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Abstract. With the growing demand of databases outsourcing and its security
concerns, we investigate privacy-preserving set intersection in a distributed sce-
nario. We propose a one-round protocol for privacy-preservingset intersection
based on a combination of secret sharing scheme and homomorphic encryption.
We then show that, with an extra permutation performed by each of contacted
servers, the cardinality of set intersection can be computed efficiently. All proto-
cols constructed in this paper are provably secure against a semi-honest adversary
under the Decisional Diffie-Hellman assumption.
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1 Introduction

Privacy-Preserving Set Intersection (PPSI) protocols [7]are cryptographic techniques
allowing two or more parties, each holding a set of inputs, tojointly calculate set op-
erations of their inputs without leaking any information toeach other. Consider that
two companiesC1 andC2 want to discover the consumption pattern of their shared
customers. That is, they want to determine the likelihood that a customer buying the
productP1 from C1 is also buying the productP2 from C2. To obtain this information,
they would like to perform a set intersection operation on their private datasets. In or-
der to preserve confidentiality of the companies business and to protect the customers’
privacy, the purchase details of customers must not be revealed. There are many other
examples of PPSI applications such as when two hospitals conduct a study where they
wish to analyze patients records anonymously.

With the growing demand of databases outsourcing and security requirements im-
posed on its applications, we investigate PPSI in a distributed environment. We call
this Privacy-Preserving Distributed Set Intersection (PPDSI). To illustrate the security
problem, we consider the following scenario. Assume that a provider owning a dataset
wishes to outsource it to commercial servers and make it available to his clients. If he
outsources his dataset to a single server then he has to fullytrust that server and risk
the privacy of his data. Alternatively, he can encrypt his dataset before sending it to the
server but querying and evaluating on such encrypted data are very inefficient.

In order to protect the dataset privacy at an acceptable efficiency cost, we could let
the provider distribute the dataset tow servers using a(t, w)-threshold secret sharing



scheme. As such, anyt− 1 or less servers should not able to find out the original data.
Now, assume that a client holding her private dataset, wishes to compute a specific set
operation for the two sets held by the provider and herself. In order to do this success-
fully, the client interacts witht or more servers. In our settings, we require that this
interaction is done with minimum possible disclosure of information, that is, the client
learns nothing except the final result of the set operation.

In general, PPSI can be implemented using secure multi-party computation proto-
cols [3, 23]. However, such solutions are generally inefficient. More specialized proto-
cols on PPSI are needed to improve its efficiency.

Related Work. A specialized private set intersection protocol recently developed by
Freedman, Nissim and Pinkas (FNP) [7] is based on the representation of datasets
as roots of a polynomial. To briefly describe Freedman et al.’s construction, suppose
CS = (K,Epk,Dsk) is a semantically secure public-key homomorphic encryption
scheme. Assume that Alice has the datasetA = {a1, . . . , an} and Bob owns the dataset
B = {b1, . . . , bm}.

To evaluateA∩B, Alice constructs the polynomialf(x) =
∏

ai∈A

(x−ai) =
n∑

i=0

αix
i.

Then, she encrypts each coefficient asEpk(αi) with the homomorphic cryptosystem
CS such as Paillier’s [18] and the standard variant of the ElGamal encryption scheme
(see [4]). Note that an homomorphic cryptosystem allows a party knowingEpk(x) and
Epk(y) to computeEpk(x + y) = Epk(x) · Epk(y) andEpk(x · c) = Epk(x)c wherec
is any constant. The reader is referred to Sect. 2.1 for a formal definition. Note that we
only use the standard variant of the ElGamal encryption scheme in our protocols due to
our distributed setting.

Thus, given encrypted coefficients, Bob can obliviously evaluate Epk(f(bi)) for
each elementbi ∈ B. Note that ifbi ∈ A thenf(bi) = 0. Since Bob does not want
to reveal any other information whenbi /∈ A, he randomizes all his oblivious evalua-
tions by a random nonzero valuer asEpk(f(bi))

r = Epk(r · f(bi)). Consequently, if
f(bi) = 0 then the encryption ofEpk(r · f(bi)) = Epk(0). Otherwise,Epk(r · f(bi))
is some random value. This hides any information about elements in B which are not
in A. To enable Alice to check whetherbi also belongs to her dataset, Bob sends all
the cryptogramsEpk(r · f(bi) + bi)’s to her. She decrypts them and tests whether any
of the resulting plaintexts are inA asDsk(Epk(r ·f(bi)+bi)) = bi if and only if bi ∈ A.

Inspired by FNP, Kessner and Song (KS) [12] propose a solution to various privacy-
preserving set operations such as set union, set intersection, the cardinality of set in-
tersection and multiplicity testing. Based on a threshold homomorphic cryptosystem,
Sang et al. gave protocols for the set intersection and set matching problems with an
improved computation and communication complexity in [20].

Protocols for testing the subset relation in a two-party setting are also discussed in
[11, 13] while the set disjointness test are introduced in [10, 9]. Note that checking the



equality of two datasets is a special case of the private disjointness problem, where each
party has a single element in the database. Such protocols were considered in [6, 16, 14].

Our Results. Our approach is based on homomorphic encryption and secret sharing.
This paper builds on recently developed private set operation protocols FNP and KS
and offers a new construction in two-party private set operations where one dataset is
distributed.

Contrary to the previous two-party PPSI protocols based on the one client-one
server setting, we deal with the distributed case relying onsecret sharing described ear-
lier. Our construction may be of great value where the privacy of unencrypted dataset
outsourced in single server is a great concern.

We first compute thew shares of the datasetDP of the providerP by constructing a
bivariate polynomial and evaluating it atw points to get the shares. This approach is to
make the share construction more efficient. Our construction only needs to use Shamir’s
secret scheme [21] a single time to compute the shares of the whole dataset.

In our set intersection protocol, we will use our observation that
t∑

j=1

bj (µj−µ) = 0

where thebj ’s are Lagrange interpolation coefficients,µ is a value and theµj ’s are the
shares ofµ. Using this relation, one can obliviously check that an elementc is equal toµ
by collectingt values(µj−c) r wherer is a randomizer common to all participants. As
a consequence, if the clientC interacts in parallel witht servers with her whole dataset
DC , she is able to computeDP ∩ DC .

We then extend our PPDSI solution to a one-round protocol evaluating |DC ∩ DP |.
To prevent the client from learning the intersectionDC ∩ DP , each server will permute
the cryptograms it has evaluated obliviously before sending them back to the clientC.
Thus, after decryption and computation, the client only learns |DC ∩ DP |.

Our protocols are secure against an honest-but-curious (semi-honest) adversary. By
definition, such an adversary follows the steps of the protocol execution but tries to learn
extra information from the messages received during its execution. Our homomorphic
encryption is based on the ElGamal cryptosystem [5] which issemantically secure pro-
vided the Decisional Diffie-Hellman (DDH) assumption holds[22]. The security of this
building block will imply the security of our protocols. Note that, as in [7, 10], our pro-
tocols reveal the size of the datasets of both the client and the provider. As suggested in
[10], "dummy" elements can be used for dataset padding in order to hide the size of the
original dataset. But, in this case, the protocols reveal anupper bound on the number of
elements in the sets.

The complexity of the communication cost for each of these two constructions
is O(t |DP | |DC | × log2 p) bits. The computation cost complexity is
O(t |DP | |DC | × log3

2 p) bits for our two protocols. These complexity results are ef-



ficient considering our distributed setting.

Our paper is organized as follows. In Sect. 2, we introduce the cryptographic prim-
itive used in our protocols, describe the distributed environment in which our protocols
are run, and give the adversary model. In Sect. 3, we present our two protocols for the
set intersection problem and the cardinality of set intersection problem. The security
and efficiency of these two schemes are analyzed in that section as well. Finally, in
Sect. 4, we give concluding remarks and discuss possible future work.

2 Preliminaries

2.1 Additive Homomorphic Encryption

We will utilize an additive homomorphic public key cryptosystem. Following Adida
and Wikstrom [1], we use the following definition.

Definition 1 ([1]). A cryptosystem with key generatorK, encryption algorithmEpk

and decryption algorithmDsk is said to be homomorphic if for every key pair
(pk, sk) ∈ K(1l):

1. The message spaceM is a subset of an abelian groupG(M) written additively.
2. The randomizer spaceR is an abelian group written additively.
3. The ciphertext spaceC is an abelian group written multiplicatively.
4. The group operations can be computed in polynomial time given pk. For every

m,m′ ∈M andr, r′ ∈ R, we haveEpk(m, r)�Epk(m
′, r′) = Epk(m+m′, r+r′).

5. The cryptosystem is said to be additive if the message spaceM is the additive
modular groupZn for some integern > 1.

When such operations are performed, we require that the resulting ciphertexts be
re-randomized for security. During such a process, the ciphertextc of the plaintextm is
transformed intoc′ such thatc′ is still a valid cryptogram for the messagem but relying
on a different random string fromc’s.

In our protocols, the computations are carried out overZp wherep is prime. We as-
sume thatp = 2 q+1 whereq is also prime. We note that all our protocols can be based
on the standard variant of the ElGamal encryption scheme (see [4]) which recently was
used for constructing privacy-preserving set operation protocols in [10, 2, 14].

Let g, h andf be three random generators of orderq in Z
∗
p, m1,m2,m ∈ Zq and

correspondingr1, r2, r
R
← Zq. We denote� the multiplication overZp× Zp defined as

follows.

Epk(r1,m1)� Epk(r2,m2) :=
(
gr1+r2 , hr1+r2fm1+m2

)
= Epk(r1 + r2,m1 + m2)

If we repeat this operationc times for a single encryption, then we have

Epk(r,m)c = Epk(r,m)� Epk(r,m)� . . .� Epk(r,m)
︸ ︷︷ ︸

c times

:= Epk(c r, cm)



For simplicity, we useEpk(m) to representEpk(r,m) in the rest of the presentation as

we assume that there is always a correspondingr
R
← Zq.

2.2 Distributed Environment

The players are a clientC, a providerP, andw serversS1, S2, . . . , Sw. We assume that
the provider holds a datasetDP = {µ0, µ1, . . . , µn−1}which is distributed tow servers
using(t, w)-Shamir’s secret sharing scheme.

The providerP does not directly interact withC for the set operations. Instead,C
contacts at leastt servers to perform the requested set operation. Note that this dis-
tributed setting was first proposed by Naor and Pinkas [17].

Our homomorphic encryption system is based on a variant of ElGamal cryptosystem
in which the message space is overZq whereq ≥ n. For simplicity, we omit modulusq
within the computation of shares construction in this section.

Initialization and Share Distribution Phase.P constructs a polynomialF (y) whose
coefficients represent his datasetDP , i.e.:

F (y) =

n−1∑

i=0

µiy
i

Then,P generates a random masking bivariate polynomialH(x, y) as:

H(x, y) =

t−1∑

j=1

n−1∑

i=0

aj,ix
jyi whereaj,i

R
← Zq

Note that we haveH(0, y) = 0 for any y. Using the polynomialH(x, y), P defines
another bivariate polynomialQ(x, y) = F (y) + H(x, y). Note that we get

∀y Q(0, y) := F (y). For 1 ≤ ` ≤ w, P sendsQ(`, y) :=
n−1∑

i=0

µi,` yi to server

S` where∀i ∈ {0, . . . , t − 1} µi,` = µi + bi,` with bi,` =
t−1∑

j=1

aj,i `j . The server

S` receives a set of shared coefficients{µ0,`, . . . , µn−1,`} of the polynomialF (y)
(see [15]).

Secret Reconstruction Phase.We now show how anyt-subset of servers can recover
F (y). DenoteS`1 , . . . , S`t

the t servers contacted by the client. Using Lagrange inter-
polation formula, we know that the coalition oft or more servers can reconstruct the
original polynomialF (y). The t polynomialsQ(`m, y) for m ∈ [1, . . . , t] verify the



following system:

V −1








Q(`1, y)
Q(`2, y)

...
Q(`t, y)








=














F (y)
t−1∑

j=1

aj,0 yi

...
t−1∑

j=1

aj,n−1 yi














(1)

whereV is thet×t Vandermonde matrix:V :=
(

`j
i

)j=0,...,t−1

i=1,...,t
. Since we are only inter-

ested in the reconstruction ofF (y), we simply need to know the first row(v1,1 · · · v1,t)
of V −1 as we have:

t∑

j=1

v1,j Q(`j , y) = F (y)

As a consequence, we obtain:

∀i ∈ {0, . . . , n− 1}

t∑

j=1

v1,j µi,`j
= µi (2)

Lemma 1 shows how to construct the first row ofV −1 whose proof can be found in
Appendix A.

Lemma 1. We have:





∀j ∈ {1, . . . , t} v1,j =

∏

1≤k≤t

k 6=j

`k

`k − `j







and
t∑

j=1

v1,j = 1

From the previous lemma, we deduce:

∀i ∈ {1, . . . , n− 1} µi =

t∑

j=1







∏

1≤k≤t

k 6=j

`k

`k − `j







µi,`j

Note that our reconstruction technique can be seen as a particular case of Lagrange
interpolation. Notice that we use the variant of ElGamal that is defined overZp. Further
in our paper, the computations are being done modulop and we simplify the notation by
skipping the modulus in the congruences. If we use differentmodulus, the congruence
will be written in full to avoid confusion.

2.3 Adversary Model

We consider a semi-honest adversary model. Due to space constraints, we only provide
the intuition and informal definitions of this model. The reader is referred to [8] for a
more complete discussion.



In this model, there is no direct interaction betweenC andP. Instead the clientC
andw servers are assumed to follow the steps defined in the protocol. The security
definition is straightforward that only the clientC learns the result of the protocol.

Definition 2. (t-secure). A set operation protocol is said to be t-secure if the clientC,
colluding with at mostt−1 out ofw servers learns no information about the provider’s
dataset and the set operation result.

Following [16, 17] our model should meet the following requirements:

Correctness.A protocol is correct if the clientC is able to compute the valid result
from shares obtained fromt servers assuming that each server and the client honestly
follow the protocol.

Client’s security. The protocol should guarantee the client privacy, i.e. the servers learn
nothing about either the client inputs or its correspondingcomputed output. In other
words, a server is not able to distinguish the client inputs from uniform random vari-
ables.

Provider’s security.The protocol should not give out to the client any information about
the function held by the provider apart from the output of thefunction assuming that no
server colludes with the client. Also, the provider privacyis t-secure.

3 Protocols for PPDSI

In this section, we address the problem of designing protocols for PPDSI related is-
sues. Those targeted in this paper are the privacy preserving set intersection prob-
lem and the cardinality of set intersection problem. The provider P holds a dataset
DP = {µ0, . . . , µn−1}which is distributed tow serversS1, . . . , Sw as in Sect. 2.2. The
datasetDC of the clientC is {c0, . . . , cm−1}. Note that it is assumed that|DC | = m and

|DP | = n are publicly known. We assume that the providerP broadcastsλ
R
← Zq−{0}

to thew servers.

3.1 Determination of the Set Intersection

Figure 1 represents a protocol which enables the clientC to compute the intersection
DP ∩ DC by contacting anyt-subset of serversS`1 , . . . , S`t

.

Correctness of the Protocol.In order to prove the soundness of our construction, we
need the following lemma.

Lemma 2. Let bj =
∏

1≤k≤t

k 6=j

`k

`k−`j
be the coefficient constructed at Step3.b of Fig. 1.

Then:
t∑

j=1

bj(µi,`j
− µi) = 0



Input: The clientC has a set of dataDC . Each serverS`(1 ≤ ` ≤ w) knows the random
value λ and the shared coefficients{µ0,`, . . . , µn−1,`} of the polynomialF (y) (whose
coefficients are the elements of the provider’s datasetDP ).
Output: The clientC learnsDC ∩ DP .

1. C generates a new key pair(pk, sk)← K(1l), r
R
← Zq, then

(a) setsτυ ← Epk(cυ) = (gr, hrf−cυ ) for υ ∈ [0, . . . , m− 1].
(b) broadcasts {pk, τ0, . . . , τm−1 } to t serversS`1 , . . . , S`t .

2. Forj = 1, . . . , t each contacted serverS`j

(a) computesτυ,i,j ← (gλr, hλrf
λ(µi,`j

−cυ)
) for υ ∈ [0, . . . , m − 1]

andi ∈ [0, . . . , n− 1].
(b) sends {τ0,0,j , . . . , τ0,n−1,j , τ1,0,j , . . . , τm−1,n−1,j } to C.

3. Forυ = 0, . . . , m− 1, the clientC

(a) computesdυ,i,j ← Dsk(τυ,i,j) for i ∈ [0, . . . , n− 1], j ∈ [1, . . . , t].

(b) computesdυ,i ←
t

Y

j=1

(dυ,i,j)
bj for i = 0, . . . , n− 1, wherebj =

Q

1≤k≤t

k 6=j

`k

`k−`j
in

the Lagrange interpolation formula.
(c) concludescυ ∈ DP , if dυ,i = 1 for i ∈ [0, . . . , n−1]; otherwisedυ,i is a random

integer.

4. When this process concludes,C learnsDC ∩ DP .

Fig. 1.Privacy-preserving set intersection protocol

Proof. Note that our coefficientbj corresponds to thejth coefficient of the first row of

the matrixV −1 denotedv1,j in Sect. 2.2. From Lemma 1, we get that
t∑

j=1

bj = 1. Thus,

(2) provides our result. ut

In the above protocol, the clientC first encrypts each elementcυ of her dataset by
using her public key asEpk(f

−cυ ) for υ ∈ [0, . . . ,m − 1] and broadcasts all these
encrypted elements tot servers. For each encrypted elementEpk(f

−cυ ), the servers

S`j
(1 ≤ j ≤ t) computeEpk(f

λ(µi,`j
−cυ)) for i ∈ [0, . . . , n − 1], and send all the

Epk(f
λ(µi,`j

−cυ))’s back toC. The clientC then decrypts thoseEpk(f
λ(µi,`j

−cυ))’s

and computesf
λ

t
P

j=1

bj (µi,`j
−cυ)

for eachi = 0, . . . , n − 1. Note that ifcυ = µi then
t∑

j=1

bj (µi,`j
− cυ) = 0. Therefore, the clientC learns thatcυ ∈ DP if there exists

i ∈ [0, . . . , n − 1] such thatf
λ

t
P

j=1

bj (µi,`j
−cυ)

= 1. When all the steps are finished,C
learnsDC ∩ DP.

Security of the Construction.The two theorems given below characterize the security
of the set intersection protocol. Their proofs can be found in Appendix B and C.



Theorem 1. Given the set intersection protocol described in Fig. 1 and assuming that
the underlying homomorphic encryption is semantically secure, then each of the con-
tacted servers cannot distinguish inputs generated by the client C from random integers
with a non-negligible probability.

Theorem 2. Assuming that the discrete logarithm problem is hard, the clientC cannot
compute any information about shared coefficients{µ0,`, . . . , µn−1,`} (1 ≤ ` ≤ w)
distributed by the providerP. In addition,P ’s privacy is t-secure.

3.2 Computation of the Cardinality of Set-Intersection

By introducing a permutation into our PPDSI protocol, we develop an algorithm com-
puting the cardinality of the datasets’ intersection|DC ∩ DP |. DenotePm n the set of
all permutations of{1, . . . ,mn}. Assume thatP has a private permutation functionπ,
chosen uniformly at random fromPm n, which is given to thew servers. This scheme
is represented as Fig. 2.

Input: The clientC has a set of dataDC . Each serverS`(1 ≤ ` ≤ w) knows the random
valueλ, the permutation functionπ and the shared coefficients{µ0,`, . . . , µn−1,`} of the
polynomialF (y) (whose coefficients are the elements of the provider’s datasetDP ).
Output: The clientC learns|DC ∩ DP |.

1. C generates a new key pair(pk, sk)← K(1l), r
R
← Zq, then

(a) setsτυ ← Epk(cυ) = (gr, hrf−cυ ) for υ ∈ [0, . . . , m− 1].
(b) broadcasts {pk, τ0, . . . , τm−1 } to t serversS`1 , . . . , S`t .

2. Forj = 1, . . . , t each contacted serverS`j

(a) computesτυ,i,j ← (gλr, hλrf
λ(µi,`j

−cυ)
) for υ ∈ [0, . . . , m − 1]

andi ∈ [0, . . . , n− 1].
(b) obtains{τπ(0,0),j , . . . , τπ(0,n−1),j , τπ(1,0),j , . . . , τπ(m−1,n−1),j} ←

π(τ0,0,j , . . . , τ0,n−1,j , τ1,0,j , . . . , τm−1,n−1,j)
(c) sends{τπ(0,0),j , . . . , τπ(0,n−1),j , τπ(1,0),j , . . . , τπ(m−1,n−1),j} to C.

3. Forυ′ = 0, . . . , m− 1, the clientC

(a) computesdπ(υ′,i),j ← Dsk(τπ(υ′,i),j) for i ∈ [0, . . . , n− 1], j ∈ [1, . . . , t].

(b) computes dπ(υ′,i) ←
t

Y

j=1

`

dπ(υ′,i),j

´bj for i ∈ [0, . . . , n − 1],

wherebj =
Q

1≤k≤t

k 6=j

`k

`k−`j
in the Lagrange interpolation formula.

4. When this process concludes,C learns|DC∩DP | as it is the number ofdπ(υ′,i)’s equal
to 1.

Fig. 2.Privacy-preserving cardinality of set-intersection protocol

The protocol, given in Fig. 2, works in the same way as the distributed set inter-
section protocol with the addition that all servers run the same permutation function



π on their computed cryptograms. This is to prevent the clientC from learning the set
intersectionDC ∩ DP .

Security of the Construction.The security model as well as the proof for this protocol
are similar to what was done for our set-intersection protocol presented in Sect. 3.1 as
the permutationπ was chosen uniformly at random fromPm n.

3.3 Efficiency of our Protocols

In this part, we study the communication and computation cost of our two constructions.

Communication Cost.For both protocols,C broadcasts a set ofm encrypted values to
t servers while each contacted serverS`j

responds withmn messages. Thus, the com-
plexity of the communication cost for both constructions areO(tmn× log2 p) bits.

Computation Cost.It should be noticed that operations inZp can be done inO(log2
2 p)

bit operations.

For our first protocol,C needsm + 2 modular exponentiations andm modular mul-
tiplications to encrypt her dataset,tmn decryptions,tmn modular exponentiations
andmn (t− 1) modular multiplications for Lagrange interpolation. Notethat each de-
cryption represents one modular multiplication and one modular exponentiation. Each
serverS`j

executesmn modular exponentiations and multiplications when processing
its shares. So, this protocol usesO(tmn× log2 p) modular multiplications considering
that a single modular exponentiation takes at mostblog2(p− 1)c modular multiplica-
tions using the Fast Exponentiation algorithm presented in[19].

The cost of our second protocol is the same as the first one’s plust executions of the
permutationπ. Assuming thatπ is represented by its binary permutation matrixMπ,
each of theset queries has a negligible cost sinceπ is a simple reordering of its inputs
(Mπ has a single coefficient equal to1 per row).

Therefore, the complexity of computation cost of these two constructions is
O(tmn× log3

2 p) bits.

4 Conclusion and Future Work

In this paper, we have proposed a protocol for the privacy-preserving set intersection
computation in a distributed environment. Our construction was based on Shamir’s se-
cret sharing scheme and homomorphic encryption scheme. With our construction, each
server only held the shares of the original provider dataset, and consequently the pri-
vacy of that dataset was protected. Moreover, we have shown that, using a permutation
π, we could efficiently compute the cardinality of the set intersection.

Further research will be to focus on providing a solution of the above distributed set
intersection and the cardinality of set intersection problems against an active adversary.
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A Proof of Lemma 1

We havet participants and each of them has a share. Corresponding to thet points, the
Vandermonde matrixV is constructed as follows:

V =






1 xi1 . . . xt−1
i1

...
...

.. .
...

1 xit
. . . xt−1

it




 .

Since the points are pairwise distinct,V is invertible. LetV −1 = (vi,j)1≤i,j≤t. By tak-

ing first row ofV −1 and first column ofV , we obtain
t∑

j=1

v1,j = 1 asV −1 × V = Idt

where Idt denotes thet× t identity matrix.

The t polynomialsP1(x), . . . , Pt(x) are defined asPj(x) :=
∏

1≤k≤t

k 6=j

x−xik

xik
−xij

for

any1 ≤ j ≤ t. Note that these polynomials have a nice property, namely

∀j ∈ [1, . . . , t], Pj(xie
) =

{
1 if j = e
0 otherwise.

Those polynomials also can be rewritten as:∀j ∈ [1, . . . , t] Pj(x) =
t∑

k=1

aj,k xk−1

where eachaj,k ∈ Zp.

We now build at× t matrix:

D =






a1,1 a2,1 · · · at,1

...
...

. . .
...

a1,t a2,t · · · at,t




 .



Thejth column ofD represents the coefficients ofPj(x). We claim that:V −1 = D. It
is sufficient to prove thatV ×D is a identity matrix.

Let V ×D = W = (wς,η) 1 ≤ ς ≤ t
1 ≤ η ≤ t

. We fix ς, η ∈ [1, . . . , t] the coefficientwς,η is

obtained by using theςth row of V along with the ηth column of D as

wς,η =
t∑

m=1
xm−1

iς
aη,m. Notice thatwς,η = Pη(xiς

). Using the previous property of

the polynomial, we obtain

wς,η =

{
1 if η = ς
0 otherwise.

This property demonstrates thatW is a identity matrix, which proves thatV −1 = D as
the inverse is unique.

Since the sum of the coefficients of the first row ofV −1 is 1, we get
t∑

j=1

v1,j =
t∑

j=1

aj,1 = 1. Notice that aj,1 is the constant coefficient ofPj(x),

so∀j ∈ [1, . . . , t], aj,1 = Pj(0) =
∏

1≤k≤t

k 6=j

xik

xik
−xij

. Combining the previous two find-

ings, we can conclude that:

t∑

j=1







∏

1≤k≤t

k 6=j

xik

xik
− xij







= 1.

B Proof of Theorem 1

Denote〈g〉, the subgroup ofZ∗
p generated byg. By definition, the order of〈g〉 is q.

The client C sends the group oft servers the encrypted valuesEpk(c0), . . . ,
Epk(cm−1) where:

∀i ∈ {0, . . . ,m− 1} Epk(ci) = (gr, hr f−ci)

Thus, the group oft servers obtains:

gr, hr f−c0 , . . . , hr f−cm−1

The elementsg andh are two generators of the multiplicative group〈g〉. As r is chosen
uniformly at random over〈g〉, gr andhr are two elements uniformly distributed over
〈g〉.



As theci’s are all distinct, we get:f−ci 6≡ f−cj modp wheni 6= j. If hr 6≡ 1 modp
then each elementhr f−ci modp is uniformly distributed over〈g〉 and we have:

Pr(hr 6≡ 1 modp) = Pr(r 6≡ 0 modq) = 1−
1

q

So, we deduce thathr f−c0 , . . . , hr f−cm−1 arem pairwise distinct elements uniformly
distributed over〈g〉 with probability1− 1

q
as the same valuer is used for each of these

elements.

As the discrete logarithm problem is assumed to be hard overZp (DDH assumption),
the group oft servers cannot computer from gr with non-negligible probability in
polynomial time as a function of the bit size ofp. Therefore, given the above analysis,
we deduce that thet servers cannot distinguish them elementshr f−c0 , . . . , hr f−cm−1

from m distinct elements of〈g〉 drawn uniformly.

C Proof of Theorem 2

We first consider thatC contactst servers. At the end of Step3.b, we have:

∀υ ∈ {0, . . . ,m− 1} ∀i ∈ {0, . . . , n− 1} dυ,i = f
λ

t
P

j=1

bj (µi,`j
−cυ)

Using the proof of Lemma 2, we get:

∀υ ∈ {0, . . . ,m− 1} ∀i ∈ {0, . . . , n− 1} dυ,i = f
λ

  

t
P

j=1

bj µi,`j

!

−cυ

!

Using that lemma, we deduce that, for eachcυ fromDC , we have:

cυ ∈ DP ⇐⇒ ∃i0 ∈ {0, . . . , n− 1}





t∑

j=1

bj µi0,`j



− cυ = 0

Now, assume thatcυ is not an element ofDP . We have:

∀i ∈ {0, . . . , n− 1}





t∑

j=1

bj µi,`j



− cυ 6≡ 0 modq

Sinceλ has been chosen uniformly at random fromZq − {0}, we deduce that the ele-

mentλ

((
t∑

j=1

bj µi,`j

)

− cυ

)

is uniformly distributed overZq − {0} as well. As the

discrete logarithm problem is assumed to be hard overZp (DDH assumption), this ex-
ponent is not computable in polynomial time with non-negligible probability byC and
thus the coefficientsdυ,0, . . . , dυ,n−1 appeared to be uniformly drawn from〈g〉 to the
clientC asf generates that multiplicative group.



We now assume thatC only contactedt − 1 serversS`1 , . . . , S`t−1
. In this situa-

tion, the polynomialF (y) representing the provider datasetDP cannot be reconstructed
uniquely identically to the secret polynomial of a(t, w)-Shamir secret sharing scheme
when onlyt − 1 participants work together. As a consequence, the missing participant
involves thatF (y) can takep equally probable values where a single one is correct.
Thus,C cannot recoverDC ∩ DP even if he colludes witht − 1 servers as he cannot
reconstructF (y) and use (2) at Step3.b.


