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Abstract. We explain a method of finding the polynomials represent-
ing

√
−D and ζk over the field containing

√
−D and ζk. By using this

method, we make a construction of pairing-friendly elliptic curves based
on Cocks-Pinch method.

1 Introduction

Recently, many people are interested in the pairing based cryptography. It use
the fact that a weil pairing, a tate pairing or other pairings change the discrete
logarithm problem in an elliptic curve E(Fq) into the discrete logarithm problem
in a finite field F∗qk . An elliptic curve E is said to have an embedding degree k if
its subgroup order r divides qk − 1, but does not divide qi − 1 for all 0 < i < k
and set ρ = log q/ log r. The pairing based cryptography needs elliptic curves
with a small embedding degree k and a large prime order subgroup. i.e. ρ is
near to 1. Such curves are called pairing friendly elliptic curves. For the case of
supersingular curves, there is a well known fact that its embedding degrees are
less than or equal to 6 [16].

We consider nonsupersingular elliptic curves. There are several methods of
constructing elliptic curves with prescribed embedding degree k ([1], [2], [3], [7],
[8], [9], [15], [18]). The goal of these methods is finding the polynomials t(x),
r(x) and q(x) satisfying the followings:

(1) q(x) and r(x) represent primes.
(2) r(x) divides q(x) + 1− t(x).
(3) r(x) divides Φk(t(x)− 1), where Φk is the k-th cyclotomic polynomial.
(4) Dy(x)2 = 4q(x)− t(x)2 has infinitely many integer solutions.

Barreto, Lynn and Scott [2] and Brezing and Weng [3] give the construction
based on Cocks-Pinch method [6].

Cocks-Pinch method by Brezing and Weng [3]

1. Fix D, k ∈ N.
2. Choose an irreducible polynomial r(x) such that ζk,

√
−D ∈ K,
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where ζk is a primitive k-th root of unity and K = Q[x]/(r(x)).
3. Choose t(x) to be a polynomial representing 1 + ζk in K.
4. Choose u(x) to be a polynomial representing

√
−D in K.

5. Compute y(x) = (t(x)− 2)u(x)/D in K.
6. Compute q(x) = (t(x)2 + Dy(x)2)/4 ∈ Q[x].
7. If q(x) and r(x) represent prime for some x, by the CM method, construct an
elliptic curve over Fq(x) with an order r(x) subgroup.

The elliptic curves constructed by this method have ρ less than 2. The dif-
ficult point of Cocks-Pinch method is to find a polynomial r(x) satisfying the
followings;

(1) K = Q[x]/(r(x)) contains ζk and
√
−D.

(2) The polynomials represent ζk and
√
−D are easily found.

(3) r(x) and q(x) represent primes.

The smallest field satisfying (1) is Q(ζk,
√
−D). But if this field is not a

cyclotomic field, denominators of coefficients of t(x) and u(x) are very large in
generally. We give some example for this in section 3.

Most previous results are produced when Q(ζk,
√
−D) is a cyclotomic field.

i.e. D’s are 1, 2 and 3. In this paper, how to construct a pairing friendly elliptic
curves over some extension fields of Q(ζk,

√
−D) for arbitrary k and D. First,

we work over cyclotomic field. One of advantages of cyclotomic field is that the
ring of algebraic integer of cyclotomic field Q(ζl) is Z[ζl].

Lemma 1. If
√
−D is contained in Q(ζl),

√
−D is represented by ζl with integer

coefficients.

Proof. The ring of algebraic integer of Q(ζl) is Z[ζl] and
√
−D is an algebraic

integer. Thus there is
√
−D in Z[ζl].

Since
√
−D is represented by ζl with integer coefficient, Lemma 1 guarantees (2)

and (3) for many cases of q(x). Another advantage is that r(x) always satisfies
(3).(In Section 2.4)

The remaining problem is how to find polynomials representing
√
−D and ζk.

In previous works, they found such polynomials with some conditions of k and
D. In Section 2, we explain the method of finding the polynomials representing√
−D and ζk over cyclotomic fields without any conditions. By using this method

, we make a general construction over cyclotomic fields. In section 2.4, we give
some results over extension of finite field. Second, we explain the consruction over
Q(ζk,

√
−D) where this is not a cyclotomic field and its problems, in Section 3.

We give the results for Section 2, in Section 4.
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2 Construction over Q(ζk, ζd)

Main Construction

1. Fix D, k ∈ N, where D is a square free integer.
2. Let d be D if D ≡ 3 mod 4, 4D if D ≡ 1 or 2 mod 4.
3. Let l = lcm(k, d).
4. Let r(x) = Φl(x), where Φl(x) is l-th cyclotomic polynomial.
5. Let K = Q[x]/(r(x)) = Q(ζl).
6. Let t(x) = 1 + xα, where α is multiple of l/k.
7. By the code in Section 2.3, find u(x) representing to

√
−D in K.

8. Compute y(x) = (t(x)− 2)u(x)/D in K.
9. Compute q(x) = (t(x)2 + Dy(x)2)/4 in Q[x].
10. If q(x) and r(x) represent prime for some x, by the CM method, construct
an elliptic curve over Fq(x) with an order r(x) subgroup.

Since ρ ≈ deg q(x)/deg r(x) and deg r(x) increases as D increases, we can
expect that ρ will be more near to 1 for large D. But we almost obtain the best
ρ values when D is small. We compute that for deg r(x) ≤ 100 and k ≤ 50.
When D is equal to 1, 2 or 3, ρ is the minimum value, except k = 7, 10 and 14.
We give the result table in section 4.

Now we explain each steps.

2.1 Step 1-5 : Initialization

We have to construct the field K which has ζk and
√
−D. For any square free

integer D, let d be D if D is equivalent to 3 modulo 4, 4D otherwise i.e. −d
is the discriminant of Q(

√
−D). The following lemma explains the method of

choice of cyclotomic field containing
√
−D.

Lemma 2. Q(ζd) is the minimal cyclotomic field containing
√
−D, where −d

is the discriminant of Q(
√
−D).

Proof. By Conductor-discriminant Formula [20], −d is equal to its conductor.

Lemma 2 shows that K, in step 5, is l-th cyclotomic field which has ζk and√
−D.

2.2 Step 6 : Polynomial representing ζk

There are ϕ(k) numbers of primitive k-th roots of unity and the polynomial xl/k

is one of k-th roots of unity in K. If gcd(α, k) = 1, (x1/k)α is also a primitive
k-th root of unity. Thus we can choose ϕ(k) numbers of polynomials representing
primitive k-th roots of unity.
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2.3 Step 7 : Polynomial representing
√

−D

The polynomial xl/d is corresponding to ζd in K. There are ϕ(d) numbers of
primitive d-th roots of unity, but square root of −D has only two possibility,
±
√
−D. So if we represent

√
−D by one of primitive d-th roots of unity, we can

find the polynomial corresponding to
√
−D in K. Since

√
−D is in Q(ζd) and

integral, we can find the solutions of the polynomial x2 + D in K, moreover
Z[ζd]. Its solutions are found easily by solving the following equation;

(a0 + a1ζd + · · ·+ ad−1ζ
d−1
d )2 = −D (1)

Using the relation ζd
d = 1, (1) changes

b0 + b1ζd + · · ·+ bd−1ζ
d−1
d = 0 (2)

(2) is easily computed by the simple matrix calculation.

We compute this equation by PARI [11]. There is a function in PARI which
gives the roots of the polynomial in number field. The following is the Code of
finding the representation of

√
−D in ζd

PARI Code : Find the representation of
√

−D in ζd

Input : D
Output : polynomial corresponding to

√
−D in Q(ζd)

1. Represent_D(D) = \
2. {
3. local( d,f,nf,sqD ) ; \
4. if ( issquarefree(D) , \
5. d = -quaddisc(-D) ; \
6. f=polcyclo(d,y) ; \
7. nf=nfinit(f) ; \ \\ initialize of number field nf
8. sqD=nfroots(nf,x^2+D) ; \ \\ roots of x^2+D in nf
9. sqD=subst(sqD[2].pol,y,x) ; \ \\ change the variable y to x
10. ) ; \
11. sqD
12. }

2.4 Step 10

We have to check whether q(x) and r(x) represent primes for some x. To do it,
we need the following Conjecture.([9], [12])
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Conjecture 1. There are infinitely many a ∈ Z such that f(a) is prime if the
following three conditions are satisfied:

(1) The leading coefficient of f is positive.
(2) f is irreducible.
(3) The set of values f(Z+) has no common divisor > 1.

For any l, r(x) satisfies this conjecture. But we have to check for q(x).

2.5 Some results when q(x) is reducible

If q(x) is a power of irreducible polynomial, we can construct a pairing friendly
elliptic curve over extension of finite field. The followings are only results in our
computation when q(x) is a power over irreducible polynomial.

Case 1. k = 3, D = 3

r(x) = x2 + x + 1

q(x) = (x + 1)2

If x + 1 is prime or prime power and x2 + x + 1 is prime, we can construct
an elliptic curve over F(x+1)2 with embedding degree 3 and ρ = 1.

Case 2. k = 4, D = 1

r(x) = x2 + 1

q(x) = 1/2(x + 1)2

If q(x) is prime power, x + 1 is a power of 2. Then x2 + 1 is always divided
by 2. i.e. r(x) cannot be prime. So the construction is impossible.

Case 3. k = 6, D = 3

r(x) = x2 − x + 1

q(x) = 1/3(x + 1)2

If q(x) is prime power, x + 1 is a power of 3. Then x2 − x + 1 is always di-
vided by 3. i.e. r(x) cannot be prime. So the construction is also impossible.
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3 Construction on Q(ζk,
√

−D)

Let K = Q(ζk,
√
−D). We also construct pairing friendly elliptic curves over K

by PARI, where this field is not a cyclotomic field i.e. d does not divide k. The
following is the PARI code of finding the representation of ζk and

√
−D.

PARI Code : Find the representation of ζk and
√

−D in Q(ζk,
√

−D)

Input : k, D
Output : r(x), t(x) and u(x) in Q(ζk,

√
−D)

1. Represent_kD(k,D)= \
2. {
3. local(POLCOMP,r,sq_D,ZETA_k) ; \
4. if ( issquarefree(D),\
5. POLCOMP=polcompositum(x^2+D,polcyclo(k),1)[1] ; \
6. r=POLCOMP[1] ; \
7. sq_D=POLCOMP[2].pol ; \
8. ZETA_k=POLCOMP[3].pol ; \
9. ) ; \
10. [r,ZETA_k+1,sq_D]
11. }

We only use the PARI function polcompositum. This gives the polynomial
r(x), and the roots of x2 +D = 0 and Φk(x) = 0 as elements of Q[x]/(r(x)). If d
does not divide k, The denominator of coefficients of r(x) are growing as D and
k increases. polred in PARI, makes its coefficient small. But degree of decrease
is only a little and this function is very slow. So this method is not good for
large discriminant and large k.

Example 1. k = 8, D = 17

K = Q(ζ8,
√
−17)

r(x) = x8 + 68x6 + 1736x4 + 19448x2 + 84100

t(x) = −17/267960x7 − 607/133980x5 − 17221/133980x3 − 39268/33495x + 1

u(x) = −17/267960x7 − 607/133980x5 − 17221/133980x3 − 72763/33495x

q(x) = 17/15956124800x14 − 1/2475950400x13 + 186583/1220643547200x12 −
· · · − 41207687/30949380x + 1921757/853776
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Example 2. k = 7, D = 1

K = Q(ζ7,
√
−1)

r(x) = x12 + 2x11 + 9x10 + 14x9 + 31x8 + 34x7 + 41x6 + 12x5 − 23x4 − 28x3 +
11x2 + 8x + 1

t(x) = −114243472/65265341x11−204769600/65265341x10−988109696/65265341x9−
1398866651/65265341x8− 3273455408/65265341x7− 3238008452/65265341x6−
4092584160/65265341x5 − 608191962/65265341x4 + 2627467472/65265341x3 +
2600701292/65265341x2 − 1754413800/65265341x− 439258918/65265341

u(x) = −114243472/65265341x11−204769600/65265341x10−988109696/65265341x9−
1398866651/65265341x8− 3273455408/65265341x7− 3238008452/65265341x6−
4092584160/65265341x5 − 608191962/65265341x4 + 2627467472/65265341x3 +
2600701292/65265341x2 − 1819679141/65265341x− 504524259/65265341

q(x) = 8021189411500160/4259564735846281x22+28586727396255616/4259564735846281x21+
163906886117738456/4259564735846281x20+441581971739245064/4259564735846281x19+
· · ·−7277214974278758957/4259564735846281x3+564967616779787218/4259564735846281x2+
1002227778135310510/4259564735846281x+124828323194560706/4259564735846281

Example 3. k = 7, D = 1

By the method in section 2,

K = Q(ζ7, ζ4)

r(x) = x12 − x10 + x8 − x6 + x4 − x2 + 1

t(x) = x4 + 1

u(x) = x7

q(x) = 1/4(x22 − 2x18 + x14 + x8 + 2x4 + 1)

Remark 1. Example 1, 2 show that the degree of increase of coefficients is more
influenced by k than D. Strictly speaking, it is influenced by the degree ϕ(k) =
[Q(ζk) : Q].

Remark 2. Example 2, 3 are constructed over the same field Q(ζ7,
√
−1) =

Q(ζ7, ζ4). These examples show that the results are very different as the choice
of r(x).
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4 Results

We compute ρ’s for deg r(x) ≤ 100 and k ≤ 50. When D is equal to 1, 2 or 3, ρ
is the minimum value, except k = 7, 10 and 14.

Table 1. The best ρ value

k ρ D α deg(r(x))
2 1.000 1 1 2

3 1 2
3 1.000 3 1,2 2
4 1.000 1 1,3 2
5 1.500 3 2 8
6 1.000 3 1,5 2
7 1.333 1 2 12

3 5 12
7 4 6

8 1.250 3 3,7 8
9 1.333 3 1,4,7 6
10 1.500 1 3,9 8

3 7 8
5 3 8

11 1.200 1 3 20
3 4 20

12 1.500 3 1,5,7,11 4
13 1.167 3 9 24
14 1.333 3 5 12

7 11 6
15 1.500 3 1,11 8
16 1.375 3 1,9 16
17 1.125 3 6 32
18 1.583 2 1 24
19 1.111 1 5 36

3 13 36
20 1.375 3 7,17 16
21 1.333 3 1,8 12
22 1.300 1 1 20

3 19 20
23 1.091 1 6 44

3 8 44
24 1.250 3 1,5,13,17 8
25 1.300 3 17 40

k ρ D α deg(r(x))
26 1.167 1 7 24

3 9 24
27 1.111 3 1,10,19 18
28 1.333 1 1,15 12
29 1.071 3 10 56
30 1.500 3 1,11 8
31 1.067 1 8 60

3 21 60
32 1.063 3 11,27 32
33 1.200 3 1,23 20
34 1.125 1 9 32

3 23 32
35 1.500 1 9 48

3 12 48
36 1.417 2 1 24
37 1.056 3 25 72
38 1.111 3 13 36
39 1.167 3 1,14 24
40 1.438 3 1,21 32
41 1.050 3 14 80
42 1.333 3 1,29 12
43 1.048 1 11 84

3 29 84
44 1.150 3 15,37 40
45 1.333 3 1,16,31 24
46 1.136 1 1 44

3 39 44
47 1.043 1 12 92

3 16 92
48 1.125 3 1,17,25,41 16
49 1.190 3 33 84
50 1.300 1 13 40

3 17 40

Note that when k = 12, Barreto and Naehrig make a pairing friendly elliptic
curve with ρ = 1 by MNT method [14].
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5 Conclusion

We have proposed a general construction of pairing friendly elliptic curves over
an extension field L of K = Q(ζk,

√
−D). If the field L is not a cyclotomic field,

our method is not useful. If we find an extension field L of K = Q(ζk,
√
−D)

which has a simple ring of integer, specially a power integral basis, we can easily
find t(x), u(x) in L and its denominate of coefficient may be small.
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