Construction of Pairing-Friendly Elliptic Curves by Cocks-Pinch Method

Woo-Sug Kang
Department of Mathematics
Korea University
Seoul, 136-701, Korea
wsgkang@korea.ac.kr

Abstract

We explain a method of finding the polynomials representing $\sqrt{-D}$ and ζ_{k} over the field containing $\sqrt{-D}$ and ζ_{k}. By using this method, we make a construction of pairing-friendly elliptic curves based on Cocks-Pinch method.

1 Introduction

Recently, many people are interested in the pairing based cryptography. It use the fact that a weil pairing, a tate pairing or other pairings change the discrete logarithm problem in an elliptic curve $E\left(\mathbb{F}_{q}\right)$ into the discrete logarithm problem in a finite field $\mathbb{F}_{q^{k}}^{*}$. An elliptic curve E is said to have an embedding degree k if its subgroup order r divides $q^{k}-1$, but does not divide $q^{i}-1$ for all $0<i<k$ and set $\rho=\log q / \log r$. The pairing based cryptography needs elliptic curves with a small embedding degree k and a large prime order subgroup. i.e. ρ is near to 1 . Such curves are called pairing friendly elliptic curves. For the case of supersingular curves, there is a well known fact that its embedding degrees are less than or equal to 6 [16].

We consider nonsupersingular elliptic curves. There are several methods of constructing elliptic curves with prescribed embedding degree k ([1], [2], [3], [7], [8], [9], [15], [18]). The goal of these methods is finding the polynomials $t(x)$, $r(x)$ and $q(x)$ satisfying the followings:
(1) $q(x)$ and $r(x)$ represent primes.
(2) $r(x)$ divides $q(x)+1-t(x)$.
(3) $r(x)$ divides $\Phi_{k}(t(x)-1)$, where Φ_{k} is the k -th cyclotomic polynomial.
(4) $D y(x)^{2}=4 q(x)-t(x)^{2}$ has infinitely many integer solutions.

Barreto, Lynn and Scott [2] and Brezing and Weng [3] give the construction based on Cocks-Pinch method [6].

Cocks-Pinch method by Brezing and Weng [3]

1. Fix $D, k \in \mathbb{N}$.
2. Choose an irreducible polynomial $r(x)$ such that $\zeta_{k}, \sqrt{-D} \in K$,
where ζ_{k} is a primitive k-th root of unity and $K=\mathbb{Q}[x] /(r(x))$.
3. Choose $t(x)$ to be a polynomial representing $1+\zeta_{k}$ in K.
4. Choose $u(x)$ to be a polynomial representing $\sqrt{-D}$ in K.
5. Compute $y(x)=(t(x)-2) u(x) / D$ in K.
6. Compute $q(x)=\left(t(x)^{2}+D y(x)^{2}\right) / 4 \in \mathbb{Q}[x]$.
7. If $q(x)$ and $r(x)$ represent prime for some x, by the CM method, construct an elliptic curve over $\mathbb{F}_{q(x)}$ with an order $r(x)$ subgroup.

The elliptic curves constructed by this method have ρ less than 2 . The difficult point of Cocks-Pinch method is to find a polynomial $r(x)$ satisfying the followings;
(1) $K=\mathbb{Q}[x] /(r(x))$ contains ζ_{k} and $\sqrt{-D}$.
(2) The polynomials represent ζ_{k} and $\sqrt{-D}$ are easily found.
(3) $r(x)$ and $q(x)$ represent primes.

The smallest field satisfying (1) is $\mathbb{Q}\left(\zeta_{k}, \sqrt{-D}\right)$. But if this field is not a cyclotomic field, denominators of coefficients of $t(x)$ and $u(x)$ are very large in generally. We give some example for this in section 3 .

Most previous results are produced when $\mathbb{Q}\left(\zeta_{k}, \sqrt{-D}\right)$ is a cyclotomic field. i.e. D 's are 1,2 and 3 . In this paper, how to construct a pairing friendly elliptic curves over some extension fields of $\mathbb{Q}\left(\zeta_{k}, \sqrt{-D}\right)$ for arbitrary k and D. First, we work over cyclotomic field. One of advantages of cyclotomic field is that the ring of algebraic integer of cyclotomic field $\mathbb{Q}\left(\zeta_{l}\right)$ is $\mathbb{Z}\left[\zeta_{l}\right]$.

Lemma 1. If $\sqrt{-D}$ is contained in $\mathbb{Q}\left(\zeta_{l}\right), \sqrt{-D}$ is represented by ζ_{l} with integer coefficients.

Proof. The ring of algebraic integer of $\mathbb{Q}\left(\zeta_{l}\right)$ is $\mathbb{Z}\left[\zeta_{l}\right]$ and $\sqrt{-D}$ is an algebraic integer. Thus there is $\sqrt{-D}$ in $\mathbb{Z}\left[\zeta_{l}\right]$.

Since $\sqrt{-D}$ is represented by ζ_{l} with integer coefficient, Lemma 1 guarantees (2) and (3) for many cases of $q(x)$. Another advantage is that $r(x)$ always satisfies (3).(In Section 2.4)

The remaining problem is how to find polynomials representing $\sqrt{-D}$ and ζ_{k}. In previous works, they found such polynomials with some conditions of k and D. In Section 2, we explain the method of finding the polynomials representing $\sqrt{-D}$ and ζ_{k} over cyclotomic fields without any conditions. By using this method , we make a general construction over cyclotomic fields. In section 2.4, we give some results over extension of finite field. Second, we explain the consruction over $\mathbb{Q}\left(\zeta_{k}, \sqrt{-D}\right)$ where this is not a cyclotomic field and its problems, in Section 3. We give the results for Section 2, in Section 4.

2 Construction over $\mathbb{Q}\left(\zeta_{k}, \zeta_{d}\right)$

Main Construction

1. Fix $D, k \in \mathbb{N}$, where D is a square free integer.
2. Let d be D if $D \equiv 3 \bmod 4,4 D$ if $D \equiv 1$ or $2 \bmod 4$.

3 . Let $l=\operatorname{lcm}(k, d)$.
4. Let $r(x)=\Phi_{l}(x)$, where $\Phi_{l}(x)$ is l-th cyclotomic polynomial.
5. Let $K=\mathbb{Q}[x] /(r(x))=\mathbb{Q}\left(\zeta_{l}\right)$.

6 . Let $t(x)=1+x^{\alpha}$, where α is multiple of l / k.
7. By the code in Section 2.3, find $u(x)$ representing to $\sqrt{-D}$ in K.
8. Compute $y(x)=(t(x)-2) u(x) / D$ in K.
9. Compute $q(x)=\left(t(x)^{2}+D y(x)^{2}\right) / 4$ in $\mathbb{Q}[x]$.
10. If $q(x)$ and $r(x)$ represent prime for some x, by the CM method, construct an elliptic curve over $\mathbb{F}_{q(x)}$ with an order $r(x)$ subgroup.

Since $\rho \approx \operatorname{deg} q(x) / \operatorname{deg} r(x)$ and $\operatorname{deg} r(x)$ increases as D increases, we can expect that ρ will be more near to 1 for large D. But we almost obtain the best ρ values when D is small. We compute that for $\operatorname{deg} r(x) \leq 100$ and $k \leq 50$. When D is equal to 1,2 or $3, \rho$ is the minimum value, except $k=7,10$ and 14 . We give the result table in section 4.

Now we explain each steps.

2.1 Step 1-5 : Initialization

We have to construct the field K which has ζ_{k} and $\sqrt{-D}$. For any square free integer D, let d be D if D is equivalent to 3 modulo $4,4 D$ otherwise i.e. $-d$ is the discriminant of $\mathbb{Q}(\sqrt{-D})$. The following lemma explains the method of choice of cyclotomic field containing $\sqrt{-D}$.

Lemma 2. $\mathbb{Q}\left(\zeta_{d}\right)$ is the minimal cyclotomic field containing $\sqrt{-D}$, where $-d$ is the discriminant of $\mathbb{Q}(\sqrt{-D})$.

Proof. By Conductor-discriminant Formula [20], $-d$ is equal to its conductor.
Lemma 2 shows that K, in step 5 , is l-th cyclotomic field which has ζ_{k} and $\sqrt{-D}$.

2.2 Step 6 : Polynomial representing ζ_{k}

There are $\varphi(k)$ numbers of primitive k-th roots of unity and the polynomial $x^{l / k}$ is one of k-th roots of unity in K. If $\operatorname{gcd}(\alpha, k)=1,\left(x^{1 / k}\right)^{\alpha}$ is also a primitive k-th root of unity. Thus we can choose $\varphi(k)$ numbers of polynomials representing primitive k-th roots of unity.

2.3 Step 7 : Polynomial representing $\sqrt{-D}$

The polynomial $x^{l / d}$ is corresponding to ζ_{d} in K. There are $\varphi(d)$ numbers of primitive d-th roots of unity, but square root of $-D$ has only two possibility, $\pm \sqrt{-D}$. So if we represent $\sqrt{-D}$ by one of primitive d-th roots of unity, we can find the polynomial corresponding to $\sqrt{-D}$ in K. Since $\sqrt{-D}$ is in $\mathbb{Q}\left(\zeta_{d}\right)$ and integral, we can find the solutions of the polynomial $x^{2}+D$ in K, moreover $\mathbb{Z}\left[\zeta_{d}\right]$. Its solutions are found easily by solving the following equation;

$$
\begin{equation*}
\left(a_{0}+a_{1} \zeta_{d}+\cdots+a_{d-1} \zeta_{d}^{d-1}\right)^{2}=-D \tag{1}
\end{equation*}
$$

Using the relation $\zeta_{d}^{d}=1,(1)$ changes

$$
\begin{equation*}
b_{0}+b_{1} \zeta_{d}+\cdots+b_{d-1} \zeta_{d}^{d-1}=0 \tag{2}
\end{equation*}
$$

(2) is easily computed by the simple matrix calculation.

We compute this equation by PARI [11]. There is a function in PARI which gives the roots of the polynomial in number field. The following is the Code of finding the representation of $\sqrt{-D}$ in ζ_{d}

PARI Code : Find the representation of $\sqrt{-D}$ in ζ_{d}

```
    Input : D
Output : polynomial corresponding to }\sqrt{}{-D}\mathrm{ in }\mathbb{Q}(\mp@subsup{\zeta}{d}{}
    Represent_D(D) = \
    {
    local( d,f,nf,sqD ) ; \
    if ( issquarefree(D) , \
                d = -quaddisc(-D) ; \
                f=polcyclo(d,y) ; \
                nf=nfinit(f) ; \ \\ initialize of number field nf
                sqD=nfroots(nf,x^2+D) ; \ \\ roots of x^2+D in nf
                sqD=subst(sqD[2].pol,y,x) ; \ \\ change the variable y to x
            ) ; \
            sqD
        }
```


2.4 Step 10

We have to check whether $q(x)$ and $r(x)$ represent primes for some x. To do it, we need the following Conjecture.([9], [12])

Conjecture 1. There are infinitely many $a \in \mathbb{Z}$ such that $f(a)$ is prime if the following three conditions are satisfied:
(1) The leading coefficient of f is positive.
(2) f is irreducible.
(3) The set of values $f\left(\mathbb{Z}^{+}\right)$has no common divisor >1.

For any $l, r(x)$ satisfies this conjecture. But we have to check for $q(x)$.

2.5 Some results when $q(x)$ is reducible

If $q(x)$ is a power of irreducible polynomial, we can construct a pairing friendly elliptic curve over extension of finite field. The followings are only results in our computation when $q(x)$ is a power over irreducible polynomial.

Case 1. $k=3, D=3$
$r(x)=x^{2}+x+1$
$q(x)=(x+1)^{2}$
If $x+1$ is prime or prime power and $x^{2}+x+1$ is prime, we can construct an elliptic curve over $\mathbb{F}_{(x+1)^{2}}$ with embedding degree 3 and $\rho=1$.

Case 2. $k=4, D=1$
$r(x)=x^{2}+1$
$q(x)=1 / 2(x+1)^{2}$
If $q(x)$ is prime power, $x+1$ is a power of 2 . Then $x^{2}+1$ is always divided by 2. i.e. $r(x)$ cannot be prime. So the construction is impossible.

Case 3. $k=6, D=3$
$r(x)=x^{2}-x+1$
$q(x)=1 / 3(x+1)^{2}$
If $q(x)$ is prime power, $x+1$ is a power of 3 . Then $x^{2}-x+1$ is always divided by 3. i.e. $r(x)$ cannot be prime. So the construction is also impossible.

3 Construction on $\mathbb{Q}\left(\zeta_{k}, \sqrt{-D}\right)$

Let $K=\mathbb{Q}\left(\zeta_{k}, \sqrt{-D}\right)$. We also construct pairing friendly elliptic curves over K by PARI, where this field is not a cyclotomic field i.e. d does not divide k. The following is the PARI code of finding the representation of ζ_{k} and $\sqrt{-D}$.

PARI Code : Find the representation of ζ_{k} and $\sqrt{-D}$ in $\mathbb{Q}\left(\zeta_{k}, \sqrt{-D}\right)$

```
    Input : k, D
Output : r(x), t(x) and u(x) in \mathbb{Q}(\mp@subsup{\zeta}{k}{},\sqrt{}{-D})
    Represent_kD(k,D)=\
    {
    local(POLCOMP,r,sq_D,ZETA_k) ; \
    if ( issquarefree(D),\
                        POLCOMP=polcompositum(x^2+D,polcyclo(k),1)[1] ; \
                        r=POLCOMP[1] ; \
                        sq_D=POLCOMP[2].pol ; \
                        ZETA_k=POLCOMP[3].pol ; \
9. ) ; \
10. [r,ZETA_k+1,sq_D]
11.}
```

We only use the PARI function polcompositum. This gives the polynomial $r(x)$, and the roots of $x^{2}+D=0$ and $\Phi_{k}(x)=0$ as elements of $\mathbb{Q}[x] /(r(x))$. If d does not divide k, The denominator of coefficients of $r(x)$ are growing as D and k increases. polred in PARI, makes its coefficient small. But degree of decrease is only a little and this function is very slow. So this method is not good for large discriminant and large k.

Example 1. $k=8, D=17$
$K=\mathbb{Q}\left(\zeta_{8}, \sqrt{-17}\right)$
$r(x)=x^{8}+68 x^{6}+1736 x^{4}+19448 x^{2}+84100$
$t(x)=-17 / 267960 x^{7}-607 / 133980 x^{5}-17221 / 133980 x^{3}-39268 / 33495 x+1$
$u(x)=-17 / 267960 x^{7}-607 / 133980 x^{5}-17221 / 133980 x^{3}-72763 / 33495 x$
$q(x)=17 / 15956124800 x^{14}-1 / 2475950400 x^{13}+186583 / 1220643547200 x^{12}-$ $\cdots-41207687 / 30949380 x+1921757 / 853776$

Example 2．$k=7, D=1$
$K=\mathbb{Q}\left(\zeta_{7}, \sqrt{-1}\right)$
$r(x)=x^{12}+2 x^{11}+9 x^{10}+14 x^{9}+31 x^{8}+34 x^{7}+41 x^{6}+12 x^{5}-23 x^{4}-28 x^{3}+$ $11 x^{2}+8 x+1$

```
t(x)=-114243472/65265341x 11 -204769600/65265341年-988109696/65265341 每-
```



```
2600701292/65265341 攵 - 1754413800/65265341x - 439258918/65265341
```

$u(x)=-114243472 / 65265341 x^{11}-204769600 / 65265341 x^{10}-988109696 / 65265341 x^{9}-$ $1398866651 / 65265341 x^{8}-3273455408 / 65265341 x^{7}-3238008452 / 65265341 x^{6}-$ $4092584160 / 65265341 x^{5}-608191962 / 65265341 x^{4}+2627467472 / 65265341 x^{3}+$ $2600701292 / 65265341 x^{2}-1819679141 / 65265341 x-504524259 / 65265341$
$q(x)=8021189411500160 / 4259564735846281 x^{22}+28586727396255616 / 4259564735846281 x^{21}+$ $163906886117738456 / 4259564735846281 x^{20}+441581971739245064 / 4259564735846281 x^{19}+$ $\cdots-7277214974278758957 / 4259564735846281 x^{3}+564967616779787218 / 4259564735846281 x^{2}+$ $1002227778135310510 / 4259564735846281 x+124828323194560706 / 4259564735846281$

Example 3．$k=7, D=1$
By the method in section 2，
$K=\mathbb{Q}\left(\zeta_{7}, \zeta_{4}\right)$
$r(x)=x^{12}-x^{10}+x^{8}-x^{6}+x^{4}-x^{2}+1$
$t(x)=x^{4}+1$
$u(x)=x^{7}$
$q(x)=1 / 4\left(x^{22}-2 x^{18}+x^{14}+x^{8}+2 x^{4}+1\right)$

Remark 1．Example 1， 2 show that the degree of increase of coefficients is more influenced by k than D ．Strictly speaking，it is influenced by the degree $\varphi(k)=$ $\left[\mathbb{Q}\left(\zeta_{k}\right): \mathbb{Q}\right]$ ．

Remark 2．Example 2， 3 are constructed over the same field $\mathbb{Q}\left(\zeta_{7}, \sqrt{-1}\right)=$ $\mathbb{Q}\left(\zeta_{7}, \zeta_{4}\right)$ ．These examples show that the results are very different as the choice of $r(x)$ ．

4 Results

We compute ρ 's for deg $r(x) \leq 100$ and $k \leq 50$. When D is equal to 1,2 or $3, \rho$ is the minimum value, except $k=7,10$ and 14 .

Table 1. The best ρ value

k	ρ	D	α	$\operatorname{deg}(r(x))$
2	1.000	1	1	2
		3	1	2
3	1.000	3	1,2	2
4	1.000	1	1,3	2
5	1.500	3	2	8
6	1.000	3	1,5	2
7	1.333	1	2	12
		3	5	12
		7	4	6
8	1.250	3	3,7	8
9	1.333	3	$1,4,7$	6
10	1.500	1	3,9	8
		3	7	8
		5	3	8
11	1.200	1	3	20
		3	4	20
12	1.500	3	$1,5,7,11$	4
13	1.167	3	9	24
14	1.333	3	5	12
		7	11	6
15	1.500	3	1,11	8
16	1.375	3	1,9	16
17	1.125	3	6	32
18	1.583	2	1	24
19	1.111	1	5	36
		3	13	36
20	1.375	3	7,17	16
21	1.333	3	1,8	12
22	1.300	1	1	20
		3	19	20
23	1.091	1	6	44
		3	8	44
24	1.250	3	$1,5,13,17$	8
25	1.300	3	17	40

k	ρ	D	α	$\operatorname{deg}(r(x))$
26	1.167	1	7	24
		3	9	24
27	1.111	3	$1,10,19$	18
28	1.333	1	1,15	12
29	1.071	3	10	56
30	1.500	3	1,11	8
31	1.067	1	8	60
		3	21	60
32	1.063	3	11,27	32
33	1.200	3	1,23	20
34	1.125	1	9	32
		3	23	32
35	1.500	1	9	48
		3	12	48
36	1.417	2	1	24
37	1.056	3	25	72
38	1.111	3	13	36
39	1.167	3	1,14	24
40	1.438	3	1,21	32
41	1.050	3	14	80
42	1.333	3	1,29	12
43	1.048	1	11	84
		3	29	84
44	1.150	3	15,37	40
45	1.333	3	$1,16,31$	24
46	1.136	1	1	44
		3	39	44
47	1.043	1	12	92
		3	16	92
48	1.125	3	$1,17,25,41$	16
49	1.190	3	33	84
50	1.300	1	13	40
		3	17	40

Note that when $k=12$, Barreto and Naehrig make a pairing friendly elliptic curve with $\rho=1$ by MNT method [14].

5 Conclusion

We have proposed a general construction of pairing friendly elliptic curves over an extension field L of $K=\mathbb{Q}\left(\zeta_{k}, \sqrt{-D}\right)$. If the field L is not a cyclotomic field, our method is not useful. If we find an extension field L of $K=\mathbb{Q}\left(\zeta_{k}, \sqrt{-D}\right)$ which has a simple ring of integer, specially a power integral basis, we can easily find $t(x), u(x)$ in L and its denominate of coefficient may be small.

References

1. P.Barreto and M.Naehrig, Pairing-friendly elliptic curves of prime order, Cryptology ePrint Archive Report 2005/133.
2. P.S.L.M.Barreto, B.Lynn and M.Scott. Constructing elliptic curves with prescribed embedding degrees, Security in Communication Networks - SCN'2002, volumn 2576 of Lecture Note in Computer Science, Springer-Verlag, (2002), 263-273.
3. F.Brezing and A. Weng. Elliptic curves sutable for pairing based cryptography, Designs, Codes and Cryptography, 37:133-141, 2005.
4. H.Cohen. A course in Computational Algebraic Number Theory, Graduate Texts in Mathematics, 138, Springer-Verlag,Berlin, 2000.
5. D.A.Cox, Primes of the form $x^{2}+n y^{2}$, John Wiley \& Sons, New York 1989.
6. C.Cocks and R.G.E.Pinch, Identity-based cryptosystems based on the Weil pairing, unpublished manuscript, (2001).
7. Regis Dupont, Andreas Enge, Francois Morain. Building Curves with Arbitrary Small MOV Degree over Finite Prime Fields, J. Cryptology. 18(2) (2005), 79-89.
8. D. Freeman. Constructing pairing-friendly elliptic curves with embedding degree 10, In Algorithmic Number Theory Symposium ANTS-VII, volumn 4076 of lecture Notes in Computer Science, Springer-Verlag, (2006) 452-465.
9. D.Freeman, M.Scott, E.Teske. A taxonomy of pairing-friendly elliptic curves, Cryptology ePrint Archive Report 2006/372. Available at:http://eprint.iacr.org/2006/372/.
10. S. Galbraith, J. McKee, and P.Valença. Ordinary abelian varieties having small embedding degree, In Proc. Workshop on Mathematical Problems and Techniques in Cryptology, page 29-45. CRM, Barcelona, 2005.
11. C.Batat, D.Bernardi, H.Cohen, M.Olivier. PARI-GP Version 2.3.1
12. S.Lang. Algebra Addison-Wesley, Reading, MA, 1993 (3rd ed.)
13. G.-J.Lay and H.G.Zimmer, Constructing elliptic curves with given group order over large finite fields, In L.M. Adleman and M.-D. Huang, editors. ANTS-1: Algorithmic Number Theory, Springer-Verlag, LNCS 877 (1994), 250-263.
14. A. Murphy and N. Fitzpatrick Elliptic curves for pairing applications, Cryptology ePrint Archive Report 2005/302. Available at:http://eprint.iacr.org/2005/302/.
15. A.Miyaji, M.Nakabayashi, and S.Takano, New explicit conditions of elliptic curve traces for FR-reduction, IEICE Transactions on Fundamentals, E84-A(5) (2001), 1234-1243.
16. A.Menezes, T.Okamoto and S.Vanstone, Reducing elliptic curve logarithms to logarithms in a finite field, IEEE Transactions on Information Theory 39 (1993), 16391646.
17. A.Menezes and S.Vanstone, Isomorphism classes of elliptic curves over finite fields of characteristic 2, Utilitas Mathematica. 38 (1990), 135-153.
18. M.Scott and P.S.L.M.Barreto, Generating more MNT elliptic curves, Cryptology ePrint Archive: Report 2004.
19. J.H.Silverman, The Arithmetic of Elliptic Curves. Springer, Springer (1986).
20. L.C.Washington, Introduction to Cyclotomic Fields, Springer (1997).
