
Privacy-Preserving Distributed Set Operations

Qingsong Ye and Huaxiong Wang

Department of Computing, Macquarie University, Australia
{qingsong,hwang}@ics.mq.edu.au

Abstract. Motivated by the demand of databases outsourcing and its security
concerns, we investigate privacy-preserving set operations in a distributed sce-
nario. Combining Shamir secret sharing scheme and homomorphic encryption,
we propose a one-round protocol for privacy-preserving set intersection. We then
show that, with an additional round of interaction, the cardinality of set intersec-
tions can be computed efficiently. Moreover, using oblivious polynomialevalua-
tion techniques, we provide a solution for the subset relation problem. All proto-
cols constructed in this paper are provably secure against a semi-honest adversary
under the Decisional Diffie-Hellman assumption.
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1 Introduction

Privacy-Preserving Set Operations (PPSO) [9] are cryptographic techniques allowing
two or more parties, each holding a set of inputs, to jointly calculate set operations
of their inputs without leaking any information. Imagine that two companies want to
discover the consumption pattern of their shared customers. That is, they want to de-
termine the likelihood that a customer buying the productP1 from the companyC1

is also buying the productP2 from the companyC2. To obtain this information, they
would like to perform a set intersection operation on their private datasets. In order to
preserve confidentiality of the companies business and to protect the customers privacy,
the customers details must not be revealed. Another exampleis when a research in-
stitute and a group of hospitals are conducting a study in which they analyze patients
records anonymously.

Motivated by the demand of databases outsourcing and security requirements im-
posed on its applications, we investigate PPSO in a distributed environment. We call
this privacy-preserving distributed set operations. To illustrate the security problem we
consider the following scenario. Assume a provider owning adataset wishes to make
his dataset available to clients. He distributes the dataset to w servers using a threshold
secret sharing (with a thresholdt). Now a client holding her private dataset, wishes to
compute a specific set operation for the two sets held by the client and the provider.
In order to do this successfully, the client interacts witht or more servers. In addition
we assume that the interaction between the client and servers is done with minimum
possible disclosure of information. In other words, the client learns nothing except the
final result of the set operation.



Our Contribution. In this paper, we propose an efficient technique for PPSO in the dis-
tributed setting. Our approach is based on homomorphic encryption and oblivious poly-
nomial evaluation. If these underlying techniques are semantically secure, then so are
the protocols we construct. We design an efficient method to enable privacy-preserving
computation ofdistributed set intersectionbased on Lagrange’s interpolation. We then
apply the oblivious polynomial evaluation technique to construct a protocol for testing
whether a dataset held by the client is a subset of a dataset held jointly by the servers.
The protocol is efficient and only requires another round of communication between the
client and a single one of thew servers. To reduce the computational cost of oblivious
polynomial evaluation, we employ random shuffling and provide efficient solutions for
thecardinality of set-intersectionproblem.

Our protocols are secure against a honest-but-curious (semi-honest) adversary. Such
an adversary follows the steps of the execution of the protocol but tries to learn extra
information from the messages receives during its execution. Our homomorphic encryp-
tion is based on the ElGamal cryptosystem [5], which is semantically secure provided
the Decisional Diffie-Hellman (DDH) assumption holds [17].Note that, as in [4, 8], our
protocols reveal the size of the datasets of both the client and the provider. As suggested
in [8], "dummy" elements can be used for dataset padding in order to hide the size of
the original dataset. But in this case the protocol reveals the upper bound on the number
of elements in the sets.

Because of space limitation all the proofs in this paper are only sketched.

Related Work. In general, PPSO can be implemented using secure multipartycompu-
tation (MPC) protocols [2, 18]. However, such solutions generally are inefficient. Kess-
ner and Song [9] proposed a solution to various privacy-preserving set operations in the
context of private computation on multisets for multiple players. Based on a threshold
homomorphic cryptosystem, Sang et al. in [15] gave protocols for the set intersection
and set matching problems with an improved computational and communication com-
plexity.

Protocols for finding the intersection of two private datasets were studied in [12].
Recently, Freedman et. al. [4] proposed efficient constructions for the private set in-
tersection using the representation of datasets as roots ofa polynomial. Protocols for
testing the set disjointness are discussed in [8, 7]. Protocols for equality tests are a spe-
cial case of the private disjointness problem, where each party has a single element in
the database. These were considered in [3, 12, 10].

Our paper is organized as follows. In Sect. 2, we introduce the cryptographic primi-
tives used in our protocols, describe the distributed environment in which our protocols
are run, and give the adversary model. In Sect. 3, we present aprotocol and its security
analysis for the set intersection. Sect. 4 gives a protocol and its security analysis for
the subset relation. In Sect. 5, we use the constructions forset intersection and subset
relation to construct a new algorithm finding the cardinality of set intersection. Finally,
in Sect. 6, we give concluding remarks and discuss possible future work.



2 Preliminaries

2.1 Additively Homomorphic Encryption

We will utilize an additively homomorphic public-key cryptosystem. LetEpk(·) denote
the homomorphic encryption function with a public keypk. It supports the following
operations, which can be performed without knowing the private key.

– GivenEpk(a) andEpk(b), we can efficiently computeEpk(a + b).
– Given a constantc andEpk(a), we can efficiently computeEpk(ca).

In our protocols, the computations are carried out overZp wherep is prime. We note
that all of our protocols can be based on the standard variantof the ElGamal encryption
scheme, which recently was used for constructing protocolsfor PPSO (see, for example
[8, 1, 10]). Let the triple(K,E,D) be the variant of ElGamal where

– K is the key-generation algorithm defined as follows. Given a security parame-
ter l = dlog2 pe, (pk, sk) ← K(1l) where the public-key ispk := 〈p, g, h, f〉
and the corresponding secret-key isx := logg h. More precisely, we assume that
q = (p − 1)/2 is also a prime number,g is an element of orderq in Z

∗
p and

h, f ∈ 〈g〉;
– E is the encryption algorithm defined as follows. Given the public-key pk and a

plaintextm ∈ Zq, one encryptsm asEpk(r,m) = (gr, hrfm) wherer
R
← Zq;

– D is the decryption algorithm defined as follows. Given the secret-key x and a
ciphertext(a, b) the decryption algorithm returnsa−xb mod p. Notice that this
will only return fm rather thanm, however this suffices for our purposes. Indeed,
in our protocols, we are only interested in testing whetherm = 0 or not, which is
equivalent to testing ifa−xb ≡ 1 mod p.

To demonstrate that the above encryption scheme is indeed homomorphic, we define
a operation� as multiplication overZp× Zp. Let m1,m2,m ∈ Zq and corresponding

r1, r2, r
R
← Zq, then

Epk(r1,m1)� Epk(r2,m2) :=
(
gr1+r2 , hr1+r2fm1+m2

)
= Epk(r1 + r2,m1 + m2).

If we repeat this operationc times for a single encryption, then we have

Epk(r,m)c = Epk(r,m)� Epk(r,m)� . . .� Epk(r,m)
︸ ︷︷ ︸

c times

:= Epk(cr, cm).

For simplicity, we useEpk(m) to representEpk(r,m) in the rest of the presentation as

we assume that there is always a correspondingr
R
← Zq.

2.2 Oblivious Polynomial Evaluation

Given two parties,A andB.A owns a functionF and would like to letB compute the
valueF(b) for an inputb owned byB. The computation should be done in such a way
that



– B does not learn any information about the functionF .
– A learns the resultF(b) but does not learn anything about the private inputb of B.

We use oblivious polynomial evaluation given in [12, 4] to perform the set opera-
tions.A defines a polynomialW whose roots are her inputsDA = {x1, . . . , xn}:

W(y) := (y − x1)(y − x2) . . . (y − xn) =
n∑

u=0

αuyu.

A encrypts the coefficientsαu of this polynomial with the homomorphic public key
cryptosystem and sends all the encrypted coefficients{Epk(α0), . . . , Epk(αn)} to B,
whereEpk(αi) = (gri , hrifαi). Because of the homomorphic property,B then evalu-
ates the polynomial for the inputβ as follows:

Epk(W(β)) =

n∑

i=0

Epk(W(αi))
βi

= (g

n
P

i=0

riβ
i

, h

n
P

i=0

riβ
i

f

n
P

i=0

αiβ
i

),

and sends it toA. WhenA receivesEpk(W(β)), she decrypts it and obtainsfW(β). She
then concludes ifW(β) = 0 if and only if fW(β) = 1.

2.3 Distributed Environment

The main players are a clientC, a providerP, andw serversS1, S2, . . . , Sw. We as-
sume that the provider holds a set of secretsDP = {µ0, µ1, . . . , µn−1}, which is dis-
tributed tow servers using(t, w)-Shamir’s secret sharing scheme. In addition,P sends

λ
R
← Zq− {0} to all w servers. Suppose that there exits a public pseudo-random num-

ber generatorG, whose outputsG(λ) is uniformly distributed inZq−{0}. The notation
G(λ) means that the pseudo-random number generatorG takes the random valueλ as
its seed.

The providerP does not directly interact withC for the set operations, insteadC
contacts at leastt servers to perform a requested set operation. Note, this distributed
setting was first proposed by Naor and Pinkas [13].

Our homomorphic encryption system is based on a variant of ElGamal cryptosystem
in which the message space is overZq whereq ≥ n. For simplicity, we omit modulusq
within the computation of shares construction in this section.

Initialization and Share Distribution Phase. First,P constructs a polynomialF (y)
whose coefficients are his inputs (n secrets) as

F (y) =

n−1∑

i=0

µiy
i.

ThenP generates a random masking bivariate polynomialH(x, y) of the following
form:

H(x, y) =

t−1∑

j=1

n−1∑

i=0

aj,ix
jyi whereaj,i ∈ Zq.



Note that we haveH(0, y) = 0 for anyy. Using the polynomialH, P defines another
bivariate polynomialQ(x, y) = F (y) + H(x, y). Note that we get∀y Q(0, y) = F (y).
For1 ≤ ` ≤ w, P computes and sendsQ(`, y) to serverS` where

Q(`, y) = F (y) + H(`, y)=

n−1∑

i=0

µiy
i +

t−1∑

j=1

n−1∑

i=0

aj,i`
jyi =

n−1∑

i=0

(µi + bi,`)y
i.

Denote µi,` = µi + bi,`. The serverS` receives a set of shared coefficients
{µ0,`, . . . , µn−1,`} of the polynomialF (see [11]).

Secret Reconstruction Phase.By the Lagrange interpolation formula, we know that
the coalition oft or more servers can reconstruct the original polynomialF . The t
polynomialsQ(`m, y) for m ∈ [1, . . . , t] are:

Q(`1, y) = F (y) +

t−1∑

j=1

n−1∑

i=0

aj,i`1
jyi

...
...

Q(`t, y) = F (y) +

t−1∑

j=1

n−1∑

i=0

aj,i`t
jyi

This can be re-written in the matrix form as follows:








Q(`1, y)
Q(`2, y)

...
Q(`t, y)








= V














F (y)
t−1∑

j=1

aj,0 yi

...
t−1∑

j=1

aj,n−1 yi














,

where the coefficient matrix

V =








1 `1 `1
2 · · · `1

t−1

1 `2 `2
2 · · · `2

t−1

...
...

...
.. .

...
1 `t `t

2 · · · `t
t−1










is a Vandermonde matrix. As in the original(t, w)-Shamir scheme, thèm’s are all
distinct, so the matrixV is invertible [16]. Thus we obtain

V −1








Q(`1, y)
Q(`2, y)

...
Q(`t, y)








=














F (y)
t−1∑

j=1

aj,0 yi

...
t−1∑

j=1

aj,n−1 yi














. (1)

Since we are only interested in the reconstruction of the functionF , we simply need to
know the first row ofV −1. Let (v1,1, v1,2, · · · , v1,t) be the first row ofV −1, (1) can
be simplified as:

(
v1,1 v1,2 · · · v1,t

)






Q(`1, y)
...

Q(`t, y)




 = F (y).

Therefore

(
v1,1 v1,2 · · · v1,t

)






µ0,`1 µ1,`1 · · · µn−1,`1

...
...

. . .
...

µ0,`t
µ1,`t

· · · µn−1,`t




 =

(
µ0 µ1 · · · µn−1

)
. (2)

From (2) we conclude that the original set of secrets can be reconstructed as
µi =

∑t
j=1 v1,j µi,`j

for i ∈ [0, . . . , n− 1].

Lemma 1. Equation(2) for reconstructing the original secret is the same as the La-
grange interpolation formula andv1,j =

∏

1≤k≤t

k 6=j

`k

`k−`j
for 1 ≤ j ≤ t.

Lemma 2. In Lagrange’s interpolation formula, we have

t∑

j=1







∏

1≤k≤t

k 6=j

`k

`k − `j







= 1.

We sketch the proofs of Lemmas 1 and 2 in Appendix A.

Lemma 3. Let bj =
∏

1≤k≤t

k 6=j

`k

`k−`j
in the interpolation formula forj ∈ [1, . . . , t]. Then

∑t
j=1 bj(µi,`j

− µi) = 0.

Proof. From Lemma 2, we know that
∑t

j=1 bj = 1. We also know that
∑t

j=1 µi,`j
bj = µi by the interpolation formula. The conclusion is straightforward.



Note that we use the variant of ElGamal that is defined overZp. Further in our paper,
the computations are being done modulop and we simplify the notation by skipping the
modulus in the congruences. If we use different modulus, thecongruence will be written
in full to avoid confusion.

2.4 Adversary Model

We consider a semi-honest adversary model. Due to space constraints, we only provide
the intuition and informal definitions of this model. The reader is referred to [6] for a
more complete discussion.

In this model, there is no direct interaction betweenC andP. Instead the clientC
andw servers are assumed to follow the steps defined in the protocol. The security
definition is straightforward that only the clientC learns the result of the protocol.

Definition 1. (t-secure).A set operation protocol is said to bet-secureif the clientC,
colluding with at mostt−1 out ofw servers learns no information about the provider’s
dataset and the set operation result.

Following [12, 13] our model should meet the following requirements:

Correctness.A protocol is correct if the clientC is able to compute the valid result
from shares obtained fromt servers (and additional information from a single server in
the second round if this is applicable) assuming that each server and the client honestly
follow the protocol.

Client’s security. The protocol should guarantee the client privacy, i.e. the servers learn
nothing about either the client inputs or its correspondingcomputed output. In other
words, a server is not able to distinguish the client inputs from uniform random vari-
ables.

Provider’s security.The protocol should not give out to the client any information about
the function held by the provider apart from the output of thefunction assuming that no
server colludes with the client. Also anyt− 1 or less servers should not able to find out
any information about the function. We say that the providerprivacy is t-secure.

3 Privacy-Preserving Set Intersection

We first define privacy-preserving set intersection. We thenformulate a protocol allow-
ing its computation and analyze its security.

Problem Definition: Assume that the providerP holds his dataset
DP = {µ0, . . . , µn−1} and constructs and distributes the shares of the dataset as well
as the random valueλ in the way described in Sect. 2.3. Suppose further that the client
C holds a datasetDC = {c0, . . . , cm−1}. Our protocol to compute the intersection of
two setsDP andDC is defined as follows. The clientC contactst servers and fetches
the information from them. Except|DC| and|DP| are publicly known, the information



Input: The clientC has a set of dataDC. Each serverS`(1 ≤ ` ≤ w) knows the random
valueλ and the shared coefficients{µ0,`, . . . , µn−1,`} of the functionF (whose coeffi-
cients are the elements of the provider’s datasetDP).
Output: The clientC learnsDC ∩ DP.

1. C generates a new key pair(pk, sk)← K(1l), r
R
← Zq, then

(a) setsτυ ← Epk(cυ) = (gr, hrf−cυ ) for υ ∈ [0, . . . , m− 1].
(b) broadcasts {pk, τ0, . . . , τm−1 } to t serversS`1 , . . . , S`t .

2. Forj = 1, . . . , t each contacted serverS`j

(a) computesτυ,i,j ← (gλr, hλrf
λ(µi,`j

−cυ)
) for υ ∈ [0, . . . , m − 1]

andi ∈ [0, . . . , n− 1].
(b) sends {τ0,0,j , . . . , τ0,n−1,j , τ1,0,j , . . . , τm−1,n−1,j } to C.

3. Forυ = 0, . . . , m− 1, the clientC

(a) computesdυ,i,j ← Dsk(τυ,i,j) for i ∈ [0, . . . , n− 1], j ∈ [1, . . . , t].

(b) computesdυ,i ←
tY

j=1

(dυ,i,j)
bj for i = 0, . . . , n− 1, wherebj =

Q
1≤k≤t

k 6=j

`k

`k−`j
in

the Lagrange interpolation formula.
(c) concludescυ ∈ DP, if dυ,i = 1 for i ∈ [0, . . . , n− 1]; otherwisedυ,i is a random

integer.

4. When this process concludes,C learnsDC ∩ DP.

Fig. 1.Privacy-preserving set intersection protocol

allows the client to compute the intersection in such a way that the client learns nothing
about the setDP and the servers do not learn anything aboutDC.

We use Lemma 3 to construct a scheme allowing to compute the intersection of two
private data sets held byP andC. It is described in Fig. 1.

Correctness.In the above protocol, the clientC first encrypts each elementcυ of her
dataset by using her public key asEpk(f

−cυ ) for υ ∈ [0, . . . ,m − 1] and broadcasts
all these encrypted elements tot servers. For each encrypted elementEpk(f

−cυ ), the

serversS`j
(1 ≤ j ≤ t) computeEpk(f

λ(µi,`j
−cυ)) for i ∈ [0, . . . , n− 1], and send all

theEpk(f
λ(µi,`j

−cυ))’s back toC. The clientC then decrypts thoseEpk(f
λ(µi,`j

−cυ))’s

and computesfλ
Pt

j=1
bj (µi,`j

−cυ) for eachi = 0, . . . , n− 1. Note that ifcυ = µi then
∑t

j=1 bj (µi,`j
− cυ) = 0. Therefore the clientC learns thatcυ ∈ DP if there exists

i ∈ [0, . . . , n− 1] such thatfλ
Pt

j=1
bj (µi,`j

−cυ) = 1. When all the steps are finishedC
learnsDC ∩ DP.

Efficiency.As far as the communication efficiency is concerned, the client C broadcasts
a set of encryptedm secrets tot servers. Each contacted serverS`j

responds withmn
messages. So the communication complexity of this protocolis O(tmn× log2 p) bits.

As to the computation efficiency, the clientC needsm+2 modular exponentiations
andm modular multiplications to encrypt her dataset,tmn decryptions,tmn modular



exponentiations andmn(t− 1) modular multiplications for the Lagrange interpolation.
Each contacted serverS`j

needs to performmn modular exponentiations and multi-
plications for processing its shares. So the computation complexity of this protocol
is O(tmn) modular multiplications considering that on single modular exponentiation
takes at mostblog2(p− 1)c modular multiplications using Fast Exponentiation Algo-
rithm [14].

Security.The two theorems given below characterize the security of the set intersection
protocol.

Theorem 1. Given the set intersection protocol described in Fig. 1 and assuming that
the underlying homomorphic encryption is semantically secure, then each of the con-
tacted servers cannot distinguish inputs generated by the client C from random integers
with a non-negligible probability.

Proof (Sketch).For anyυ ∈ [0, . . . ,m−1], the cryptogramEpk(cυ) is indistinguishable
from a random integer chosen uniformly from theZq assuming intractability of the
DDH problem. Therefore no server learns anything about the client input.

Theorem 2. Assuming that the discrete logarithm problem is hard, the clientC cannot
compute any information about shared coefficients{µ0,`, . . . , µn−1,`} (1 ≤ ` ≤ w)
distributed by the providerP. In additionP ’s privacy ist-secure.

Proof (Sketch).In the system setting,λ is selected from theZq randomly and uni-
formly. When the clientC decrypts the ciphertext from each oft servers, the decrypted
fλ(µi,`j

−cυ) is indistinguishable from a random integer chosen uniformly from theZq

assuming the discrete logarithm problem is hard. Furthermore,C cannot compute any-
thing from less thant servers information. This is guaranteed by the perfectnessof
Shamir secret sharing.

4 Subset Relation

In this section, we define privacy-preserving subset relation and then we apply the obliv-
ious polynomial evaluation technique to formulate the protocol that allows to compute
it and analyze its security.

Problem Definition: Assume that the providerP holds his dataset
DP = {µ0, . . . , µn−1} and constructs and distributes the shares of the dataset as well
as the random valueλ in the way described in Sect. 2.3. Suppose further that the client
C holds a datasetDC = {c0, . . . , cm−1}. The protocol to compute the subset relation
of two setsDP andDC is defined as follows. The clientC contactst servers and fetches
the information from them. Except|DC| and|DP| are publicly known, the information
allows the client to compute ifDC ⊆ DP in such a way that the client learns nothing
about the setDP and the servers do not learn anything aboutDC.

Correctness.In the protocol given in Fig. 2, the clientC first encrypts each element
cυ of her dataset by using her public key asEpk(f

−cυ ) for υ ∈ [0, . . . ,m − 1],



Input: The clientC has a set of dataDC. Each serverS`(1 ≤ ` ≤ w) knows the random
valueλ and the shared coefficients{µ0,`, . . . , µn−1,`} of the functionF (whose coeffi-
cients are the elements of the provider’s datasetDP).
Output: The clientC obtains1 if DC ⊆ DP; otherwise a random integer.

1. Steps 1 - 3(b) are same as the distributed set-intersection protocol (Fig. 1), except one
more step is added before step 2(a), andτυ,i,j should be(gr, hrf

θυ+(µi,`j
−cυ)

) in
step 2(a) accordingly.

2. (a0) generatesθυ for 0 ≤ υ ≤ m− 1 from G(λ).

(a) computesτυ,i,j ← (gr, hrf
θυ+(µi,`j

−cυ)
) for υ ∈ [0, . . . , m − 1]

andi ∈ [0, . . . , n− 1].
4. (a) C defines a polynomialW whose roots aredυ,i’s

W (y) = (y − d0,0) . . . (y − d0,n−1)(y − d1,0) . . . (y − dm−1,n−1)

=
mnX

u=0

auy
u
.

(b) C randomly pickse from w and sends {Epk(a0), . . . , Epk(amn) } to the server

e, whereEpk(au) = (gr′

, hr′

fau).
5. Servere

(a) computesRυ = h

mn
P

j=0

r′fjθυ

f

mn
P

j=0

ajfjθυ

for 0 ≤ υ ≤ m− 1.

(b) computesÊ =

m−1Y

υ=0

Epk(W (fθυ )) =

0
@g

r′
m−1

P

υ=0

mn
P

j=0

fjθυ

,

m−1Y

υ=0

Rυ

1
A.

(c) sendsÊ back toC.
6. C decryptsEpk(Ê), and checks whether it is 1.

Fig. 2.Privacy-preserving subset relation protocol

and broadcasts all these encrypted elements tot servers. For every encrypted element
Epk(f

−cυ ), each contacted serverS`j
(1 ≤ j ≤ t) computesEpk(f

θυ+(µi,`j
−cυ)) for

0 ≤ i ≤ n− 1, and sends all theEpk(f
θυ+(µi,`j

−cυ))’s back toC. The clientC decrypts

thoseEpk(f
θυ+(µi,`j

−cυ))’s, and computesdυ,i = fθυ

Pt
j=1

bj+
Pt

j=1
bj (µi,`j

−cυ) for

eachi = 0, . . . , n − 1. By Lemma 2, we havedυ,i = fθυ+
Pt

j=1
bj (µi,`j

−cυ). ThenC
defines a polynomialW by using all the valuesdυ,i as its roots, and sends the coeffi-
cients of the polynomialW to a single one of thew servers. Observe that ifcυ = µi for

υ ∈ [0, . . . ,m − 1] andi ∈ [0, . . . , n − 1], thendυ,i = fθυ+
Pt

j=1
bj (µi,`j

−cυ) = fθυ .
This means thatW (fθυ ) = 0. By the homomorphic property, the only contacted server
e in the second round is able to computeEpk(W (fθυ )). To save some computations, we
only computeRυ, the second part ofEpk(W (fθυ )) for υ ∈ [0, . . . ,m − 1]. Using all
theRυ ’s, servere then computes

∏m−1
υ=0 Epk(W (fθυ )). WhenC receives and decrypts

∏m−1
υ=0 Epk(W (fθυ )), it concludesDC ⊆ DP if it is 1; otherwiseDC is not a subset of
DP.



Efficiency.The protocol requires a two-round communication. First, the clientC broad-
casts a set of encryptedm secrets tot servers. Each contacted serverS`j

responds with
mn messages. In the second round, the clientC sendsmn + 1 encrypted coefficients to
a single server and receives only one message. The communication complexity of this
protocol is stillO(tmn× log2 p) bits.

As to the computation efficiency, the clientC needsm+2 modular exponentiations
andm modular multiplications to encrypt her own dataset,tmn + 1 decryptions,tmn
modular exponentiations and(t−1)mn modular multiplications for the Lagrange inter-
polation,2mn−mn modular additions and(mn−1)2mn−mn+1 modular multiplica-
tions for the polynomial expansion. Each contacted serverS`j

, in the first round, needs
to performmn modular exponentiations and modular multiplications respectively for
processing its shares. In the second round, the only contacted servere needsm2n−m
modular multiplications to precomputef2θυ , . . . , fmnθυ for 1 ≤ υ ≤ m. Servere
also needs to perfomrm2n modular multiplications and exponentiations respectively
for computing allRυ ’s. DenoteÊ as(L̂, R̂), it needsm(n + 1)− 1 modular additions
and one modular exponentiation to computeL̂ andm modular multiplications to get
R̂. So the computation complexity of this protocol isO(2mn) modular additions and
multiplications respectively using the Fast Exponentiation Algorithm.

Security. The security model and its proof for this protocol is similarto that of the
set-intersection protocol.

5 Cardinality of Set-Intersection

Using similar techniques as previous protocols, we developan algorithm computing the
cardinality of set intersection.

Problem Definition: Assume that the providerP holds his dataset
DP = {µ0, . . . , µn−1} and constructs and distributes the shares of the dataset as well
as the random valueλ in the way described in Sect. 2.3. Suppose further that the client
C holds a datasetDC = {c0, . . . , cm−1}. The protocol to compute the cardinality of
two intersection setsDP andDC is defined as follows. The clientC contactst servers
and fetches the information from them. Except|DC| and |DP| are public known, the
information allows the client to compute|DC ∩ DP| in such a way that the client learns
nothing about the setDP and the servers do not learn anything aboutDC.

By using oblivious polynomial evaluation, we need to obtainthe coefficients
a0, . . . , an of W (y) =

∑n
i=0 ai yi from the factorization

∏n−1
i=0 (y − ci). To avoid this

cost, we simply use the technique of random shuffling to permute the ordered encrypted
results in the second round by the only contacted server.

The protocol, given in Fig. 3, works in the same way as the distributed subset re-
lation protocol until Step 3(b). The clientC then encrypts each of the valuesdυ,i and
sends all these encrypted elementsEpk(dυ,i)’s to a single one of thew servers. The
only contacted server multipliesf−θυ to the second part ofEpk(dυ,i), then raises the
power ofθυ to both components ofEpk(dυ,i). When this process concludes, the server
randomly permutes all the ciphertexts and returns them toC. The clientC then counts



Input: The clientC has a set of dataDC. Each serverS`(1 ≤ ` ≤ w) knows the random
valueλ and the shared coefficients{µ0,`, . . . , µn−1,`} of the functionF (whose coeffi-
cients are the elements of the provider’s datasetDP).
Output: The clientC learns|DC ∩ DP|.

1. Steps 1 - 3(b) are same as the distributed subset relation protocol (Fig. 2).
3. (c) C randomly pickse from w and sends {Epk(d0,0), . . . , Epk(dm−1,n−1) } to the

servere, whereEpk(dυ,i) = (gr′

, hr′

dυ,i).
4. Servere

(a) computes

Epk(d
′
υ,i) =

„
gθυr′

,
“
hr′

dυ,if
−θυ

”θυ

«

=

0
@gθυr′

, hθυr′

f
θυ

t
P

j=1

bj (µi,`j
−cυ)

1
A

for υ ∈ [0, . . . , m− 1] andi ∈ [0, . . . , n− 1].
(b) shuffles all theEpk(d

′
υ,i) and sends the shuffled{bd′

1, . . . , bd′
mn} back toC.

5. (a) C decryptsDsk( bd′
ι) and obtains1 if one element ofDC, which is carried in the

computation ofbd′
ι, is inDP; otherwise obtains a random integer.

(b) C counts the number of ciphertexts received that decrypt to1.

Fig. 3.Privacy-preserving cardinality of set-intersection protocol

the number of ciphertexts received that decrypt to 1. The security proof for this protocol
trivially follows that of the subset relation protocol.

The efficiency is the same as the subset relation protocol forthe first round. In the
second round of this protocol, the clientC sendsmn messages to the servere and
the servere returnsmn messages back. As to the computation efficiency in the second
round, the clientC performsmn encryptions and decryptions respectively. Accordingly,
the servere needs to performmn modular multiplications andmn modular exponenti-
ations to complete the cardinality computation.

6 Conclusion and Future Work

In this paper, we have proposed a protocol for the privacy-preserving set intersection
computation in a distributed environment by combining Shamir’s secret sharing scheme
and homomorphic encryption scheme. Moreover, we have shownthat with a second
round of interaction and a random shuffling the cardinality of set-intersection could be
computed efficiently. By using oblivious polynomial evaluation techniques, we have
also constructed an two-round privacy-preserving subset relation protocol.

The further research will be to provide a solution of above distributed set operations
against active adversary.
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A Proof of Lemma 1 and 2

We havet participants and each of them has a share. Corresponding to thet points, the
Vandermonde matrixV is constructed as follows:

V =






1 xi1 . . . xt−1
i1

...
...

.. .
...

1 xit
. . . xt−1

it




 .

Since the points are pairwise distinct,V is invertible. LetV −1 = (vi,j)1≤i,j≤t. By
taking first row ofV −1 and first column ofV , we obtain

∑t
j=1 v1,j = 1.

The t polynomialsP1(x), . . . , Pt(x) are defined asPj(x) :=
∏

1≤k≤t

k 6=j

x−xik

xik
−xij

for

any1 ≤ j ≤ t. Note that these polynomials have a nice property, namely

∀j ∈ [1, . . . , t], Pj(xie
) =

{
1 if j = e
0 otherwise.

Those polynomials also can be rewritten as:∀j ∈ [1, . . . , t] Pj(x) =
∑t

k=1 aj,k xk−1

where eachaj,k ∈ Zp.
We now build at× t matrix:

D =






a1,1 a2,1 · · · at,1

...
...

. . .
...

a1,t a2,t · · · at,t




 .

Thejth column ofD represents the coefficients ofPj(x). We claim that:V −1 = D. It
is sufficient to prove thatV ×D is a identity matrix.

Let V ×D = W = (wς,η) 1 ≤ ς ≤ t
1 ≤ η ≤ t

. We fix ς, η ∈ [1, . . . , t] the coefficientwς,η is

obtained by using theςth row of V along with the ηth column of D as
wς,η =

∑t
m=1 xm−1

iς
aη,m. Notice thatwς,η = Pη(xiς

). Using the previous property of
the polynomial, we obtain

wς,η =

{
1 if η = ς
0 otherwise.

This property demonstrates thatW is a identity matrix, which proves thatV −1 = D.
Since the sum of the coefficients of the first row ofV −1 is 1, we get

∑t
j=1 v1,j =

∑t
j=1 aj,1 = 1. Notice thataj,1 is the constant coefficient ofPj(x),

so∀j ∈ [1, . . . , t], aj,1 = Pj(0) =
∏

1≤k≤t

k 6=j

xik

xik
−xij

. Combining the previous two find-

ings, we can conclude that:

t∑

j=1







∏

1≤k≤t

k 6=j

xik

xik
− xij







= 1.


