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Abstract. Motivated by the demand of databases outsourcing and its security
concerns, we investigate privacy-preserving set operations in édiet sce-
nario. By combining Shamir secret sharing scheme and homomorpbigpe

tion, we propose a one-round protocol for privacy-preservingibiged set in-
tersection. We then show that, with an additional round of interaction, citgin

of distributed set-intersections can be computed efficiently. Moreoyausing
oblivious polynomial evaluation techniques, we provide a solution foridigtd
subset relation problem. All protocols constructed in this paper araphpge-

cure against a semi-honest adversary under the Decisional Défileath as-
sumption.
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1 Introduction

Privacy-Preserving Set Operation [9] is a cryptographahméque, which allows two
or more parties each holding a set of inputs to jointly caltaikset operations of their
inputs without leaking any information. Imagine that twaygqmanies want to analyze
their customers consuming trends. That is, they want torchie the likelihood that
a customer buying the produét from the companyC is also buying the product
P, from the companyCs. To gain this information, they would like to perform a set-
intersection operation on two private sets. In order togmesthe companies business
secrets and to protect the customers privacy, the custatetaits must not be revealed.
Another example is when a research institute and a groupsgiitads cooperate to ana-
lyze patients records anonymously. Currently, there isratrar of secure set operation
protocols available [4, 9, 8].

Motivated by the demand of databases outsourcing and secaricerns on its ap-
plications, we investigate privacy-preserving set openatin a distributed scenario. We
call this Privacy-Preserving Distributed Set Operatiditsillustrate this problem con-
sider following example. Supposdeovider who owns a set of data wants to distribute
his dataset ta servers by using a secret sharing scheméliant who possesses a dif-
ferent dataset wishes to compute certain set operationebgrtthese two datasets with
the cooperation of a threshold of the servers. The additimtpirement is that this
must be done with a minimum possible disclosure of infororgtonly using certain
set operations which are discovered by the client at the énldeoprotocol. Consid-
ering the high-cost of database encryption and the compiesxegs of querying such



an encrypted database, the constructions we describeefté usthe case of database
outsourcing where an individual server is not trusted bypttoeider.

Our Contribution. In this paper, we propose an efficient technique for privaegerv-
ing set operations in the distributed setting. Our appraadiased on homomaorphic
encryption and oblivious polynomial evaluation, which effective and computation-
ally secure. We design an efficient method to enable priyaegerving computation of
distributed set intersection based on Lagrange’s interpolation. We then apply the ablivi
ous polynomial evaluation technique to construct a prdtfiedesting whether a given
set is a subset of a distributed set. The protocol is effi@adtrequires only one more
round communication between the client and anyone servers. To avoid the com-
putational cost of oblivious polynomial evaluation, we doyghe technique of random
shuffling and provide efficient solutions aardinality of distributed set-intersection
problem.

Our protocols are secure against a semi-honest adversatly. & adversary fol-
lows the steps of the protocol but tries to learn extra infation from the messages it
receives during every round of the protocol. Our homomareiicryption is based on
the EIGamal scheme [5], which is semantically secure if teeiflonal Diffie-Hellman
(DDH) assumption holds [16]. Note that as in [4, 8] our praisaeveal the size of the
datasets of both the client and the provider. As suggest@d,itdummy" elements can
be used for dataset padding in order to hide the size of tlasedit

Because of space limitation all the proofs in this paper aig sketched.

Related Work. In theory, the privacy-preserving set operation problearslze solved
by secure Multi-Party Computation (MPC) [2, 17]. Howevdse tsolution from gen-
eral secure MPC are typically not efficent. Kessner and Séhgrpposed a solution
to various privacy-preserving set operation problems éncitntext of private computa-
tion on multisets for multi-players. Based on a thresholthbmorphic cryptosystem,
Sang et al. [14] improved the computation and communicatmmplexity on the set
intersection and set matching problems.

The problem of securely computing the intersection of twivgte datasets was
considered in [12]. Recently, Freedman et. al. [4] propcsfédient protocols for the
problem of private set-intersection, based on the reptasen of datasets as roots of
a polynomial. Private disjointness test of two datasetslm®ussed in [8, 7]. Protocols
for private equality tests are a special case of the privsjeidtness test, where each
party has a single element in the database. These were eoetid [3, 12, 10].

Our paper is organized as follows. In Section 2 we introdbeetyptographic prim-
itives, distributed setting, and adversary model. In $&c8 we present a protocol and
security analysis for the distributed set intersectiorbfgm. Section 4 gives a protocol
and security analysis for the distributed subset relatiablem. To extend our solu-
tions on the distributed set intersection and the distethstubset relation problems, we
provide solutions for the cardinality of distributed setersection problem in Section 5.
Finally, in Section 6 we give concluding remarks and disqassible future work.



2 Preliminaries

2.1 Additively Homomorphic Encryption

We will utilize an additively homomorphic public-key crygslystem. Let(-) denote
the encryption function with a public keyt. The cryptosystem supports the following
operations, which can be performed without knowing thegte\key.

— Given Ey(a) and Epk(b), we can efficiently comput&py(a + b).
— Given a constant and Ey(a), we can efficiently comput&py(ca).

In our schemes, the computations are carried out @yexherep is a prime. We
note that all of our constructions can be based on the stdndaiant of EIGamal en-
cryption. This variant has been employed recently for qosting the protocols of
privacy-preserving set operations (see, for example [80]), Let the triple(K, E, D)
be the variant of EIGamal where

— K is the key-generation algorithm. Given a security paraméte= log, p,
(pk,sk) «— K(1') where the public-kepk := (p,g,h, f) and the correspond-
ing secret-keyr = logy h. More preciselyg = (p — 1)/2 is also a prime number,
g is an element of ordeyin Z; andh, f € (g);

— Eisthe encryption algorithm. Given the public-keyyand a plaintext, one encrypts
a plaintextm € Zg asEy(r,m) = (g", h" f™) wherer & zq

— D is the decryption algorithm. Given the secret-keynd a ciphertexta, b) the
decryption algorithm returng=—*b mod p. Notice that this will only returnf™
rather thanm, however this suffices for our setting. In our protocols we anly
interested in testing whether = 0, which is equivalent to testing i~*b = 1
mod p.

To demonstrate the above encryption scheme is indeed hombinpwe define a
operation® as multiplication ovefZp x Zp. Let m1, mo, m € Zq and corresponding

r1,T2,T & Zq, then
Epk('rh ml) ® Epk(r27 m2) = (gm+r2’hn-l-mf'rm-i-mz) — Epk(rl + 17y, my + m2).
If we repeat this operationtimes, we have

Epk(r,m)¢ = Epk(r,m) ® Ep(r,m) ® ... ® Ep(r,m) := Ep(cr,cm).

c times

For brevity, we us&p(m) to represen(r, m) in the rest of the presentation as we
assume that there is always a correspondiﬂRg Za.



2.2 Oblivious Polynomial Evaluation

There are two parties4d andB. .4 owns a functionF and would like to let5 compute
the valueF (z) for an inputz owned byB. A learns nothing about, and’3 learns only
the computed resulf(z) and does not gain any additional information ahdut

We use Oblivious Polynomial Evaluation [12, 4] to perforne $et operations4
defines a polynomidll” whose roots are her inpua = {z1,...,2,}:

W(y)=(y—z)(y—z2) ... (y—20) = Y _ cuy™
u=0
A encrypts the coefficients of this polynomial with the homaepic public key cryp-
tosystem and sends t®all the encrypted coefficientSE (), . . . , Epk(n) }, Where
Eu(ci) = (g™, h™ f*¢). Because of the homomorphic propertiBx;an then evaluate
the polynomial at the input as:

OLIT LN SET N Sy

Ep(W(B)) = (g= b= fi= ),

and sends it tod. When A receivesEp (W (()), she decrypts it and obtains the infor-
mation aboulV ().

2.3 Distributed Setting

The parties in our distributed model areCGhent C, a Provider P, andw servers
S1,82,...,5y. We assume that the provider holds a set of secrets
Dp = {10, H1, - - - » in-1}, Which is distributed tav servers usingt, w)-Shamir’s thresh-

old secret sharing scheme. In additighsends\ & Zq— {0} to w servers. Suppose
that there exits a public pseudo-random number gene€gtarhose outputss(\) are
uniformly distributed inZq — {0}. The notationG(\) means that the pseudo-random
number generatdfr takes the random value

‘P does not directly interact witfi for the set operations, inste@dcontact at lest
t servers to accomplish this task. Note, this distributetirgets not our contribution.
Similar construction was proposed by Naor and Pinkas [13].

Our homomaorphic encryption system is based on a variant@&Hial encryption,
and the message space is oZgrwhereq > n. For simplicity, we omit modulug
within the computation of shares construction in this secti

Initialization and Share Distribution Phase. First, P constructs a polynomial whose
coefficients are his inputsi(secrets) as

n—1

F(y) = Z ,Uiyi-
i=0

ThenP generates a random masking bivariate polynomial

t—1n—1

H(z,y) = Z Z a;x’y"  wherea;,; € Za,
j=1i=0



such thatH (0, y) = 0 for anyy. Using the polynomiaH, P defines another bivariate
polynomialQ(z,y) = F(y) + H(z,y) satisfyingvy Q(0,y) = F(y). Forl < ¢ < w,
P computes and sendg(¢, y) to serverS, as

t—1n—1 n—1
Q(&y) = ( +H £ y Zuzy +Zzaj zgjy = Z(Nz+bzf)yl
j=11=0 =0
Let p1; ¢ = p; + bi e, the serverS, receives a set of shar¢go ¢, ..., fn—1.}, Which

is the shared-coefficients [11] of the polynomial

Secret Reconstruction PhaseBy Lagrange interpolation formula, we know that the
coalition oft or more servers can reconstruct the original polynorhiarhet polyno-
mialsQ (4., y) form € [1,t] are:

t—1n—1
QUlr,y) =F(y)+ > a;ilt’y’

7j=1 =0

. t—1n—1
QUuy) =Fy)+> > ajly’
j=11i=0
This can be written in matrix form as:
F(y)
Ql,y) NN AR Zam Y
Q(la,y) 105 052 .. 0501 =
: o : ’ 1)
Q4 y) A A =1 i
Z aj,nfl Yy
j=1

where the coefficient matrixA is a Vandermonde matrix. As in the original
(t,w)-Shamir scheme, thg,’s are all distinct, so the matrid is invertible [15] and
consequently we obtain a unique solutiorZin So if we multiply both sides of (1) by
the inversed—1, we obtain

t_F(y)
Ql1,y) aj, y'
A—l Q(ZQay) B J; " (2)
ty) =t
Y Zaj,n—l .
j=1



Since we are interested in reconstructifigwe need only the first row ofl ~!. Let

(v11, V12, ..., vit) be the first row ofA~!, Equation (2) can be simplified as:
Q(Eh y)
(U1,1 V1,2 .- Ul,t) = F(y).
Q(ED y)
Therefore

Mo,y H1,00 -+ Hn—1,0,
(lel U1,2 .- Ulvt) : = (/1/0 M1 ,u'nfl) . (3)

Ho.e, P10, -« - Hn—1.0,

From (3) we conclude that the original set of secrets can lensructed as
Wi = 22:1 V1,5 i 0, fori e [O,n — 1].

Lemma 1. Equation (3) for reconstructing the original secret is the same as the La-
grangeinterpolation formulaand vy ; = ] 5 Z_’CZ_ for1 <j <t

1<k<t ®

k#j

Lemma 2. In Lagrange’sinterpolation formula,

We sketch the proofs of Lemmas 1 and 2 in Appendix A.
Note that we use the variant of EIGamal that is defined @pekNVe omit modulus
p in the rest of the presentation, if no confusion will occur.

2.4 Adversary Model

We consider a semi-honest adversary model. Due to spactaiots we only provide
the intuition and informal definitions of this model. The deais referred to [6] for a
more complete discussion.

In this model, there is no direct interaction betweemnd P. C and w servers
are assumed to act according to their prescribed actiorseiprotocol. The security
definition is straightforward: (i) onl¢ learns the result of the protocol, (ii) no server
colludes withC to cheat.

Definition 1. (t-secure).A set operation protocol is said to be t-secureif the client C,
colluding with at most ¢ — 1 out of w servers has no information about the provider’s
dataset and the set operation result.



Following [12, 13] our model should meet the following reeuments:

Correctness.A distributed protocol is correct if the cliegtobtains the result of eval-
uated shares of her input fromservers (and additional information from any sin-
gle server in the second round if it is applicable), when esarver with the shared-
coefficients of the polynomial’ and the client with the input follow the steps of the
protocol.

Client’s security. Given thatw servers get no output from the protocol, the definition
of the client’s privacy requires simply that any server agrdistinguish between cases
in which the client has different inputs.

Provider’s security. The definition ensures that the client does not get any extoa-i
mation other than the output of the function. In additiore ginovider’s privacy should
bet-secure.

3 Privacy-Preserving Distributed Set Intersection

Problem Definition: Let P’s dataset bép = {po, ..., n—1}. The construction and
distribution of the initial shares and the random valuare given in Section 2.3. As-
sume thatC has a dataseé®c = {cy,...,cm—1}. We define the distributed set inter-
section problem as follows! contacts the threshold efor more servers to computes
the intersection ofDc and Dp without gaining any other information abof. The
contacted servers do not learn any information atiat

Corollary 1. Letb; = T[] eke_’cej in the interpolation formula for j € [1,t]. Then
1<k<t
k#j

Zj‘=1 bj(pie; — pi) = 0.

Proof. From Lemma 2, we know tha@ézlbj = 1. We also know that
Z;Zl wie; bj = p; by the interpolation formula. The conclusion is straightfard.

With the property in Corollary 1, we give a solution of dibtited set intersection
problem in Fig. 1.

Correctness.In the above protocok; first encrypts each element of her dataset
by using her public key a&(f~°) for v € [0,m — 1] and broadcasts all these
encrypted elements toservers. For each encrypted elemé&hqk(f~°), the servers

S, (1 <5 <) computeEpk(fA(”iv%_C'“)) for i € [0,n — 1], and send all the
Epk(fA(”i-fj _C”))’s back toC. C then decrypts thosEpk(fA("“j ‘C“))’s and computes
fAZi=rbi (it =) for eachi = 0,...,n — 1. Note that ifc, = s, then
Z;Zl bj (i,e; — co) = 0. SoC knows thatc,, € Dp if any szzzlb-f (e =ev) = 1,
When all the steps are finish€dearnsDc N Dep.



Input: C has a set of dat®c. P has another set of daf@p, which is distributed tav
servers. Each servél; knows the random valug and the set of shard$uw ¢, - . ., fin—1,¢}
forl </ <w.

Output: C knowsD¢ N Dp.

1. C generates a new key pdisk, sk) «— K(1'),r R Zq, then
(a) setsr, — Epk(co) = (g7, " f~) forv € [0,m —1].

(b) broadcasts Pk, 70, ..., Tm—1 } tO t SEIVErsSy,, ..., Se,.

2. Forj =1,...,teach contacted servey,
() computes,; ; — (¢, B> 24 7)) forv € [0,m — 1] andi € [0,n — 1].
(b) sends ¢0,0,5, ---» To,n—1,45 T1,0,j «--» Tm—1,n—1,5 }10 C.

3. Forv =0,...,m — 1, the clientC
(a) computesl, ;,; < Dsk(Tv,i,5) fori € [0,n — 1], 5 € [1,¢]. /ldecryptsr, s ;
t

(b) computesl,, ; — [ [ (duv,i ;)" fori=0,...,n—1,whereb; = [] % in
1<k<t B
k]

j=1
Lagrange interpolation formula.
(c) concludes:, € Dp, if dy; = 1 fori € [0,n — 1]; otherwised,, ; is a random
integer.
4. When this process concludé&scan establistDc N Dp.

Fig. 1. Privacy-preserving distributed set intersection protocol

Efficiency. Regarding efficiency, the scheme requires only one rodratoadcasts a
set of encryptedn secrets ta servers. Each contacted sergr responds withnn
messages. So the communication complexity of this proig@d(tmn x log, p) bits.

For computation¢ needsn + 2 modular exponentiations amd multiplications for
encrypting her datasettmn decryptions, tmn modular exponentiations and
mn(t — 1) multiplications for the Lagrange interpolation. Each @mtéd serverS,,
needsmn exponentiations and multiplications respectively forutipg its shares. So
the computation complexity of this protocoldX¢mn) multiplications considering that
1-exponentiation takes at mgdbg, (p — 1) | multiplications in Fast Exponentiation Al-
gorithm.

Security. The above Distributed Set-Intersection protocol has fathg properties:

Theorem 1. Assuming that the underlying homomorphic cryptosystem is semantically
secure in the distributed set-intersection protocol, then any contacted server cannot
distinguish any two inputs of C.

Proof. We need to show that for alt € [0,m — 1], Epk(c,)'s look random if the
DDH assumption holds. First, we choose € [0, m — 1] wherev’ # v, and then
Eu(cy) = (g™, h™ fo) and Epc(cor) = (g™, A" f). Sincer,,, r,, are randomly
picked fromZg, nobody can get the information abofft* and f¢’ without the pri-
vate key. If the underlying homomorphic cryptosystem is @etically secure, we can
conclude thaEy(c, ) and Eg(c,) are indistinguishable.



Theorem 2. Assuming that the discrete logarithm problem and the integer factorial
problem are hard, C cannot compute any information other than D N Dp. In addition
P’sprivacy ist-secure

Proof (Sketch). Assuming the discrete logarithm problem and the integeof&d prob-
lem are hard¢ cannot infer anything fronf““’i% ~e) when it decrypts the ciphertext
from each of servers. By Corollary 1 iff* Zi=1 % (#i.6; =) — 1 thene, = u;, more
preciselyc, € Dp; otherwise > 2i=1% (#i.2;=¢) is a random integer. Therefot®
cannot deduce anything from the outputif ¢ Dp. FurthermoreC cannot compute
anything from less than servers information. This is guaranteed by the polynomial
secret sharing scheme we used.

4 Distributed Subset Relation

Problem Definition: Let P’s dataseDp = {0, - . ., tin—1 }- The construction and dis-
tribution of the initial shares and the random valuéwith the public pseudo-random
number generato’) are given in Section 2.3. Assume thathas another dataset
Dc = {co,-..,cm—1}. We define the distributed subset relation problem as faiow
C learns ifDc C Dp without gaining and revealing any other information.

To test subset relation, we apply the oblivious polynomialgation technigue with
an extra round of interaction betweérand any of thev servers.

Correctness.In the protocol (Fig. 2)C first encrypts each element of her dataset
by using her public key a&y(f~°) for v € [0, m — 1], and broadcasts all these en-
crypted elements toservers. For every encrypted eleméhi(f~°), each contacted
serverSy, (1 < j < t) computesEpc(f7* T4 ) for 0 < i < n — 1, and sends all
the Epk(f% T4 =))'s back toC. C then decrypts thos&p( % 4 ~))'s, and
computesd,, ; = f%Xi=1bitXj=1 b (kie;=ev) for eachi = 0,...,n — 1. Note that
S\, b; = 1from Lemma 2, hence,,; = f%+=i=1" 0:4,~%)_ThenC defines a
polynomiallV by using all thed,, ;'s as its roots, and sends the coefficient§loto any
of the w servers. Observe that if anyc, = i, then
dy,i = fOvtEioabi (e —eo) — f6. This means that¥’(f%) = 0. By the homo-
morphic property, the only contacted servem the second round is able to com-
pute Ex (W (f%)). To save some computations, we only compiig the second
part of Ep (W (%)) for v € [0,m — 1]. Using all theR, s, servere then computes
17 Eo(W (£%)). WhenC receives and decryp[d!"~, Ep(W (f%*)), it concludes
Dc C Dpifitis 1; otherwiseDc is not a subset dDp.

Efficiency. The protocol requires two rounds. Firgt,broadcasts a set of encrypted
m secrets ta servers. Each contacted sengr responds withmn messages. In the
second round; sendsnn+1 encrypted coefficients to one server and receives only one
message. So the communication complexity of this protaestill O(tmn x log, p)

bits.



Input: C has a set of dat®c. P has another set of daf@p, which is distributed tav
servers. Each servél; knows the random valuk (with the public pseudo-random number
generato(=) and the set of shargguo,e, . . . , pn—1,e} for 1 < £ < w.
Output: C obtainsl if Dc C Dp; otherwise a random integer.

1. Steps 1 - 3(b) are same as the distributed set-intersection protocal Fégcept one
more step is added before step 2(a), and,; should be(g", k" 7Tt 7)) jn
step 2(a) accordingly.

2. (@) generated, for0 < v <m — 1fromG()).

(@) computes, ;; — (g", A" f7* T4 7)Y for v € [0,m — 1] andi € [0,n — 1].

4. (a) C defines a polynomidll whose roots aré,, ;'s

W(y) = (y —doo) .- (y —don-1)(y — d1,0) ... (y — dm-1,n-1)

mmn

= Z awy".
u=0

(b) C randomly pickse from w and sends {Epk(ao), - - ., Epk(amn) } to the server
e, whereEpk(a.) = (g" , h" fov).
5. Servere

B gioe 3 g pit
(@) computeR, = hi=° fi=° foro <v<m-—1.

R m—1 r/mi Tglfjgu m-1
(b) computest = [[ Ew(W(f™)) =g == [ R |-

=0 v=0

(c) sendst back toC.

6. C decryptsEpk(E), and checks ifitis 1.

Fig. 2. Privacy-preserving distributed subset relation protocol

For computationC needsm + 2 modular exponentiations and multiplications
for encrypting her own datasetinn + 1 decryptions¢mn modular exponentiations
and(t — 1)mn multiplications for the Lagrange interpolatia2i?” — mn additions and
(mn—1)2"™"—mn+1 multiplications for polynomial expansion. Each contactedver
S¢,, in the first round, needs:n exponentiations and multiplications respectively for
inputing its shares. In the second round, the only contastedere needsm?n — m
multiplications to precomputg?’~, ..., fm"% for 1 < v < m. Servere needsm’n
multiplications and exponentiations respectively for poning all R,’s. DenoteF as
(L, R), it needsm(n + 1) — 1 additions and one exponentiation to compiitandm
multiplications to get?. So the computation complexity of this protocol(g2™™)
additions and multiplications respectively using the Eagionentiation Algorithm.

Security. The security and its proof for this protocol is similar tottbathe distributed
set-intersection protocol.



Input: C has a set of dataDc. P has another set of dat®p, which is dis-
tributed to w servers. Each servef, knows the random value\ (with the pub-
lic pseudo-random number generatG) and the set of shareSuoe, ..., fn—1,}
forl1 </ <w.

Output: C knows|D¢ N Deg|.

1. Steps 1 - 3(b) are same as the distributed subset relation protocat)Fig
3. (c) C randomly pickse from w and sends {Epk(do,0), - - -, Epk(dm—1,n—1) } to the
servere, whereEpk(dv,:) = (grl, hr/dv,,‘).
4. Servere
(@) computes

Epk(dy,i) = (gg”,7 (hrldvyifﬂ%)e”)

t
= (g%rl, hgvrlfevj;bj (e C”>>

forv € [0,m — 1] andi € [0,n — 1].
(b) shuffles all theFp(d;, ;) and sends the shuffledy, . . ., d,,,, } back toC.
5 @¢C decryptstk(cZ) and obtaingl if one element ofD¢, which is carried in the

computation ofi}, is in Dp; otherwise obtains a random integer.
(b) C counts the number of ciphertexts received that decrypt to

Fig. 3. Privacy-preserving cardinality of distributed set-intersection protocol

5 \Variant: Cardinality of Distributed Set-Intersection

Problem Definition: Let P’s dataset bép = {uo, ..., un—1}. The construction and
distribution of the initial shares and the random valygvith the public pseudo-random
number generato€) are given in Section 2.3. Assume th@thas another dataset
Dc = {co, - .., cm—1}. We define the cardinality of distributed set-intersecpooblem
as follows:C learns|Dc N Dp| without gaining and revealing any other information.

By using oblivious polynomial evaluation, we need obtaire thoefficients
ag, -, a, of W(y) = S0 a; y* from the factorizatio] ]! (y — ¢;). To avoid this
cost, we simply use the technique of random shuffling to pézrie ordered encrypted
results in the second round by the only contacted server.

The protocol, given in Fig. 3, proceeds the same as the luliséd subset relation
protocol until Step 3(b)C then encrypts each of thg, ;'s and sends all th&(d,, ;)’s
to any of thew servers. The only contacted server multipljes’ to the second part
of Epk(dy i), then raises the power éf, to both components afpy(d,, ;). When this
process concludes, the only contacted server randomlyytesnall the ciphertexts and
returns them t&. C counts the number of ciphertexts received that decrypt fthé.
security proof for this protocol trivially follows that ohe distributed subset relation
protocol.

The efficiency is the same as the distributed subset relgtiotocol for the first
round. In the second round of this protoc@lsendsnn messages to the serveand
the servee sendsnn messages back. For the computat®performsmn encryptions



and decryptions respectively in the second round. Accgldirthe servele performs
mn multiplications andnn modular exponentiations.

6 Conclusion and Future Work

In this paper, we have proposed a protocol for the privaeggnving distributed set
intersection problem by combining Shamir’s secret shasititeme and homomorphic
encryption scheme. Moreover, we have shown that with a semmmd of interaction
and a random shuffling the cardinality of distributed sé¢fisection could be com-
puted efficiently. By using oblivious polynomial evaluatitechniques, we have also
constructed an two-round privacy-preserving distribugiellset relation protocol.

The further research will be to provide a solution of abowtritiuted set operations
against active adversary.
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A Proof of Lemma 1l and 2

We havet participants and each of them has a share. Correspondihgt@bints, the
Vandermonde matri¥d is constructed as follows:

t—1
1z ..omy)

A = . .
1z, ... ;v;
Since the points are pairwise distinet, is invertible. LetA™' = (v; ;)1<i j<¢- BY
taking first row ofA~! and first column of4, we obtainzéz1 vy, = 1.
Thet polynomialsP (z), ..., P;(z) are defined a®j(z) = [] ——&
1<k<t k7Y
) ] k#j
1 < j < t. Note that these polynomials have a nice property, namely

for any

, 1 ifj=e
Vj € [17t]> Pj(mie) = {O otﬁerwise

Those polynomials also can be rewritten dg:€ [1,¢] Pj(z) = > 5_, ajr 2"
where eaclu; , € Zp.
We now build & x t matrix:

1,1 @21 --- Qg1
D= :

1t A2t -+ Q¢

The jt" column of D represents the coefficients Bf(z). We claim thatA=! = D. It
is sufficient to prove thatl x D is a identity matrix.
LetAx D =W = (wey)1 <<t T0fixg,n € [1,t] the coefficientw, ,, is ob-
1<n<t
tained by using thec¢” row of A along with the n** column of D as



Wey =30, z7"~ ! ay, . Notice thatw, ,, = P, (;,). Using the previous property of
the polynomial, we obtain

S J1ifnp=¢
W =10 otherwise

This property demonstrates that is a identity matrix, which proves that—! = D.
. . 1 t t
Since the sum of the f|rst row of " is 1, we get);_, v = > a1 = L

Notice  that a;; is  the constant  coefficient ~ of P;(z),

sovVj € [1,t], a;1 = P;j(0) = T[] xzf’; Combining the previous two findings,
1<k<t 'k 7%
k#j

we can conclude that:



