and (10) can be combined in such a way
that

Γ · k0[t] = Γ · B0[t] = Γ · B30[t + 15] = Γ · (k1[t + 15] ⊕ ML[t + 15])

By guessing (partially) the initial value of M , we can build the following distinguisher.

Γ · k0[t] = Γ · (k1[t + 15]) (11)

For the correctly guessed initial value of M , the distinguisher (11) shows the bias of

ǫD(Γ, Γ) = ǫa′(Γ, Γ) × ǫe′(Γ, Γ)

= ǫ+(Γ, Γ)4 × ǫH1
(0, Γ)2 × ǫH2

(0, Γ) × ǫH3
(0, Γ) × ǫG1

(Γ, Γ) × ǫG2
(Γ, Γ) (12)

We implemented a mask search for the function F to achieve the distinguisher with the
biggest bias. The space of a linear mask Γ contains 232 − 1 elements. For each mask Γ , the
following procedure is performed to compute the bias given by Expression (12).

Step 1. For an input x that varies from 0 to 255, measure the biases of Γ · S1(x) = 0 and
Γ · S2(x) = 0, respectively. Then, compute ǫH1

(0, Γ), ǫH2
(0, Γ) and ǫH3

(0, Γ).

Step 2. The mask Γ is divided into four submasks Γ = Γ0||Γ1||Γ2||Γ3. For an input x that
varies from 0 to 255, measure the bias of Γ · S1(x) = Γi · x and Γ · S2(x) = Γi · x for
some 0 ≤ i ≤ 3. Then, compute the biases ǫG1

(Γ, Γ) and ǫG2
(Γ, Γ).

Step 3. Compute ǫ+(Γ, Γ) using Theorem 1.

Step 4. Finally, compute ǫD(Γ, Γ).

3.5 Our results

We searched for a linear mask which maximizes the bias (12). Due to Corollary 1, the bias
ǫ+(Γ, Γ) decreases exponentially by the increment of the Hamming weight of a linear mask.
Hence, there is a better chance to achieve higher bias when the Hamming weight is smaller.

In result, we found that the best linear approximation of the function F is using the dis-
tinguisher (11) with the mask Γ = 0x0600018D. The bias of the distinguisher in this case
is 2−75.8 as listed in Table 2. In order to remove the impact of the unknown state of the
internal memory on the bias, we need to guess the first 27 bits of initial value of ML and
32 bits of MR. Hence, we need to store all possible values of the internal state which takes
227+32 = 259 bits.

Γ ǫ+(0, Γ) ǫH(Γ, Γ) ǫG1
(Γ, Γ) ǫG2

(Γ, Γ) ǫa′(Γ, Γ) ǫe′(Γ, Γ) ǫD(Γ, Γ)

0x0600018D 2−3 −2−8.58 2−13.59 2−15.91 −2−39.1 −2−36.7 2−75.8

Table 2. The bias of distinguisher

8 J. Y. Cho, J. Pieprzyk

4 Improving the distinguisher

In this section, we generalize a method presented in Section 3. 2 First, we apply different
linear masks for each component of the function F and combine them to build the distin-
guisher. Figure 2 illustrates how different linear masks can be applied for each component of
the function F . Second, we consider the internal dependencies for the approximations of the

?

?m

?m

?

�

m

?
� m

?

�

6

H2

a

e ⊕ f�

H1 -

(a ⊕ b) + c

� G2
�Λ3

Λ3

Φ
Λ1

Λ2

Λ2

Λ1
Λ1

Λ3Λ2

a′

clock t

?

?m

?m

?

�

m

?

?

e

c ⊕ d�

H3 -

� a + (e ⊕ f)

� G1
�

m

?

�

6

H1

Λ6

Λ6

Φ
Λ4

Λ5

Λ5

Λ4
Λ4

Λ6Λ5

e′

clock t + 15

Fig. 2. Generalized linear masks for approximations of the function F

function F . Since the approximations of the components of the F are internally canceled,
the correlation of the distinguisher can be accurately computed by exploiting all possible
internal approximations induced by different linear masks. Based on these two observations,
we searched extensively for a new distinguisher that could improve the efficiency of attack.

A new distinguisher can be built from the relation of (a, a′) and (e, e′) presented in Equations
(5) and (8). A basic requirement for establishing a distinguisher is to apply the identical
mask Φ to the state a at clock t and to the state e at clock t + 15, as stated in Section
3. However, this time, the other internal masks can be different, as shown in Figure 2. We
set up the six masks, {Λ1, · · · , Λ6}, for the components of the F and build the following
approximations:

Λ2 · a
′ = Λ2 · [(a + (e ⊕ f)) ⊕ H1] ⊕ Λ2 · [(e ⊕ f ⊕ G2) + (H2 ⊕ ((a ⊕ b) + c))]

= Φ · a ⊕ Λ1 · (e ⊕ f) ⊕ Λ2 · H1 ⊕ Λ1 · (e ⊕ f ⊕ G2) ⊕ Λ3 · [H2 ⊕ ((a ⊕ b) + c)]

= Φ · a (13)

Λ5 · e
′ = Λ5 · [((c ⊕ d) + e) ⊕ H3] ⊕ Λ5 · [((a + (e ⊕ f)) ⊕ H1) + (c ⊕ d ⊕ G1)]

= Λ4 · (c ⊕ d) ⊕ Φ · e ⊕ Λ5 · H3 ⊕ Λ6 · (a + (e ⊕ f)) ⊕ Λ6 · H1 ⊕ Λ4 · (c ⊕ d ⊕ G1)

= Φ · e (14)

2 This section was inspired by the distinguishing attack on SNOW 2.0 presented by Nyberg and
Wallen [6].

An Improved Distinguisher for Dragon 9

The component-wise approximations required for Approximations (13) and (14) are listed in
Tables 3 and 4. According to the well-known theorem [5] the correlation of approximations

approximation bias

Φ · x ⊕ Λ1 · y ⊕ Λ2 · (x + y) = 0 ǫ+(Φ, Λ1, Λ2)

Λ2 · H1 = 0 ǫH1
(0, Λ2)

Λ3 · H2 = 0 ǫH2
(0, Λ3)

Λ3 · x ⊕ Λ1 · G1(x) = 0 ǫG1
(Λ3, Λ1)

Λ1 · x ⊕ Λ3 · y ⊕ Λ2 · (x + y) = 0 ǫ+(Λ1, Λ3, Λ2)

Table 3. Component approximations for Equation (13)

approximation bias

Φ · x ⊕ Λ4 · y ⊕ Λ5 · (x + y) = 0 ǫ+(Φ, Λ4, Λ5)

Λ5 · H3 = 0 ǫH3
(0, Λ5)

Λ6 · H1 = 0 ǫH1
(0, Λ6)

Λ6 · x ⊕ Λ4 · G2(x) = 0 ǫG2
(Λ6, Λ4)

Λ4 · x ⊕ Λ6 · y ⊕ Λ5 · (x + y) = 0 ǫ+(Λ4, Λ6, Λ5)

Table 4. Component approximations for Equation (14)

can be computed as a sum of partial correlations over all intermediate linear masks. For
theoretical analysis of the theorem, we refer the reader to the paper of [5]. Hence, the bias of
Approximation (13) is computed as a sum of partial biases induced by the masks of Λ1, Λ2

and Λ3 as follows:

ǫa′(Φ,Λ2) = ǫH1
(0, Λ2)

∑

Λ1

ǫ+(Φ,Λ1, Λ2)
∑

Λ3

ǫ+(Λ3, Λ1, Λ2)ǫG2
(Λ3, Λ1)ǫH2

(0, Λ3) (15)

Similarly, the bias of Approximation (14) using the masks of Λ4, Λ5 and Λ6 can be computed
as follows:

ǫe′(Φ,Λ5) = ǫH3
(0, Λ5)

∑

Λ4

ǫ+(Φ,Λ4, Λ5)
∑

Λ6

ǫ+(Λ4, Λ6, Λ5)ǫG1
(Λ6, Λ4)ǫH1

(0, Λ6) (16)

Hence, according to Subsection 3.4, a new distinguisher can be derived from Approximations
(13) and (14) as follows:

Λ2 · k0[t] = Λ5 · k1[t + 15] (17)

with the bias of
ǫD(Λ2, Λ5) =

∑

Φ

ǫa′(Φ,Λ2)ǫe′(Φ,Λ5). (18)

4.1 Experiments

In order to find the distinguisher holding the biggest bias, we need to search all possible
combinations of Γ2 and Γ5 and test their biases by Equation (18). Furthermore, for each Γ2

10 J. Y. Cho, J. Pieprzyk

and Γ5, the computation of Equation (18) requires a large number of iterations due to the
space that all the intermediate masks have. Hence, our experiments focus on reducing the
overall space of the masks that are necessarily required for the computation of the bias of
the distinguisher. To achieve this goal, we implemented two techniques that can remove a
large portion of terms from the summation involved in Equation (18).

First technique is to remove, from Equation (15) and (16), the unnecessary terms caused by
the condition of ǫ+ = 0. The approximations of the modular addition have non-trivial biases
only in a portion of space which is determined by the values of an input and an output
masks.

Lemma 1. Assume that the bias of the approximation Λ1 · x ⊕ Λ3 · y ⊕ Λ2 · (x + y) = 0
is represented by ǫ+(Λ1, Λ3, Λ2). Given Λ2 = b31b30 · · · b0 where bi stands for the i-th bit of

Λ2, we assume that the most significant non-zero bit of Λ2 is located in the bit position of bt

where 0 ≤ t ≤ 31. Then, the bias ǫ+(Λ1, Λ3, Λ2) is zero when Λ1, Λ3 < 2t or Λ1, Λ3 ≥ 2t+1.

In other words, we see that

232
−1

∑

Λ1=1

232
−1

∑

Λ3=1

ǫ+(Λ1, Λ3, Λ2) =
2t+1

−1
∑

Λ1=2t

2t+1
−1

∑

Λ3=2t

ǫ+(Λ1, Λ3, Λ2)

Proof. See Appendix C.

According to Lemma 1, the iteration range of the biases (15) and (16) depends on the space
of the output mask of the modular addition. For example, if Λ2 = 0x0600018D, then,
ǫ+(Λ1, Λ3, Λ2) becomes zero when Λ1, Λ3 < 0x04000000 or Λ1, Λ3 ≥ 0x08000000.

Next technique is to restrict, by some value, the correlations of the modular additions used in
Equation (15) and (16) and to reduce the number of iterations. Namely, instead of iterating
the full space of the intermediate masks, we use only relatively highly biased approximations
of the modular additions for estimating the bias of the distinguisher. In the paper of [6],
authors proposed an efficient algorithm for finding all input and output masks for addition
with a given correlation. This algorithm enables us to reduce the number of iteration for
Equation (15) and (16) significantly. We restricted the effective correlation of the modular
addition up to ±2−24, as suggested in [6].

Based on these techniques, we re-calculated the bias of the Distinguisher (17) and found
that the bias is estimated to be 2−75.32. It is interesting to observe how the biases can be
improved by considering the dependencies of the combinations of the approximation. Table
5 shows that the bias measurement without considering the dependencies can underestimate
the real bias of the approximation.

Due to the restrictions on computing resources, we searched the best distinguisher under
the condition that Λ2 = Λ5 and we could not perform the experiment for the cases when
the different values of Λ2 and Λ5 are allowed. Even though Bias (18) tends to be high
when Λ2 = Λ5, there is a possibility that two different values of Λ2 and Λ5 may lead to a
distinguisher with a bigger bias. We leave this issue as an open problem.

5 Conclusion

In this paper, we presented a new distinguisher for Dragon. Since the amount of observations
for the distinguishing attack is by far larger than the limit of keystream available from a
single key, our distinguisher leads only to a theoretical attack on Dragon. However, our

An Improved Distinguisher for Dragon 11

Λ2 = Λ5 ǫD without dependencies ǫD with dependencies

0x0600018D 2−75.81 2−75.32

0x002C0039 −2−129.55 2−81.77

0x00001809 2−84.13 2−79.51

Table 5. Comparison of the bias of the distinguisher computed by two methods

analysis shows that some approximations of the functions G and H have larger biases than
the ones expected by the designers. As far as we know, our distinguisher is the best one for
Dragon published so far in open literature. In addition, we present an efficient algorithm to
compute the bias of approximation of modular addition, which is expected to be useful for
other attacks against ciphers using modular additions.

Acknowledgment We wish to thank Matt Henricksen for invaluable comments. The au-
thors were supported by ARC grants DP0451484, DP0663452 and Macquarie University
ARC Safety Net Grant.

References

1. E. Dawson, K. Chen, M. Henricksen, W. Millan, L. Simpson, H. Lee, and S. Moon, Dragon: A

fast word based stream cipher, eSTREAM, ECRYPT Stream Cipher Project, Report 2005/006,
2005, http://www.ecrypt.eu.org/stream.

2. H. Englund and A. Maximov, Attack the Dragon., Progress in Cryptology - INDOCRYPT 2005,
Lecture Notes in Computer Science, vol. 3797, Springer, 2005, pp. 130–142.

3. M. Matsui, Linear cryptoanalysis method for DES cipher., Advances in Cryptology - EURO-
CRYPT ’93, Lecture Notes in Computer Science, vol. 765, Springer, 1993, pp. 386–397.

4. ECRYPT NoE, eSTREAM - the ECRYPT stream cipher project, Available at
http://www.ecrypt.eu.org/stream/, 2005.

5. K. Nyberg, Correlation theorems in cryptanalysis, Discrete Applied Mathematics 111 (2001),
no. 1-2, 177–188.

6. K. Nyberg and J. Wallen, Improved linear distinguishers for SNOW 2.0., Fast Software Encryp-
tion - FSE 2006, Lecture Notes in Computer Science, vol. 4047, Springer, 2006, pp. 144–162.

A Proof of Theorem 1

Suppose that z = x + y where x = (xn−1, · · · , x0), y = (yn−1, · · · , y0) and z = (zn−1, · · · , z0).
Then, each zi bit is expressed a function of xi, · · · , x0 and yi, · · · , y0 bits as follows.

z0 = x0 ⊕ y0, zi = xi ⊕ yi ⊕ xi−1yi−1 ⊕

i−2
∑

j=0

xjyj

i−1
∏

k=j+1

(xk ⊕ yk), i = 1, · · · , n

If we define the carry R(x, y) as

R(x, y)0 = x0y0, R(x, y)i = xiyi ⊕

(i−1)
∑

j=0

xjyj

i
∏

k=j+1

(xk ⊕ yk), i = 1, 2, . . .

12 J. Y. Cho, J. Pieprzyk

Then, it is clear that zi = xi ⊕ yi ⊕ R(x, y)i−1 for i > 0. By the definition, R(x, y)i has the
following recursive relation.

R(x, y)i = xiyi ⊕ (xi ⊕ yi)R(x, y)i−1 (19)

First, we examine the bias of the Γ of which the Hamming weight is 2, i.e. m = 2. Without
loss of generality, we assume that γi = 1 and γj = 1 where 0 ≤ j < i < n. Then, by Relation
(19), Approximation (1) is expressed as

Γ · (x + y) ⊕ Γ · (x ⊕ y) = zi ⊕ zj ⊕ (xi ⊕ yi) ⊕ (xj ⊕ yj)

= R(x, y)i−1 ⊕ R(x, y)j−1

= xi−1yi−1 ⊕ (xi−1 ⊕ yi−1)R(x, y)i−2 ⊕ R(x, y)j−1

Let us denote pi−1 = Pr[R(x, y)i−1 ⊕ R(x, y)j−1 = 0]. Since xi and yi are assumed as
uniformly distributed random variables, the probability pi−1 is split into the three cases as
follows.

pi−1 =







Pr[R(x, y)j−1 = 0], if (xi−1, yi−1) = (0, 0)
Pr[1 ⊕ R(x, y)j−1 = 0], if (xi−1, yi−1) = (1, 1)
Pr[R(x, y)i−2 ⊕ R(x, y)j−1 = 0], if (xi−1, yi−1) = (0, 1), (1, 0)

Clearly, Pr[R(x, y)j−1 = 0] = 1 − Pr[1 ⊕ R(x, y)j−1 = 0]. Hence, we get

pi−1 =
1

4
+

1

2
Pr[R(x, y)i−2 ⊕ R(x, y)j−1 = 0] =

1

4
+

1

2
pi−2

If j = i− 1, then Pr[R(x, y)i−2 ⊕R(x, y)j−1 = 0] = 1. Hence, pi−1 = 1
4 + 1

2 = 3
4 . Otherwise,

pi−2 is determined recursively by the same technique used as above until pj−1 is reached.

Hence, we obtain the following result.

pi−1 =
1

4
(1 + · · · + 2−(i−j−1)) + 2−(i−j) =

1

2
(1 + 2−(i−j)) (20)

Therefore, the ǫ+(Γ, Γ) is determined by only the difference between two position i and j
of Γ .

Next, we consider the case that Γ has an arbitrary Hamming weight, which is denoted m.
Assume that we convert m into an even number m′ by using the following technique.

– If m is even, then set m′ = m.
– If m is odd and γ0 = 0, then set γ0 = 1 and m′ = m + 1.
– If m is odd and γ0 = 1, then set γ0 = 0 and m′ = m − 1.

In result, the Γ is transformed to Γ ′ which has the Hamming weight of m′. Since the modular
addition is linear for the least significant bit, ǫ+(Γ, Γ) = ǫ+(Γ ′, Γ ′). Hence, a new position
vector for Γ ′ is defined as WΓ ′ = (wm′

−1, · · · , w0) where 0 ≤ wj ≤ n.

Now, we decompose Γ ′ into a combination of sub-masks which have the Hamming weight
of 2. That is, Γ is expressed as

Γ = Ωm′/2−1 ⊕ · · · ⊕ Ω0

where Ωk is a sub-mask which has the nonzero coordinates only at position w2k and w2k+1

for k = 0, 1, · · · , m′

2 − 1. Clearly, the number of such sub-masks is m′

2 . For example, if
Γ = (0, 0, 1, 1, 0, 1, 1), then Γ = Ω1 ⊕ Ω0 = (0, 0, 1, 1, 0, 0, 0) ⊕ (0, 0, 0, 0, 0, 1, 1).

An Improved Distinguisher for Dragon 13

From (20), we know that the bias of Ωk · (x + y) ⊕ Ωk · (x ⊕ y) is only determined by the
difference w2k+1−w2k. Hence, according to the Piling-up Lemma [3], the bias of Γ ·(x + y)⊕

Γ · (x ⊕ y) is obtained by combining the m′

2 approximations independently. Note that the
there are no inter-dependencies among sub-masks. Therefore, the claimed bias is computed
as

ǫ+(Γ, Γ) = 2−[wm′
−1−wm′

−2]+···+[w1−w0]

If m′ is replaced by m, we obtain the claimed bias. ⊓⊔

B Proof of Corollary 1

Recall Theorem 1. If m is even, then,

d1 =

m/2−1
∑

i=0

(w2i+1 − w2i) ≥

m/2−1
∑

i=0

1 = m/2

If m is odd, then,

d2 =

(m−1)/2
∑

i=1

(w2i − w2i−1) + w0 ≥

(m−1)/2
∑

i=1

1 = (m − 1)/2

Hence, the bias ǫ+(Γ, Γ) ≤ 2−(m−1)/2. ⊓⊔

C Proof of Lemma 1

Let xi and yi denote the i-th bits of 32-bit words x and y. According to the notation used
in Appendix A, the approximation using the output mask Λ2 can be expressed as

Λ2 · (x + y) = xt ⊕ yt ⊕ R(x, y)t−1 ⊕ A(x, y)t−1

where A(x, y)t−1 is a function which does not contain xt and yt bits as variables.

When Λ1 < 2t or Λ3 < 2t, the input approximation Λ1 · x⊕Λ3 · y does not contain xt or yt

bit as a variable. Thus, Λ1 · x ⊕ Λ3 · y ⊕ Λ2 · (x + y) retains a linear term xt or yt so that
the bias of the approximation becomes zero.

On the other hand, given Λ1 ≥ 2t+1 or Λ3 ≥ 2t+1, the input approximation Λ1 · x ⊕ Λ3 · y
contain xu or yv bit as a variable where u, v > t. Thus, Λ1 · x ⊕ Λ3 · y ⊕ Λ2 · (x + y) retains
a linear term xu or yv so that the bias of the approximation becomes zero. ⊓⊔

