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Abstract. Motivated by the demand of databases outsourcing and its security
concerns, we investigate privacy-preserving set operations in a distributed sce-
nario. By combining Shamir secret sharing scheme and homomorphic encryp-
tion, we propose a one-round protocol for privacy-preserving distributed set in-
tersection. We then show that, with an additional round of interaction, cardinality
of distributed set-intersections can be computed efficiently. Moreover, by using
oblivious polynomial evaluation techniques, we provide a solution for distributed
subset relation problem. All protocols constructed in this paper are provably se-
cure against a semi-honest adversary under the Decisional Diffie-Hellman as-
sumption.
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1 Introduction

Privacy-Preserving Set Operation [9] is a cryptographic technique, which allows two
or more parties each holding a set of inputs to jointly calculate set operations of their
inputs without leaking any information. Imagine that two companies want to analyze
their customers consuming trends. That is, they want to determine the likelihood that
a customer buying the productP1 from the companyC1 is also buying the product
P2 from the companyC2. To gain this information, they would like to perform a set-
intersection operation on two private sets. In order to preserve the companies business
secrets and to protect the customers privacy, the customersdetails must not be revealed.
Another example is when a research institute and a group of hospitals cooperate to ana-
lyze patients records anonymously. Currently, there is a number of secure set operation
protocols available [4, 9, 8].

Motivated by the demand of databases outsourcing and security concerns on its ap-
plications, we investigate privacy-preserving set operations in a distributed scenario. We
call this Privacy-Preserving Distributed Set Operations.To illustrate this problem con-
sider following example. Suppose aProvider who owns a set of data wants to distribute
his dataset tow servers by using a secret sharing scheme. AClient who possesses a dif-
ferent dataset wishes to compute certain set operations between these two datasets with
the cooperation of a threshold of the servers. The additional requirement is that this
must be done with a minimum possible disclosure of information, only using certain
set operations which are discovered by the client at the end of the protocol. Consid-
ering the high-cost of database encryption and the complex process of querying such



an encrypted database, the constructions we describe are useful in the case of database
outsourcing where an individual server is not trusted by theprovider.

Our Contribution. In this paper, we propose an efficient technique for privacy preserv-
ing set operations in the distributed setting. Our approachis based on homomorphic
encryption and oblivious polynomial evaluation, which areeffective and computation-
ally secure. We design an efficient method to enable privacy-preserving computation of
distributed set intersection based on Lagrange’s interpolation. We then apply the oblivi-
ous polynomial evaluation technique to construct a protocol for testing whether a given
set is a subset of a distributed set. The protocol is efficientand requires only one more
round communication between the client and anyone ofw servers. To avoid the com-
putational cost of oblivious polynomial evaluation, we employ the technique of random
shuffling and provide efficient solutions oncardinality of distributed set-intersection
problem.

Our protocols are secure against a semi-honest adversary. Such an adversary fol-
lows the steps of the protocol but tries to learn extra information from the messages it
receives during every round of the protocol. Our homomorphic encryption is based on
the ElGamal scheme [5], which is semantically secure if the Decisional Diffie-Hellman
(DDH) assumption holds [16]. Note that as in [4, 8] our protocols reveal the size of the
datasets of both the client and the provider. As suggested in[8], "dummy" elements can
be used for dataset padding in order to hide the size of the dataset.

Because of space limitation all the proofs in this paper are only sketched.

Related Work. In theory, the privacy-preserving set operation problems can be solved
by secure Multi-Party Computation (MPC) [2, 17]. However, the solution from gen-
eral secure MPC are typically not efficent. Kessner and Song [9] proposed a solution
to various privacy-preserving set operation problems in the context of private computa-
tion on multisets for multi-players. Based on a threshold homomorphic cryptosystem,
Sang et al. [14] improved the computation and communicationcomplexity on the set
intersection and set matching problems.

The problem of securely computing the intersection of two private datasets was
considered in [12]. Recently, Freedman et. al. [4] proposedefficient protocols for the
problem of private set-intersection, based on the representation of datasets as roots of
a polynomial. Private disjointness test of two datasets arediscussed in [8, 7]. Protocols
for private equality tests are a special case of the private disjointness test, where each
party has a single element in the database. These were considered in [3, 12, 10].

Our paper is organized as follows. In Section 2 we introduce the cryptographic prim-
itives, distributed setting, and adversary model. In Section 3 we present a protocol and
security analysis for the distributed set intersection problem. Section 4 gives a protocol
and security analysis for the distributed subset relation problem. To extend our solu-
tions on the distributed set intersection and the distributed subset relation problems, we
provide solutions for the cardinality of distributed set-intersection problem in Section 5.
Finally, in Section 6 we give concluding remarks and discusspossible future work.



2 Preliminaries

2.1 Additively Homomorphic Encryption

We will utilize an additively homomorphic public-key cryptosystem. LetEpk(·) denote
the encryption function with a public keypk. The cryptosystem supports the following
operations, which can be performed without knowing the private key.

– GivenEpk(a) andEpk(b), we can efficiently computeEpk(a + b).
– Given a constantc andEpk(a), we can efficiently computeEpk(ca).

In our schemes, the computations are carried out overZp wherep is a prime. We
note that all of our constructions can be based on the standard variant of ElGamal en-
cryption. This variant has been employed recently for constructing the protocols of
privacy-preserving set operations (see, for example [8, 1,10]). Let the triple(K,E,D)
be the variant of ElGamal where

– K is the key-generation algorithm. Given a security parameter l = log2 p,
(pk, sk) ← K(1l) where the public-keypk := 〈p, g, h, f〉 and the correspond-
ing secret-keyx = logg h. More precisely,q = (p − 1)/2 is also a prime number,
g is an element of orderq in Z

∗
p andh, f ∈ 〈g〉;

– E is the encryption algorithm. Given the public-keypk and a plaintext, one encrypts

a plaintextm ∈ Zq asEpk(r,m) = (gr, hrfm) wherer
R
← Zq;

– D is the decryption algorithm. Given the secret-keyx and a ciphertext(a, b) the
decryption algorithm returnsa−xb mod p. Notice that this will only returnfm

rather thanm, however this suffices for our setting. In our protocols we are only
interested in testing whetherm = 0, which is equivalent to testing ifa−xb ≡ 1
mod p.

To demonstrate the above encryption scheme is indeed homomorphic, we define a
operation� as multiplication overZp × Zp. Let m1,m2,m ∈ Zq and corresponding

r1, r2, r
R
← Zq, then

Epk(r1,m1)� Epk(r2,m2) :=
(
gr1+r2 , hr1+r2fm1+m2

)
= Epk(r1 + r2,m1 + m2).

If we repeat this operationc times, we have

Epk(r,m)c = Epk(r,m)� Epk(r,m)� . . .� Epk(r,m)
︸ ︷︷ ︸

c times

:= Epk(cr, cm).

For brevity, we useEpk(m) to representEpk(r,m) in the rest of the presentation as we

assume that there is always a correspondingr
R
← Zq.



2.2 Oblivious Polynomial Evaluation

There are two parties,A andB.A owns a functionF and would like to letB compute
the valueF(x) for an inputx owned byB.A learns nothing aboutx, andB learns only
the computed resultF(x) and does not gain any additional information aboutF .

We use Oblivious Polynomial Evaluation [12, 4] to perform the set operations.A
defines a polynomialW whose roots are her inputsDA = {x1, . . . , xn}:

W (y) = (y − x1)(y − x2) . . . (y − xn) =

n∑

u=0

αuyu.

A encrypts the coefficients of this polynomial with the homomorphic public key cryp-
tosystem and sends toB all the encrypted coefficients{Epk(α0), . . . , Epk(αn)}, where
Epk(αi) = (gri , hrifαi). Because of the homomorphic properties,B can then evaluate
the polynomial at the inputβ as:

Epk(W (β)) = (g

n
P

i=0

riβ
i

, h

n
P

i=0

riβ
i

f

n
P

i=0

αiβ
i

),

and sends it toA. WhenA receivesEpk(W (β)), she decrypts it and obtains the infor-
mation aboutW (β).

2.3 Distributed Setting

The parties in our distributed model are aClient C, a Provider P, and w servers
S1, S2, . . . , Sw. We assume that the provider holds a set of secrets
DP = {µ0, µ1, . . . , µn-1}, which is distributed tow servers using(t, w)-Shamir’s thresh-

old secret sharing scheme. In addition,P sendsλ
R
← Zq− {0} to w servers. Suppose

that there exits a public pseudo-random number generatorG, whose outputsG(λ) are
uniformly distributed inZq− {0}. The notationG(λ) means that the pseudo-random
number generatorG takes the random valueλ.
P does not directly interact withC for the set operations, insteadC contact at lest

t servers to accomplish this task. Note, this distributed setting is not our contribution.
Similar construction was proposed by Naor and Pinkas [13].

Our homomorphic encryption system is based on a variant of ElGamal encryption,
and the message space is overZq whereq ≥ n. For simplicity, we omit modulusq
within the computation of shares construction in this section.

Initialization and Share Distribution Phase. First,P constructs a polynomial whose
coefficients are his inputs (n secrets) as

F (y) =

n−1∑

i=0

µiy
i.

ThenP generates a random masking bivariate polynomial

H(x, y) =

t−1∑

j=1

n−1∑

i=0

aj,ix
jyi whereaj,i ∈ Zq,



such thatH(0, y) = 0 for anyy. Using the polynomialH, P defines another bivariate
polynomialQ(x, y) = F (y) + H(x, y) satisfying∀y Q(0, y) = F (y). For1 ≤ ` ≤ w,
P computes and sendsQ(`, y) to serverS` as

Q(`, y) = F (y) + H(`, y)=

n−1∑

i=0

µiy
i +

t−1∑

j=1

n−1∑

i=0

aj,i`
jyi =

n−1∑

i=0

(µi + bi,`)y
i.

Let µi,` = µi + bi,`, the serverS` receives a set of shares{µ0,`, . . . , µn−1,`}, which
is the shared-coefficients [11] of the polynomialF .

Secret Reconstruction Phase.By Lagrange interpolation formula, we know that the
coalition oft or more servers can reconstruct the original polynomialF . Thet polyno-
mialsQ(`m, y) for m ∈ [1, t] are:

Q(`1, y) = F (y) +

t−1∑

j=1

n−1∑

i=0

aj,i`1
jyi

...
...

Q(`t, y) = F (y) +

t−1∑

j=1

n−1∑

i=0

aj,i`t
jyi

This can be written in matrix form as:








Q(`1, y)
Q(`2, y)

...
Q(`t, y)








=








1 `1 `1
2 . . . `1

t−1

1 `2 `2
2 . . . `2

t−1

...
...

...
. ..

...
1 `t `t

2 . . . `t
t−1





















F (y)
t−1∑

j=1

aj,0 yi

...
t−1∑

j=1

aj,n−1 yi














, (1)

where the coefficient matrixA is a Vandermonde matrix. As in the original
(t, w)-Shamir scheme, thèm’s are all distinct, so the matrixA is invertible [15] and
consequently we obtain a unique solution inZq. So if we multiply both sides of (1) by
the inverseA−1, we obtain

A−1








Q(`1, y)
Q(`2, y)

...
Q(`t, y)








=














F (y)
t−1∑

j=1

aj,0 yi

...
t−1∑

j=1

aj,n−1 yi














. (2)



Since we are interested in reconstructingF , we need only the first row ofA−1. Let
(v1,1, v1,2, . . . , v1,t) be the first row ofA−1, Equation (2) can be simplified as:

(
v1,1 v1,2 . . . v1,t

)






Q(`1, y)
...

Q(`t, y)




 = F (y).

Therefore

(
v1,1 v1,2 . . . v1,t

)






µ0,`1 µ1,`1 . . . µn−1,`1

...
...

. . .
...

µ0,`t
µ1,`t

. . . µn−1,`t




 =

(
µ0 µ1 . . . µn−1

)
. (3)

From (3) we conclude that the original set of secrets can be reconstructed as
µi =

∑t
j=1 v1,j µi,`j

for i ∈ [0, n− 1].

Lemma 1. Equation (3) for reconstructing the original secret is the same as the La-
grange interpolation formula and v1,j =

∏

1≤k≤t

k 6=j

`k

`k−`j
for 1 ≤ j ≤ t.

Lemma 2. In Lagrange’s interpolation formula,

t∑

j=1







∏

1≤k≤t

k 6=j

`k

`k − `j







= 1.

We sketch the proofs of Lemmas 1 and 2 in Appendix A.
Note that we use the variant of ElGamal that is defined overZp. We omit modulus

p in the rest of the presentation, if no confusion will occur.

2.4 Adversary Model

We consider a semi-honest adversary model. Due to space constraints, we only provide
the intuition and informal definitions of this model. The reader is referred to [6] for a
more complete discussion.

In this model, there is no direct interaction betweenC andP. C and w servers
are assumed to act according to their prescribed actions in the protocol. The security
definition is straightforward: (i) onlyC learns the result of the protocol, (ii) no server
colludes withC to cheat.

Definition 1. (t-secure).A set operation protocol is said to be t-secureif the client C,
colluding with at most t − 1 out of w servers has no information about the provider’s
dataset and the set operation result.



Following [12, 13] our model should meet the following requirements:

Correctness.A distributed protocol is correct if the clientC obtains the result of eval-
uated shares of her input fromt servers (and additional information from any sin-
gle server in the second round if it is applicable), when eachserver with the shared-
coefficients of the polynomialF and the clientC with the input follow the steps of the
protocol.

Client’s security. Given thatw servers get no output from the protocol, the definition
of the client’s privacy requires simply that any server cannot distinguish between cases
in which the client has different inputs.

Provider’s security. The definition ensures that the client does not get any extra infor-
mation other than the output of the function. In addition, the provider’s privacy should
bet-secure.

3 Privacy-Preserving Distributed Set Intersection

Problem Definition: Let P ’s dataset beDP = {µ0, . . . , µn−1}. The construction and
distribution of the initial shares and the random valueλ are given in Section 2.3. As-
sume thatC has a datasetDC = {c0, . . . , cm−1}. We define the distributed set inter-
section problem as follows:C contacts the threshold oft or more servers to computes
the intersection ofDC andDP without gaining any other information aboutDP. The
contacted servers do not learn any information aboutDC.

Corollary 1. Let bj =
∏

1≤k≤t

k 6=j

`k

`k−`j
in the interpolation formula for j ∈ [1, t]. Then

∑t
j=1 bj(µi,`j

− µi) = 0.

Proof. From Lemma 2, we know that
∑t

j=1 bj = 1. We also know that
∑t

j=1 µi,`j
bj = µi by the interpolation formula. The conclusion is straightforward.

With the property in Corollary 1, we give a solution of distributed set intersection
problem in Fig. 1.

Correctness.In the above protocol,C first encrypts each elementcυ of her dataset
by using her public key asEpk(f

−cυ ) for υ ∈ [0,m − 1] and broadcasts all these
encrypted elements tot servers. For each encrypted elementEpk(f

−cυ ), the servers

S`j
(1 ≤ j ≤ t) computeEpk(f

λ(µi,`j
−cυ)) for i ∈ [0, n − 1], and send all the

Epk(f
λ(µi,`j

−cυ))’s back toC. C then decrypts thoseEpk(f
λ(µi,`j

−cυ))’s and computes

fλ
Pt

j=1
bj (µi,`j

−cυ) for each i = 0, . . . , n − 1. Note that if cυ = µi then
∑t

j=1 bj (µi,`j
− cυ) = 0. SoC knows thatcυ ∈ DP if any fλ

Pt
j=1

bj (µi,`j
−cυ) = 1.

When all the steps are finishedC learnsDC ∩ DP.



Input: C has a set of dataDC. P has another set of dataDP, which is distributed tow
servers. Each serverS` knows the random valueλ and the set of shares{µ0,`, . . . , µn−1,`}
for 1 ≤ ` ≤ w.
Output: C knowsDC ∩ DP.

1. C generates a new key pair(pk, sk)← K(1l), r
R
← Zq, then

(a) setsτυ ← Epk(cυ) = (gr, hrf−cυ ) for υ ∈ [0, m− 1].
(b) broadcasts {pk, τ0, . . . , τm−1 } to t serversS`1 , . . . , S`t .

2. Forj = 1, . . . , t each contacted serverS`j

(a) computesτυ,i,j ← (gλr, hλrf
λ(µi,`j

−cυ)
) for υ ∈ [0, m− 1] andi ∈ [0, n− 1].

(b) sends {τ0,0,j , . . . , τ0,n−1,j , τ1,0,j , . . . , τm−1,n−1,j } to C.
3. Forυ = 0, . . . , m− 1, the clientC

(a) computesdυ,i,j ← Dsk(τυ,i,j) for i ∈ [0, n− 1], j ∈ [1, t]. //decryptsτυ,i,j

(b) computesdυ,i ←
tY

j=1

(dυ,i,j)
bj for i = 0, . . . , n− 1, wherebj =

Q
1≤k≤t

k 6=j

`k

`k−`j
in

Lagrange interpolation formula.
(c) concludescυ ∈ DP, if dυ,i = 1 for i ∈ [0, n − 1]; otherwisedυ,i is a random

integer.

4. When this process concludes,C can establishDC ∩ DP.

Fig. 1. Privacy-preserving distributed set intersection protocol

Efficiency. Regarding efficiency, the scheme requires only one round.C broadcasts a
set of encryptedm secrets tot servers. Each contacted serverS`j

responds withmn
messages. So the communication complexity of this protocolis O(tmn× log2 p) bits.

For computation,C needsm+2 modular exponentiations andm multiplications for
encrypting her dataset;tmn decryptions, tmn modular exponentiations and
mn(t − 1) multiplications for the Lagrange interpolation. Each contacted serverS`j

needsmn exponentiations and multiplications respectively for inputing its shares. So
the computation complexity of this protocol isO(tmn) multiplications considering that
1-exponentiation takes at mostblog2(p− 1)cmultiplications in Fast Exponentiation Al-
gorithm.

Security. The above Distributed Set-Intersection protocol has following properties:

Theorem 1. Assuming that the underlying homomorphic cryptosystem is semantically
secure in the distributed set-intersection protocol, then any contacted server cannot
distinguish any two inputs of C.

Proof. We need to show that for allυ ∈ [0,m − 1], Epk(cυ)’s look random if the
DDH assumption holds. First, we chooseυ′ ∈ [0,m − 1] whereυ′ 6= υ, and then
Epk(cυ) = (grυ , hrυfcυ ) andEpk(cυ′) = (grυ′ , hrυ′ fcυ′ ). Sincerυ, rυ′ are randomly
picked fromZq, nobody can get the information aboutfcυ andfcυ′ without the pri-
vate key. If the underlying homomorphic cryptosystem is semantically secure, we can
conclude thatEpk(cυ) andEpk(cυ′) are indistinguishable.



Theorem 2. Assuming that the discrete logarithm problem and the integer factorial
problem are hard, C cannot compute any information other than DC ∩ DP. In addition
P’s privacy is t-secure.

Proof (Sketch). Assuming the discrete logarithm problem and the integer factorial prob-
lem are hard,C cannot infer anything fromfλ(µi,`j

−cυ) when it decrypts the ciphertext

from each oft servers. By Corollary 1 iffλ
Pt

j=1
bj (µi,`j

−cυ) = 1, thencυ = µi, more

preciselycυ ∈ DP; otherwisefλ
Pt

j=1
bj (µi,`j

−cυ) is a random integer. ThereforeC
cannot deduce anything from the output ifcυ /∈ DP. Furthermore,C cannot compute
anything from less thant servers information. This is guaranteed by the polynomial
secret sharing scheme we used.

4 Distributed Subset Relation

Problem Definition: LetP ’s datasetDP = {µ0, . . . , µn−1}. The construction and dis-
tribution of the initial shares and the random valueλ (with the public pseudo-random
number generatorG) are given in Section 2.3. Assume thatC has another dataset
DC = {c0, . . . , cm−1}. We define the distributed subset relation problem as follows:
C learns ifDC ⊆ DP without gaining and revealing any other information.

To test subset relation, we apply the oblivious polynomial evaluation technique with
an extra round of interaction betweenC and any of thew servers.

Correctness.In the protocol (Fig. 2),C first encrypts each elementcυ of her dataset
by using her public key asEpk(f

−cυ ) for υ ∈ [0,m − 1], and broadcasts all these en-
crypted elements tot servers. For every encrypted elementEpk(f

−cυ ), each contacted

serverS`j
(1 ≤ j ≤ t) computesEpk(f

θυ+(µi,`j
−cυ)) for 0 ≤ i ≤ n− 1, and sends all

theEpk(f
θυ+(µi,`j

−cυ))’s back toC. C then decrypts thoseEpk(f
θυ+(µi,`j

−cυ))’s, and

computesdυ,i = fθυ

Pt
j=1

bj+
Pt

j=1
bj (µi,`j

−cυ) for eachi = 0, . . . , n − 1. Note that
∑t

j=1 bj = 1 from Lemma 2, hencedυ,i = fθυ+
Pt

j=1
bj (µi,`j

−cυ). ThenC defines a
polynomialW by using all thedυ,i’s as its roots, and sends the coefficients ofW to any
of the w servers. Observe that if any cυ = µi, then

dυ,i = fθυ+
Pt

j=1
bj (µi,`j

−cυ) = fθυ . This means thatW (fθυ ) = 0. By the homo-
morphic property, the only contacted servere in the second round is able to com-
pute Epk(W (fθυ )). To save some computations, we only computeRυ, the second
part ofEpk(W (fθυ )) for υ ∈ [0,m − 1]. Using all theRυ ’s, servere then computes
∏m−1

υ=0 Epk(W (fθυ )). WhenC receives and decrypts
∏m−1

υ=0 Epk(W (fθυ )), it concludes
DC ⊆ DP if it is 1; otherwiseDC is not a subset ofDP.

Efficiency. The protocol requires two rounds. First,C broadcasts a set of encrypted
m secrets tot servers. Each contacted serverS`j

responds withmn messages. In the
second round,C sendsmn+1 encrypted coefficients to one server and receives only one
message. So the communication complexity of this protocol is still O(tmn × log2 p)
bits.



Input: C has a set of dataDC. P has another set of dataDP, which is distributed tow
servers. Each serverS` knows the random valueλ (with the public pseudo-random number
generatorG) and the set of shares{µ0,`, . . . , µn−1,`} for 1 ≤ ` ≤ w.
Output: C obtains1 if DC ⊆ DP; otherwise a random integer.

1. Steps 1 - 3(b) are same as the distributed set-intersection protocol (Fig. 1), except one
more step is added before step 2(a), andτυ,i,j should be(gr, hrf

θυ+(µi,`j
−cυ)

) in
step 2(a) accordingly.

2. (a0) generatesθυ for 0 ≤ υ ≤ m− 1 from G(λ).

(a) computesτυ,i,j ← (gr, hrf
θυ+(µi,`j

−cυ)
) for υ ∈ [0, m− 1] andi ∈ [0, n− 1].

4. (a) C defines a polynomialW whose roots aredυ,i’s

W (y) = (y − d0,0) . . . (y − d0,n−1)(y − d1,0) . . . (y − dm−1,n−1)

=
mnX

u=0

auy
u
.

(b) C randomly pickse from w and sends {Epk(a0), . . . , Epk(amn) } to the server

e, whereEpk(au) = (gr′

, hr′

fau).
5. Servere

(a) computesRυ = h

mn
P

j=0

r′fjθυ

f

mn
P

j=0

ajfjθυ

for 0 ≤ υ ≤ m− 1.

(b) computesÊ =

m−1Y

υ=0

Epk(W (fθυ )) =

0
@g

r′
m−1

P

υ=0

mn
P

j=0

fjθυ

,

m−1Y

υ=0

Rυ

1
A.

(c) sendsÊ back toC.
6. C decryptsEpk(Ê), and checks if it is 1.

Fig. 2.Privacy-preserving distributed subset relation protocol

For computation,C needsm + 2 modular exponentiations andm multiplications
for encrypting her own dataset;tmn + 1 decryptions,tmn modular exponentiations
and(t− 1)mn multiplications for the Lagrange interpolation;2mn−mn additions and
(mn−1)2mn−mn+1 multiplications for polynomial expansion. Each contactedserver
S`j

, in the first round, needsmn exponentiations and multiplications respectively for
inputing its shares. In the second round, the only contactedservere needsm2n − m
multiplications to precomputef2θυ , . . . , fmnθυ for 1 ≤ υ ≤ m. Servere needsm2n
multiplications and exponentiations respectively for computing allRυ ’s. DenoteÊ as
(L̂, R̂), it needsm(n + 1) − 1 additions and one exponentiation to computeL̂ andm
multiplications to getR̂. So the computation complexity of this protocol isO(2mn)
additions and multiplications respectively using the FastExponentiation Algorithm.

Security. The security and its proof for this protocol is similar to that of the distributed
set-intersection protocol.



Input: C has a set of dataDC. P has another set of dataDP, which is dis-
tributed to w servers. Each serverS` knows the random valueλ (with the pub-
lic pseudo-random number generatorG) and the set of shares{µ0,`, . . . , µn−1,`}
for 1 ≤ ` ≤ w.
Output: C knows|DC ∩ DP|.

1. Steps 1 - 3(b) are same as the distributed subset relation protocol (Fig. 2).
3. (c) C randomly pickse from w and sends {Epk(d0,0), . . . , Epk(dm−1,n−1) } to the

servere, whereEpk(dυ,i) = (gr′

, hr′

dυ,i).
4. Servere

(a) computes

Epk(d
′
υ,i) =

„
gθυr′

,
“
hr′

dυ,if
−θυ

”θυ

«

=

0
@gθυr′

, hθυr′

f
θυ

t
P

j=1

bj (µi,`j
−cυ)

1
A

for υ ∈ [0, m− 1] andi ∈ [0, n− 1].
(b) shuffles all theEpk(d

′
υ,i) and sends the shuffled{bd′

1, . . . , bd′
mn} back toC.

5. (a) C decryptsDsk( bd′
ι) and obtains1 if one element ofDC, which is carried in the

computation ofbd′
ι, is inDP; otherwise obtains a random integer.

(b) C counts the number of ciphertexts received that decrypt to1.

Fig. 3.Privacy-preserving cardinality of distributed set-intersection protocol

5 Variant: Cardinality of Distributed Set-Intersection

Problem Definition: Let P ’s dataset beDP = {µ0, . . . , µn−1}. The construction and
distribution of the initial shares and the random valueλ (with the public pseudo-random
number generatorG) are given in Section 2.3. Assume thatC has another dataset
DC = {c0, . . . , cm−1}. We define the cardinality of distributed set-intersectionproblem
as follows:C learns|DC ∩ DP| without gaining and revealing any other information.

By using oblivious polynomial evaluation, we need obtain the coefficients
a0, . . . , an of W (y) =

∑n
i=0 ai yi from the factorization

∏n−1
i=0 (y − ci). To avoid this

cost, we simply use the technique of random shuffling to permute the ordered encrypted
results in the second round by the only contacted server.

The protocol, given in Fig. 3, proceeds the same as the distributed subset relation
protocol until Step 3(b).C then encrypts each of thedυ,i’s and sends all theEpk(dυ,i)’s
to any of thew servers. The only contacted server multipliesf−θυ to the second part
of Epk(dυ,i), then raises the power ofθυ to both components ofEpk(dυ,i). When this
process concludes, the only contacted server randomly permutes all the ciphertexts and
returns them toC. C counts the number of ciphertexts received that decrypt to 1.The
security proof for this protocol trivially follows that of the distributed subset relation
protocol.

The efficiency is the same as the distributed subset relationprotocol for the first
round. In the second round of this protocol,C sendsmn messages to the servere and
the servere sendsmn messages back. For the computation,C performsmn encryptions



and decryptions respectively in the second round. Accordingly, the servere performs
mn multiplications andmn modular exponentiations.

6 Conclusion and Future Work

In this paper, we have proposed a protocol for the privacy-preserving distributed set
intersection problem by combining Shamir’s secret sharingscheme and homomorphic
encryption scheme. Moreover, we have shown that with a second round of interaction
and a random shuffling the cardinality of distributed set-intersection could be com-
puted efficiently. By using oblivious polynomial evaluation techniques, we have also
constructed an two-round privacy-preserving distributedsubset relation protocol.

The further research will be to provide a solution of above distributed set operations
against active adversary.
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A Proof of Lemma 1 and 2

We havet participants and each of them has a share. Corresponding to thet points, the
Vandermonde matrixA is constructed as follows:

A =






1 xi1 . . . xt−1
i1

...
...

. ..
...

1 xit
. . . xt−1

it




 .

Since the points are pairwise distinct,A is invertible. LetA−1 = (vi,j)1≤i,j≤t. By
taking first row ofA−1 and first column ofA, we obtain

∑t
j=1 v1,j = 1.

Thet polynomialsP1(x), . . . , Pt(x) are defined asPj(x) =
∏

1≤k≤t

k 6=j

x−xik

xik
−xij

for any

1 ≤ j ≤ t. Note that these polynomials have a nice property, namely

∀j ∈ [1, t], Pj(xie
) =

{
1 if j = e
0 otherwise.

Those polynomials also can be rewritten as:∀j ∈ [1, t] Pj(x) =
∑t

k=1 aj,k xk−1

where eachaj,k ∈ Zp.
We now build at× t matrix:

D =






a1,1 a2,1 . . . at,1

...
...

. . .
...

a1,t a2,t . . . at,t




 .

Thejth column ofD represents the coefficients ofPj(x). We claim that:A−1 = D. It
is sufficient to prove thatA×D is a identity matrix.

Let A × D = W = (wς,η) 1 ≤ ς ≤ t
1 ≤ η ≤ t

. To fix ς, η ∈ [1, t] the coefficientwς,η is ob-

tained by using theςth row of A along with the ηth column of D as



wς,η =
∑t

m=1 xm−1
iς

aη,m. Notice thatwς,η = Pη(xiς
). Using the previous property of

the polynomial, we obtain

wς,η =

{
1 if η = ς
0 otherwise.

This property demonstrates thatW is a identity matrix, which proves thatA−1 = D.
Since the sum of the first row ofA−1 is 1, we get

∑t
j=1 v1,j =

∑t
j=1 aj,1 = 1.

Notice that aj,1 is the constant coefficient of Pj(x),
so∀j ∈ [1, t], aj,1 = Pj(0) =

∏

1≤k≤t

k 6=j

xik

xik
−xij

. Combining the previous two findings,

we can conclude that:

t∑

j=1







∏

1≤k≤t

k 6=j

xik

xik
− xij







= 1.


