Privacy-Preserving Distributed Set Operations

Qingsong Ye and Huaxiong Wang

Department of Computing, Macquarie University, Australia
{gi ngsong, hwang} @ cs. . edu. au

Abstract. Motivated by the demand of databases outsourcing and its security
concerns, we investigate privacy-preserving set operations in édistl sce-
nario. Combining Shamir secret sharing scheme and homomorphigpting,

we propose a one-round protocol for privacy-preserving setsatéion. We then
show that, with an additional round of interaction, the cardinality of set iaters
tions can be computed efficiently. Moreover, using oblivious polynomialua-

tion techniques, we provide a solution for the subset relation problemraédbp

cols constructed in this paper are provably secure against a senstlagiversary
under the Decisional Diffie-Hellman assumption.

Keywords: privacy-preserving set-operation, homomorphic encoypti

1 Introduction

Privacy-Preserving Set Operations (PPSO) [9] are crypfagc techniques allowing
two or more parties, each holding a set of inputs, to joindjcuolate set operations
of their inputs without leaking any information. Imagineathwo companies want to
discover the consumption pattern of their shared custaniéat is, they want to de-
termine the likelihood that a customer buying the prodBgctfrom the companyC;

is also buying the produd®, from the company’s. To obtain this information, they
would like to perform a set intersection operation on theivgie datasets. In order to
preserve confidentiality of the companies business andtegtrthe customers privacy,
the customers details must not be revealed. Another exaimpiben a research in-
stitute and a group of hospitals are conducting a study irthvthiey analyze patients
records anonymously.

Motivated by the demand of databases outsourcing and gecequirements im-
posed on its applications, we investigate PPSO in a dis&ibanvironment. We call
this privacy-preserving distributed set operations. Tisitate the security problem we
consider the following scenario. Assume a provider ownirtagaset wishes to make
his dataset available to clients. He distributes the datase servers using a threshold
secret sharing (with a threshall Now a client holding her private dataset, wishes to
compute a specific set operation for the two sets held by ikatchnd the provider.
In order to do this successfully, the client interacts withr more servers. In addition
we assume that the interaction between the client and seivelone with minimum
possible disclosure of information. In other words, themilearns nothing except the
final result of the set operation.

Our Contribution. In this paper, we propose an efficient technique for PPSQCeidity
tributed setting. Our approach is based on homomorphig/ption and oblivious poly-
nomial evaluation. If these underlying techniques are seicelly secure, then so are
the protocols we construct. We design an efficient methodable privacy-preserving
computation oflistributed set intersectiobased on Lagrange’s interpolation. We then
apply the oblivious polynomial evaluation technique tostomct a protocol for testing
whether a dataset held by the client is a subset of a datalskjpiraly by the servers.
The protocol is efficient and only requires another rouncbofimunication between the
client and a single one of the servers. To reduce the computational cost of oblivious
polynomial evaluation, we employ random shuffling and pdewefficient solutions for
the cardinality of set-intersectioproblem.

Our protocols are secure against a honest-but-curious-{semest) adversary. Such
an adversary follows the steps of the execution of the pobtoat tries to learn extra
information from the messages receives during its execuarr homomorphic encryp-
tion is based on the ElGamal cryptosystem [5], which is seivalty secure provided
the Decisional Diffie-Hellman (DDH) assumption holds [1¥bte that, as in [4, 8], our
protocols reveal the size of the datasets of both the clightlze provider. As suggested
in [8], "dummy" elements can be used for dataset paddingderato hide the size of
the original dataset. But in this case the protocol revéedsipper bound on the number
of elements in the sets.

Because of space limitation all the proofs in this paper atg sketched.

Related Work. In general, PPSO can be implemented using secure multipantyu-
tation (MPC) protocols [2, 18]. However, such solutionseyatly are inefficient. Kess-
ner and Song [9] proposed a solution to various privacygksg set operations in the
context of private computation on multisets for multiplaygrs. Based on a threshold
homomorphic cryptosystem, Sang et al. in [15] gave pro®&mi the set intersection
and set matching problems with an improved computationdlcammunication com-
plexity.

Protocols for finding the intersection of two private dataseere studied in [12].
Recently, Freedman et. al. [4] proposed efficient condtastfor the private set in-
tersection using the representation of datasets as ro@gofynomial. Protocols for
testing the set disjointness are discussed in [8, 7]. Potddor equality tests are a spe-
cial case of the private disjointness problem, where eady pas a single element in
the database. These were considered in [3, 12, 10].

Our paper is organized as follows. In Sect. 2, we introdueetiiptographic primi-
tives used in our protocols, describe the distributed envirent in which our protocols
are run, and give the adversary model. In Sect. 3, we pregaotacol and its security
analysis for the set intersection. Sect. 4 gives a protoadlits security analysis for
the subset relation. In Sect. 5, we use the constructionsefointersection and subset
relation to construct a new algorithm finding the cardiyadit set intersection. Finally,
in Sect. 6, we give concluding remarks and discuss possibled work.

2 Preliminaries

2.1 Additively Homomorphic Encryption

We will utilize an additively homomorphic public-key crygslystem. Let(-) denote
the homomorphic encryption function with a public ke¥. It supports the following
operations, which can be performed without knowing thegie\key.

— Given Ey(a) and Epk(b), we can efficiently comput&py(a + b).
— Given a constant and Ey(a), we can efficiently comput&py(ca).

In our protocols, the computations are carried out &gwherep is prime. We note
that all of our protocols can be based on the standard varfahe EIGamal encryption
scheme, which recently was used for constructing protdooBPSO (see, for example
[8, 1, 10]). Let the triple K, E, D) be the variant of EIGamal where

— K is the key-generation algorithm defined as follows. Givereeusty parame-
ter! = [log,p], (pk,sk) « K(1') where the public-key ipk := (p,g,h, f)
and the corresponding secret-keyris= logy h. More precisely, we assume that
g = (p—1)/2is also a prime numbey is an element of ordeg in Zy and
h, f € (9);

— F is the encryption algorithm defined as follows. Given theljukey pk and a
plaintextm € Zg, one encryptsn asEp(r,m) = (¢", h" f™) wherer & 7q

— D is the decryption algorithm defined as follows. Given thersekey z and a
ciphertext(a, b) the decryption algorithm returns~*b mod p. Notice that this
will only return f™ rather thanm, however this suffices for our purposes. Indeed,
in our protocols, we are only interested in testing whethe 0 or not, which is
equivalent to testing i&E~*6 = 1 mod p.

To demonstrate that the above encryption scheme is inderdrhorphic, we define
a operation® as multiplication ovefZp x Zp. Letmy, mo, m € Zqand corresponding

r1,T2,T & Zq, then
Epk(rl,ml) ® Epk('rQ, m2) — (gm+r27 hr1+r2fm1+7712) _ Epk('rl + T9, M1 + m2).
If we repeat this operationtimes for a single encryption, then we have

Epk(r,m)¢ = Eg(r,m) © Eg(r,m) © ... ® Ep(r,m) := Ep(cr, cm).

c times

For simplicity, we useE,(m) to representiy(r, m) in the rest of the presentation as
we assume that there is always a correspondiﬁg Zaq.

2.2 Oblivious Polynomial Evaluation

Given two parties, A andB. A owns a functionF and would like to le#3 compute the
value F(b) for an inputb owned byB. The computation should be done in such a way
that

— B does not learn any information about the functibn
— Alearns the resulf (b) but does not learn anything about the private iripot 5.

We use oblivious polynomial evaluation given in [12, 4] tafpem the set opera-
tions..A defines a polynomialV whose roots are her input = {1, ..., 2, }:

W(y) = (y =)y —z2) ... (y —) = > uy™
u=0

A encrypts the coefficients,, of this polynomial with the homomorphic public key
cryptosystem and sends all the encrypted coeffici¢hig (), . . ., Epk(an)} to B,
whereEp(cv;) = (g™, k" f*¢). Because of the homomorphic propeiythen evalu-
ates the polynomial for the inpytas follows:

Srf S ﬁ: i B°
f’L:O

Ea(W(B) =Y EacW(a:)” = (g0, hi=),
1=0

and sends it tol. WhenA receivesFy (W ()), she decrypts it and obtaind¥(?). She
then concludes iV(3) = 0 if and only if fV(®) = 1.

2.3 Distributed Environment

The main players are a cliedit a providerP, andw serversSy, Ss, ..., S,. We as-
sume that the provider holds a set of sec®ts= {1, i1, - -, ftn—1}, Which is dis-
tributed tow servers usingt, w)-Shamir's secret sharing scheme. In additiBrsends

Pyt Zq— {0} to all w servers. Suppose that there exits a public pseudo-random nu
ber generato@, whose outputs:(\) is uniformly distributed irfZq— {0}. The notation
G(\) means that the pseudo-random number geneatakes the random valueas

its seed.

The providerP does not directly interact witfl for the set operations, inste&d
contacts at least servers to perform a requested set operation. Note, thisbdited
setting was first proposed by Naor and Pinkas [13].

Our homomorphic encryption system is based on a variant@flal cryptosystem
in which the message space is oZgwhereq > n. For simplicity, we omit modulusg
within the computation of shares construction in this secti

Initialization and Share Distribution Phase. First, P constructs a polynomiaf'(y)
whose coefficients are his inputs $ecrets) as

n—1

F(y) = Z Mz'yi-

ThenP generates a random masking bivariate polynorildk, y) of the following

form:
t—1n—1

H(z,y)=Y_> aja’y’ wherea;; € Za.
j=1i=0

Note that we havéZ (0, y) = 0 for anyy. Using the polynomiaH, P defines another
bivariate polynomial)(x,y) = F(y) + H(z,y). Note that we get'y Q(0,y) = F(y).
Forl < ¢ < w, P computes and sendg(¢, y) to serverS, where

n—1 t—1n—1 n—1

Q(évy) = (+H L, y Zﬂzy +Zza] ngy = Z(Ui“‘bi,é)yi

7j=11=0 =0
Denote i, = p; + b;¢. The serverS, receives a set of shared coefficients
{1o,e, ---, pin—1,} Of the polynomialF’ (see [11]).

Secret Reconstruction PhaseBy the Lagrange interpolation formula, we know that
the coalition oft or more servers can reconstruct the original polynonialThe ¢
polynomialsQ(¢,,,y) form € [1,...,t] are:

t—1n—1
Q(gh - +Z aj, ’L’gl yZ

7j=1 =0
' t—1n—1 o
Qly,y) = F(y) + Z Z ajile’y"

j=1 i=0

This can be re-written in the matrix form as follows:

7F@)
Q(l1,y) a;, Y
Qo) | 2
Q. y) =1 |
Zaj,nflyz
j=1

where the coefficient matrix

10, 042 087t
109 052 o 4yt t

14, 2. ¢t

is a Vandermonde matrix. As in the origing@l w)-Shamir scheme, thé,’s are all
distinct, so the matri¥” is invertible [16]. Thus we obtain

1F(y)
t7
Q(l1,y) aj, Yy
|| 200 "
Qloy) |=
oy Zaj,nfl yz
j=1

Since we are only interested in the reconstruction of thetfan F’, we simply need to
know the first row oft’ ~1. Let (vy 1, v12, -+, v1,) be the first row of =1, (1) can
be simplified as:

Q(l1,y)
(v11 v12 - v1y) = F(y).
Qlt,y)
Therefore
H0o,8y 1,6y " Hn—1,4
(v11 v1,2 - V1) o = (po p1 -+ pn—1) . 2

Mo, M1, Hn—1,¢,

From (2) we conclude that the original set of secrets can lensructed as
Wi = 22:1 V1,5 i e, fori e [O, N 1].

Lemma 1. Equation(2) for reconstructing the original secret is the same as the La-
grange interpolation formulaand, ; = J] 5 f_’“,v,_ forl <j<t.
1<k<t ®
k#j

Lemma 2. In Lagrange’s interpolation formula, we have

t

ST %7 | =t

j=1 1§k§t€k —4
k#j

We sketch the proofs of Lemmas 1 and 2 in Appendix A.

Lemma3. Letd; =] e,ffz- in the interpolation formula foy € [1,...,t]. Then
1<k<t 7
. k#j
Zj:l bj(m,z,- - Mz') =0.
Proof. From Lemma 2, we know thaQ;:1 b; = 1. We also know that

Z;Zl wie; bj = p; by the interpolation formula. The conclusion is straightfard.

Note that we use the variant of EIGamal that is defined @yeFurther in our paper,
the computations are being done moduknd we simplify the notation by skipping the
modulus in the congruences. If we use different modulus;dimgruence will be written
in full to avoid confusion.

2.4 Adversary Model

We consider a semi-honest adversary model. Due to spactaats we only provide
the intuition and informal definitions of this model. The deais referred to [6] for a
more complete discussion.

In this model, there is no direct interaction betwegkandP. Instead the clienf
and w servers are assumed to follow the steps defined in the plofblee security
definition is straightforward that only the cliefitearns the result of the protocol.

Definition 1. (t-secure).A set operation protocol is said to hesecureif the clientC,
colluding with at most — 1 out ofw servers learns no information about the provider’s
dataset and the set operation result.

Following [12, 13] our model should meet the following reeuments:

Correctness.A protocol is correct if the clien€ is able to compute the valid result
from shares obtained fromservers (and additional information from a single server in
the second round if this is applicable) assuming that eastesand the client honestly
follow the protocol.

Client’s security. The protocol should guarantee the client privacy, i.e. dreess learn
nothing about either the client inputs or its correspondingiputed output. In other
words, a server is not able to distinguish the client inptasnfuniform random vari-
ables.

Provider’s security. The protocol should not give out to the client any informatidpout
the function held by the provider apart from the output offtiection assuming that no
server colludes with the client. Also any- 1 or less servers should not able to find out
any information about the function. We say that the provtaracy is t-secure.

3 Privacy-Preserving Set Intersection

We first define privacy-preserving set intersection. We floemulate a protocol allow-
ing its computation and analyze its security.

Problem Definition: Assume that the provider? holds his dataset
Dp = {uo,-- -, 4n—1} and constructs and distributes the shares of the datasetlhs w
as the random valuk in the way described in Sect. 2.3. Suppose further that tastcl

C holds a datasebc = {cy,...,cm—1}. Our protocol to compute the intersection of
two setsDp and D¢ is defined as follows. The clieist contactst servers and fetches
the information from them. ExcepDc| and|Dp| are publicly known, the information

Input: The clientC has a set of dat®¢. Each servelS;(1 < ¢ < w) knows the randon
value X and the shared coefficien{gio ¢, . . ., un—1,¢} Of the functionF (whose coeffi-
cients are the elements of the provider’s datd¥t

Output: The clientC learnsD¢ N Dp.

1. C generates a new key pdisk, sk) «— K(1'),r R Zaq, then
(@) setsr, — Epk(cy) = (¢g",h"f) forv e [0,...,m —1].

(b) broadcasts pk, 10,...,Tm—1 }t0 t ServersSy,, ..., Sy,.
2. Forj =1,...,t each contacted servey,
(@) computest,;; «— (¢, B HEGTON) qor v o€ [0,...,m — 1]
andi € [0,...,n —1].
(b) sends 0,05, ---» T0.n—1.4, T1,0.4s +-+» Tm—1,n—1,4 }10 C.

3. Forv =0,...,m — 1, the clientC
(a) computesl,, ; ; < Dsk(Tv,i,5) fori €[0,...,n—1],5 € [1,...,t].
t

(b) computesl,, ; — [] (du,:;)" fori =0,...,n—1, whereb; = 1<l;[<tzk£fzj in

= kot
the Lagrange interpolation formula.

(c) concludes., € Dp,if dy,,; = 1fori € [0,...,n—1]; otherwised,, ; is a random
integer.

4. When this process concludéslearnsDc N Dp.

Fig. 1. Privacy-preserving set intersection protocol

allows the client to compute the intersection in such a waytte client learns nothing
about the seDp and the servers do not learn anything atibyt

We use Lemma 3 to construct a scheme allowing to compute ties@ction of two
private data sets held 5y and(C. It is described in Fig. 1.

Correctness.In the above protocol, the cliegt first encrypts each elemeant of her
dataset by using her public key &% (f) for v € [0,...,m — 1] and broadcasts
all these encrypted elements#t@ervers. For each encrypted elemé&ii(f~°), the
serversSy, (1 <j <t) computeEpk(f’\(“”a'_C“>) fori € [0,...,n — 1], and send all
the Epe(f2#14~¢))'s back toC. The clientC then decrypts thosBj(f* 4 =))'s
and computeg® Z5=1 b3 (.6, =) for eachi = 0, ..., n — 1. Note that ife, = y; then

22:1 bj (pie; — cu) = 0. Therefore the clien€ learns that, € Dp if there exists

i €10,...,n— 1] such thatf* Xi=: % (#ie;=¢) — 1 When all the steps are finishéd
learnsDc N Dp.

Efficiency. As far as the communication efficiency is concerned, thetlidroadcasts
a set of encryptedh secrets ta servers. Each contacted sengr responds withnn
messages. So the communication complexity of this proig@d(tmn x log, p) bits.
As to the computation efficiency, the clishheedsn + 2 modular exponentiations
andm modular multiplications to encrypt her dataset,n decryptions¢mn modular

exponentiations andhn (¢ — 1) modular multiplications for the Lagrange interpolation.
Each contacted serve;, needs to performnn modular exponentiations and multi-
plications for processing its shares. So the computationpbexity of this protocol

is O(tmn) modular multiplications considering that on single mod@eponentiation
takes at mostlog,(p — 1)| modular multiplications using Fast Exponentiation Algo-
rithm [14].

Security. The two theorems given below characterize the securityeo$éh intersection
protocol.

Theorem 1. Given the set intersection protocol described in Fig. 1 assianing that

the underlying homomorphic encryption is semanticallyusecthen each of the con-
tacted servers cannot distinguish inputs generated byliéet€ from random integers

with a non-negligible probability.

Proof (Sketch)Foranyv € [0, ..., m—1], the cryptogranEy(c,) is indistinguishable
from a random integer chosen uniformly from te assuming intractability of the
DDH problem. Therefore no server learns anything about libatdnput.

Theorem 2. Assuming that the discrete logarithm problem is hard, thentC cannot
compute any information about shared coefficiefig e, ..., tin—1,¢} (1 < ¢ < w)
distributed by the provideP. In addition’P’s privacy ist-secure

Proof (Sketch)ln the system setting) is selected from th&q randomly and uni-
formly. When the clienC decrypts the ciphertext from eachtoervers, the decrypted
f““’”i‘c“) is indistinguishable from a random integer chosen unifgriram theZq
assuming the discrete logarithm problem is hard. Furtheendocannot compute any-
thing from less thart servers information. This is guaranteed by the perfectoéss
Shamir secret sharing.

4 Subset Relation

In this section, we define privacy-preserving subset i@tedind then we apply the obliv-
ious polynomial evaluation technique to formulate the @cot that allows to compute
it and analyze its security.

Problem Definition: Assume that the provider? holds his dataset
Dp = {uo,-- -, 4n—1} and constructs and distributes the shares of the datasetlhs w
as the random valuk in the way described in Sect. 2.3. Suppose further that taetcl

C holds a datasebc = {cg, ..., cmn—1}. The protocol to compute the subset relation
of two setsDp and D¢ is defined as follows. The clietcontacts servers and fetches
the information from them. ExcepDc| and|Dp| are publicly known, the information
allows the client to compute iDc C Dp in such a way that the client learns nothing
about the seDp and the servers do not learn anything akibyt

Correctness.In the protocol given in Fig. 2, the clieit first encrypts each element
¢, of her dataset by using her public key &% (f~“) for v € [0,...,m — 1],

Input: The clientC has a set of dat®¢. Each servelS;(1 < ¢ < w) knows the randon
value X and the shared coefficien{gio ¢, . . ., un—1,¢} Of the functionF (whose coeffi-
cients are the elements of the provider’s datd¥t

Output: The clientC obtainsl if D¢ C Dp; otherwise a random integer.

1. Steps 1 - 3(b) are same as the distributed set-intersection protocal Fégcept one
more step is added before step 2(a), and,; should be(g’“,hrfa"’“’”*@j’c'“)) in
step 2(a) accordingly.

2. (@) generated, for0 < v <m —1fromG(A).

(a) computest,;; «— (g7, A foTLT)Y qor € [0,...,m — 1]
andi € [0,...,n —1].
4. (a) C defines a polynomidll whose roots aré,, ;'s

W(y) = (y —doo)...(y —don—1)(y —d10)...(y —dm—-1,n—1)

mn

= Z awy".
u=0

(b) C randomly pickse from w and sends {Epk(ao), - - ., Epk(amn) } to the server
e, whereEpy(aw) = (g" , A" f**).
5. Server
T o B, it
(@) computeR, = hi=° fi=0 foro <v<m-—1.

R m—1 T/’mil%lfjgu m—1
(b) computes’ = H Egk(W(f) = [g =07 | H R, |.
v=0 v=0
(c) sendst back toC.

6. C decryptsEpk(E), and checks whether it is 1.

Fig. 2. Privacy-preserving subset relation protocol

and broadcasts all these encrypted elementsstvers. For every encrypted element
Ep(f~), each contacted servéy, (1 < j < t) computesEp(f7 14 ~)) for

0 <i <n—1,and sends all thg (% "% ~))'s back toC. The clientC decrypts
those Epi(f%+ i =) y's, and computesl,, ; = fo%i=1 b5t (hie; =) for
eachi = 0,...,n — 1. By Lemma 2, we have,, ; = f%Xi=1% (#i.;=¢0) ThenC
defines a polynomialV’ by using all the valued,, ; as its roots, and sends the coeffi-
cients of the polynomidlV to a single one of the servers. Observe thatdf, = u; for
vel0,...,m—1]andi € [0,...,n — 1], thend,,; = fov+&i=1bs (mig;=cu) — 0,
This means thalt/ (%) = 0. By the homomorphic property, the only contacted server
e in the second round is able to compiig (W (f%*)). To save some computations, we
only computeR,,, the second part aB (W (%)) for v € [0,...,m — 1]. Using all
the R,’s, servere then computef[;":_o1 Eo(W(f%)). WhenC receives and decrypts
va;01 En(W (%)), it concludesDc C Dp if it is 1; otherwiseDc is not a subset of
Dp.

Efficiency. The protocol requires a two-round communication. Firs,alentC broad-
casts a set of encrypted secrets t@ servers. Each contacted senggr responds with
mmn messages. In the second round, the clies¢ndsnn + 1 encrypted coefficients to
a single server and receives only one message. The comrtianicamplexity of this
protocol is stillO(tmn x log, p) bits.

As to the computation efficiency, the clishheedsn + 2 modular exponentiations
andm modular multiplications to encrypt her own datasetn + 1 decryptions¢mn
modular exponentiations aritl- 1)mn modular multiplications for the Lagrange inter-
polation,2”™" —mn modular additions anfinn — 1)2™" —mn+ 1 modular multiplica-
tions for the polynomial expansion. Each contacted se$ygrin the first round, needs
to performmn modular exponentiations and modular multiplications eesipely for
processing its shares. In the second round, the only ceataetrvee needsn?n — m
modular multiplications to precomputg??>, ..., f™"% for 1 < v < m. Servere
also needs to perfomn?n modular multiplications and exponentiations respegyivel
for computing allR,'s. DenoteE as(L, R), it needsmn(n + 1) — 1 modular additions
and one modular exponentiation to compiitandm modular multiplications to get
R. So the computation complexity of this protocol(§2™") modular additions and
multiplications respectively using the Fast Exponentiatlgorithm.

Security. The security model and its proof for this protocol is simitarthat of the
set-intersection protocol.

5 Cardinality of Set-Intersection

Using similar techniques as previous protocols, we devafoalgorithm computing the
cardinality of set intersection.

Problem Definition: Assume that the provider? holds his dataset
Dp = {po,- .-, n—1} and constructs and distributes the shares of the datasetlas w
as the random valug in the way described in Sect. 2.3. Suppose further that teatcl

C holds a datasebPc = {cy,...,cm—1}. The protocol to compute the cardinality of
two intersection set®p and D¢ is defined as follows. The cliei contactst servers
and fetches the information from them. ExcéPt| and |Dp| are public known, the
information allows the client to comput®c N Dp| in such a way that the client learns
nothing about the séPp and the servers do not learn anything akibgt

By using oblivious polynomial evaluation, we need to obt#ie coefficients
ag, -, a, of W(y) = S0 a; ' from the factorizatio] /" (y — ¢;). To avoid this
cost, we simply use the technique of random shuffling to pésrie ordered encrypted
results in the second round by the only contacted server.

The protocol, given in Fig. 3, works in the same way as theitigied subset re-
lation protocol until Step 3(b). The cliegtthen encrypts each of the valués; and
sends all these encrypted elemeBig(d, ;)’s to a single one of thev servers. The
only contacted server multiplies % to the second part afyk(d, ;), then raises the
power off,, to both components df(d,, ;). When this process concludes, the server
randomly permutes all the ciphertexts and returns theth fthe clientC then counts

Input: The clientC has a set of dat®¢. Each servelS;(1 < ¢ < w) knows the randon
value X and the shared coefficien{gio ¢, . . ., un—1,¢} Of the functionF (whose coeffi-
cients are the elements of the provider’s datd¥t

Output: The clientC learns| D¢ N Dp|.

1. Steps 1 - 3(b) are same as the distributed subset relation protocat)Fig
3. (c) C randomly pickse from w and sends {Epk(do,o), - - ., Epk(dm—1,n—1) } t0 the
servere, whereEp(dv i) = (g"', hT'/dU,i).
4. Servere
(@) computes

t
0, 3 by (wie, —cv
= (gevrl,hev?“/f o iy >)

forve[0,...,m—1]andi € [0,...,n —1].
(b) shuffles all theEpy(d;, ;) and sends the shuffledly, . . ., d.,,. } back toC.
5. @¢C decryptsDSk(aZ) and obtainsl if one element ofD¢, which is carried in the

i~

computation ofl;, is in Dp; otherwise obtains a random integer.
(b) C counts the number of ciphertexts received that decryppt to

Fig. 3. Privacy-preserving cardinality of set-intersection protocol

the number of ciphertexts received that decrypt to 1. Theriggroof for this protocol
trivially follows that of the subset relation protocol.

The efficiency is the same as the subset relation protocdhéofirst round. In the
second round of this protocol, the cliefitsendsmn messages to the serverand
the servee returnsmn messages back. As to the computation efficiency in the second
round, the clien€ performsmn encryptions and decryptions respectively. Accordingly,
the servee needs to performmn modular multiplications anehn modular exponenti-
ations to complete the cardinality computation.

6 Conclusion and Future Work

In this paper, we have proposed a protocol for the priva@ggnving set intersection
computation in a distributed environment by combining Sinareecret sharing scheme
and homomorphic encryption scheme. Moreover, we have shbatnwith a second

round of interaction and a random shuffling the cardinalftgeai-intersection could be
computed efficiently. By using oblivious polynomial evdioa techniques, we have
also constructed an two-round privacy-preserving sulesation protocol.

The further research will be to provide a solution of abowtritiuted set operations
against active adversary.

References

(1]

(2]

(3]

[4]

(5]

(6]
[7]

(8]

9]

(10]

(11]

(12]

(13]
(14]

(15]

(16]
(17]

(18]

B. Aiello, Y. Ishai, and O. Reingold. Priced oblivious transfer: Hawsell digital goods.
In B. Pfitzmann, editorAdvances in Cryptology - Eurocrypt '0%olume 2045 olLNCS
pages 119-135. Springer-Verlag Berlin Heidelberg, 2001.

M. Ben-Or, S. Goldwasser, and A. Wigderson. Completenessre¢hen for non-
cryptographic fault-tolerant distributed computation.2Bth Annual ACM Symposium on
Theory of Computingpages 1-10. ACM Press, 1988.

R. Fagin, M. Naor, and P. Winkler. Comparing information withoukieg it. Communi-
cations of the ACWM39(5):77-85, 1996.

M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matgland set intersection.
In C. Cachin and J. Camenisch, editodslvances in Cryptology - Eurocrypt '0folume
3024 ofLNCS pages 1-9. Springer-Verlag Berlin Heidelberg, 2004.

T. E. Gamal. A public key cryptosystem and a signature schemedbaseliscrete log-
arithms. In G. R. Blakley and D. Chaum, editofgjvances in Cryptology - Crypto '84
volume 196, pages 19-22. Springer-Verlag, August 1984.

O. Goldreich. The Foundations of Cryptographyolume 2. Cambridge University Press,
2004.

S. Hohenberger and S. A. Weis. Honest-verifier private disjosgmesting without random
oracles. In6th Workshop on Privacy Enhancing Technologies (PET'06lume 4258 of
LNCS pages 277-294. Springer-Verlag Berlin Heidelberg, 2006.

A. Kiayias and A. Mitrofanova. Testing disjointness and private detasln A. S. Patrick
and M. Yung, editorsFinanicial Cryptography (FC'05)volume 3570, pages 109-124.
Springer-Verlag Berlin Heidelberg, 2005.

L. Kissner and D. Song. Privacy-preserving set operaitond/. Shoup, editorAdvances
in Cryptology - Crypto '05volume 3621 of NCS pages 241-257. Springer-Verlag Berlin
Heidelberg, 2005.

H. Lipmaa. Verifiable homomorphic oblivious transfer and pevaquality test. In
C. S. Laih, editorAdvances in Cryptology - Asiacrypt '08olume 2894, pages 416-433.
Springer-Verlag Berlin Heidelberg, 2003.

P. Mohassel and M. Franklin. Efficient polynomial operations i shared-coefficients
setting. In M. Yung, editorPublic Key Cryptography (PKC’'06)olume 3958 oLLNCS
pages 44-57. Springer-Verlag, 2006.

M. Naor and B. Pinkas. Oblivious transfer and polynomial eviédua In 31st annual ACM
Symposium on Theory of Computing (STOC ,@2)ges 245-254, Atlanta, Georgia, May
1999.

M. Naor and B. Pinkas. Distributed oblivious transfer. In T. Qian editor,Advances in
Cryptology - Asiacrypt '00volume 1976 oL NCS pages 205—-219. Springer-Verlag, 2000.
J. Pieprzyk, T. Hardjono, and J. Seberundamentals of Computer Securitgpringer,
2003.

Y. Sang, H. Shen, Y. Tan, and N. Xiong. Efficient protocolsdavacy preserving matching
against distributed datasets. 8th International Conference of Information and Commu-
nications Security (ICICS’06Volume 4307 oLLNCS pages 210-227. Springer - Verlag,
2006.

D. R. Stinson. An explication of secret sharing schebesigns, Codes and Cryptography
2:357-390, 1992.

Y. Tsiounis and M. Yung. On the security of elgamal based erizyp In Public Key
Cryptography (PKC'98)volume 1431 of NCS pages 117-134. Springer-Verlag, 1998.
A. C. Yao. Protocols for secure computations. 28rd Symposium on Foundations of
Computer Science (FOCS)ages 160-164. IEEE, 1982.

A Proof of Lemma 1l and 2

We havet participants and each of them has a share. Correspondihgt@oints, the
Vandermonde matriX” is constructed as follows:

t—1
Loy ...z
V= :
t—1
1, ... @,

Since the points are pairwise distingt, is invertible. LetV ! = (v; j)1<i j<¢. BY
taking first row ofV ~! and first column of/, we obtainzz.:1 vi; =1L

Thet polynomials P (z), ..., Pi(z) are defined a®j(z) = [——= for
1<k<t kY
.) k#j
any1 < j < t. Note that these polynomials have a nice property, namely
. _Jl ifj=e
Vi€t Bwi) = {0 otherwise.
Those polynomials also can be rewritten'dgc [1,...,t] Pj(z) = S h_, ajx 2F

where eachu; ;. € Z.
We now build at x ¢ matrix:

ail a1 - G¢1
D =
i 2 - Gt

Thej*" column of D represents the coefficients Bf(x). We claim thatV ~! = D. It
is sufficient to prove that’ x D is a identity matrix.
LetV x D =W = (wey)1 <<t Wefixe,n e [l,..., 1 the coefficientw ,, is
1<n<t
obtained by using thes'® row of V along with the n'* column of D as
Wey =30) x?fl an.m. Notice thatw, ,, = P, (z;_). Using the previous property of
the polynomial, we obtain

1 ifnp=g¢
Yen =30 otherwise

This property demonstrates that is a identity matrix, which proves that—! = D.
Since the sum of the coefficients of the first row &' is 1, we get
Si—iv1; = Y;_ja;1 = 1. Notice thata; , is the constant coefficient aP;(z),
soVj e [1,...,t], aj1 = Pj(0) = [] I;fkﬂ?] Combining the previous two find-
1<k<t
k#j
ings, we can conclude that:

