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Abstract. With the growing demand of databases outsourcing and its security
concerns, we investigate privacy-preserving set intersection in édistl sce-
nario. We propose a one-round protocol for privacy-presersitgintersection
based on a combination of secret sharing scheme and homomorphyption.

We then show that, with an extra permutation performed by each of codtacte
servers, the cardinality of set intersection can be computed efficieritiyra@to-

cols constructed in this paper are provably secure against a senstlaolversary
under the Decisional Diffie-Hellman assumption.
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1 Introduction

Privacy-Preserving Set Intersection (PPSI) protocolsaf€é] cryptographic techniques
allowing two or more parties, each holding a set of inputgoboatly calculate set op-
erations of their inputs without leaking any informationgach other. Consider that
two companies”; and C, want to discover the consumption pattern of their shared
customers. That is, they want to determine the likelihoad thcustomer buying the
productP; from C is also buying the produd®, from C. To obtain this information,
they would like to perform a set intersection operation agirtprivate datasets. In or-
der to preserve confidentiality of the companies busineds@protect the customers’
privacy, the purchase details of customers must not be leedhere are many other
examples of PPSI applications such as when two hospitatduobra study where they
wish to analyze patients records anonymously.

With the growing demand of databases outsourcing and $gcaguirements im-
posed on its applications, we investigate PPSI in a digibenvironment. We call
this Privacy-Preserving Distributed Set Intersection@BB. To illustrate the security
problem, we consider the following scenario. Assume thabaiger owning a dataset
wishes to outsource it to commercial servers and make itadlaito his clients. If he
outsources his dataset to a single server then he has tatuslythat server and risk
the privacy of his data. Alternatively, he can encrypt hisadat before sending it to the
server but querying and evaluating on such encrypted dateesy inefficient.

In order to protect the dataset privacy at an acceptablaesfig cost, we could let
the provider distribute the datasetdoservers using &, w)-threshold secret sharing



scheme. As such, anty— 1 or less servers should not able to find out the original data.
Now, assume that a client holding her private dataset, Wwisleompute a specific set
operation for the two sets held by the provider and herselréler to do this success-
fully, the client interacts witht or more servers. In our settings, we require that this
interaction is done with minimum possible disclosure obimfiation, that is, the client
learns nothing except the final result of the set operation.

In general, PPSI can be implemented using secure mult-parhputation proto-
cols [3, 23]. However, such solutions are generally inaffiti More specialized proto-
cols on PPSI are needed to improve its efficiency.

Related Work. A specialized private set intersection protocol recentdyealoped by
Freedman, Nissim and Pinkas (FNP) [7] is based on the repadgm of datasets
as roots of a polynomial. To briefly describe Freedman et abhstruction, suppose
CS = (K, Ep, Ds) is a semantically secure public-key homomorphic encryptio
scheme. Assume that Alice has the dataket {a4, ..., a,} and Bob owns the dataset
B={b1,...,bm}

n
To evaluateAn B, Alice constructs the polynomigl(z) = ] (z—a;) = > a;a.
a; €A =0

Then, she encrypts each coefficient/g(«a;) with the homomorphic cryptosystem
C'S such as Paillier's [18] and the standard variant of the El&amcryption scheme
(see [4]). Note that an homomorphic cryptosystem allowsrgygaowing Epi(z) and
Ep(y) to computeEp(z + y) = Epk(x) - Epk(y) and Egc(x - ¢) = Epk(x)¢ wherec
is any constant. The reader is referred to Sect. 2.1 for adbdefinition. Note that we
only use the standard variant of the EIGamal encryptionreehia our protocols due to
our distributed setting.

Thus, given encrypted coefficients, Bob can obliviouslyleate E,(f(b;)) for
each element; € B. Note that ifb; € A then f(b;) = 0. Since Bob does not want
to reveal any other information whén ¢ A, he randomizes all his oblivious evalua-
tions by a random nonzero valueas Ep(f(b;))" = Eu(r - f(b;)). Consequently, if
f(b;) = 0 then the encryption oEp(r - f(b;)) = Epk(0). Otherwise,Egx(r - f(b;))
is some random value. This hides any information about elsria B which are not
in A. To enable Alice to check whethéf also belongs to her dataset, Bob sends all
the cryptogramd®y(r - f(b;) + b;)’s to her. She decrypts them and tests whether any
of the resulting plaintexts are i asDsy(Ep(r- f(b;) +b;)) = b; ifand only if b; € A.

Inspired by FNP, Kessner and Song (KS) [12] propose a solthi@arious privacy-
preserving set operations such as set union, set interaettie cardinality of set in-
tersection and multiplicity testing. Based on a threshalchbmorphic cryptosystem,
Sang et al. gave protocols for the set intersection and stthing problems with an
improved computation and communication complexity in [20]

Protocols for testing the subset relation in a two-partirsgfare also discussed in
[11, 13] while the set disjointness test are introduced &) P. Note that checking the



equality of two datasets is a special case of the privateidisiess problem, where each
party has a single element in the database. Such protocrdsarsidered in [6, 16, 14].

Our Results. Our approach is based on homomorphic encryption and sdwaeng.
This paper builds on recently developed private set opargirotocols FNP and KS
and offers a new construction in two-party private set ojp@na where one dataset is
distributed.

Contrary to the previous two-party PPSI protocols basedhenadne client-one
server setting, we deal with the distributed case relyingemret sharing described ear-
lier. Our construction may be of great value where the pyivafcunencrypted dataset
outsourced in single server is a great concern.

We first compute the shares of the datasBy of the providerP by constructing a
bivariate polynomial and evaluating it atpoints to get the shares. This approach is to
make the share construction more efficient. Our constnuctidy needs to use Shamir’'s
secret scheme [21] a single time to compute the shares offibkewlataset.

t
In our set intersection protocol, we will use our observattwat ) b; (11, —p) =0
j=1

where theb;’s are Lagrange interpolation coefficientsis a value and thg;’s are the
shares of:. Using this relation, one can obliviously check that an &lemis equal tou

by collectingt values(y.; —c) » wherer is a randomizer common to all participants. As
a consequence, if the cliefitinteracts in parallel witlt servers with her whole dataset
De, she is able to compu®r N De.

We then extend our PPDSI solution to a one-round protocdbetiag |Dc N Dp|.
To prevent the client from learning the intersectidp N Dp, each server will permute
the cryptograms it has evaluated obliviously before semttiem back to the clierd.
Thus, after decryption and computation, the client onlyde&D. N Dp|.

Our protocols are secure against an honest-but-curioos-fg@nest) adversary. By
definition, such an adversary follows the steps of the patexecution but tries to learn
extra information from the messages received during itswien. Our homomorphic
encryption is based on the ElGamal cryptosystem [5] whicemantically secure pro-
vided the Decisional Diffie-Hellman (DDH) assumption hoJ&2]. The security of this
building block will imply the security of our protocols. N®that, as in [7, 10], our pro-
tocols reveal the size of the datasets of both the clientlamgiovider. As suggested in
[10], "dummy" elements can be used for dataset padding ierdodhide the size of the
original dataset. But, in this case, the protocols revealgrer bound on the number of
elements in the sets.

The complexity of the communication cost for each of these tenstructions
is O(t|Dp||De| x logyp) bits. The computation cost complexity is
O(t |Dp| |De| x log p) bits for our two protocols. These complexity results are ef-



ficient considering our distributed setting.

Our paper is organized as follows. In Sect. 2, we introdueectigptographic prim-
itive used in our protocols, describe the distributed envinent in which our protocols
are run, and give the adversary model. In Sect. 3, we preseiivo protocols for the
set intersection problem and the cardinality of set intgisa problem. The security
and efficiency of these two schemes are analyzed in thabseat well. Finally, in
Sect. 4, we give concluding remarks and discuss possihlesgfutork.

2 Preliminaries

2.1 Additive Homomorphic Encryption

We will utilize an additive homomorphic public key cryptatgm. Following Adida
and Wikstrom [1], we use the following definition.

Definition 1 ([1]). A cryptosystem with key generatéf, encryption algorithm&yy
and decryption algorithmDg is said to be homomorphic if for every key pair
(pk, sk) € K(1%):

. The message spagd is a subset of an abelian groWf M) written additively.
. The randomizer spade is an abelian group written additively.
. The ciphertext spacgis an abelian group written multiplicatively.

. The group operations can be computed in polynomial timergvk. For every
m,m' € Mandr,r" € R, we haveEp(m, r)®Ep(m’, ") = Egl(m~+m/, r+1r").
5. The cryptosystem is said to be additive if the messageespéads the additive

modular groupZ, for some integen. > 1.

A WN P

When such operations are performed, we require that thetiresgiphertexts be
re-randomized for security. During such a process, thesttpktc of the plaintextn is
transformed inte@’ such that’ is still a valid cryptogram for the messagebut relying
on a different random string fromwis.

In our protocols, the computations are carried out @&gewherep is prime. We as-
sume thap = 2 ¢+ 1 whereg is also prime. We note that all our protocols can be based
on the standard variant of the ElIGamal encryption schenge[#§pwhich recently was
used for constructing privacy-preserving set operatiatquools in [10, 2, 14].

Let g, h and f be three random generators of orden Zg, m1, ma, m € Zq and

corresponding, o, & Zq. We denotes the multiplication ovetZ, x Z, defined as
follows.

Ep(r1,m1) © Ep(ra, mg) := (g" 472, hhH2 fratme) — By (ry 4 rg,my + ma)
If we repeat this operationtimes for a single encryption, then we have

Epk(r,m)¢ = Eg(r,m) © Eg(r,m) ® ... ® Ep(r,m) := Ep(cr,cm)

c times



For simplicity, we useE,(m) to representiy(r, m) in the rest of the presentation as
we assume that there is always a correspondiﬁg Zg.

2.2 Distributed Environment

The players are a clieg, a providerP, andw serversSy, Ss, ..., S,. We assume that
the provider holds a datasBf> = {0, 1, - - - , tn—1} Which is distributed tav servers
using(t, w)-Shamir’s secret sharing scheme.

The providerP does not directly interact withi for the set operations. Instead,
contacts at least servers to perform the requested set operation. Note tisatib-
tributed setting was first proposed by Naor and Pinkas [17].

Our homomorphic encryption system is based on a variant@flal cryptosystem
in which the message space is offgrwhereq > n. For simplicity, we omit modulug
within the computation of shares construction in this secti

Initialization and Share Distribution Phase. P constructs a polynomidf'(y) whose
coefficients represent his dataget, i.e.:

n—1
Fy) = Z piy’
=0

Then,P generates a random masking bivariate polynotHiét, y) as:

t—1n—1

H(I, y) = Z Z aj7ixjyi Whereajyi 3 Zq

j=11i=0

Note that we have{ (0,y) = 0 for anyy. Using the polynomialH (z,y), P defines
another bivariate polynomial)(z,y) = F(y) + H(x,y). Note that we get
n—1
Yy Q(0,y) = F(y). Forl < ¢ < w, P sendsQ(¢,y) := wiey' to server
1=0
t—1
Sy whereVi € {0,...,t — 1} pie = pi + big With b, = > a;; ¢7. The server
j=1
Sy receives a set of shared coefficiefjg ¢, ..., tn—1,} Of the polynomialF(y)
(see [15]).

Secret Reconstruction PhaséNe now show how any-subset of servers can recover
F(y). DenoteSy, , ..., Sy, thet servers contacted by the client. Using Lagrange inter-
polation formula, we know that the coalition 6for more servers can reconstruct the
original polynomialF'(y). Thet polynomialsQ (¢, y) for m € [1,...,t] verify the



following system:

F(y)
t—1 )
Q(élvy) Zaj@ yZ
| Qe y) j=1
14 . = : 1)

Q(étay) =1 i

Z Ajn-1Y

j=1
, ) N J=0,.t=1 _
whereV is thet x ¢t Vandermonde matriX/ := (@;) ) . Since we are only inter-

i=1,...,t

ested in the reconstruction 6f(y), we simply need to know the firstropw; 1 - - - v1¢)
of V! as we have:

S v QY = F)

As a consequence, we obtain: ;
VZ S {0,...,TL7 1} ZUL]‘ [IJZ',ZJ = ,U,Z (2)
j=1

Lemma 1 shows how to construct the first rowl6f! whose proof can be found in
Appendix A.

Lemma 1. We have:

6 t
Vje{l,...,t} V1,5 = H k and Z’Ul’jil
j=1

1§kgt€k =4
k#j

From the previous lemma, we deduce:

t
. U
Vie{l,...,n—1} ,ui:Z H -1 i e,
j=1 | 1<k<t
k#j

Note that our reconstruction technique can be seen as ayartcase of Lagrange
interpolation. Notice that we use the variant of EIGamal ibidefined ovelZ,. Further
in our paper, the computations are being done moghaloed we simplify the notation by
skipping the modulus in the congruences. If we use diffenemdulus, the congruence
will be written in full to avoid confusion.

2.3 Adversary Model

We consider a semi-honest adversary model. Due to spactaats we only provide
the intuition and informal definitions of this model. The deais referred to [8] for a
more complete discussion.



In this model, there is no direct interaction betwe&kandP. Instead the clienf
andw servers are assumed to follow the steps defined in the ptlofbe security
definition is straightforward that only the cliefiiearns the result of the protocol.

Definition 2. (t-secure). A set operation protocol is said to be t-securbéfdlientC,
colluding with at most — 1 out ofw servers learns no information about the provider’s
dataset and the set operation result.

Following [16, 17] our model should meet the following reguments:

Correctness.A protocol is correct if the clienf is able to compute the valid result
from shares obtained fromservers assuming that each server and the client honestly
follow the protocol.

Client’s security. The protocol should guarantee the client privacy, i.e. dreess learn
nothing about either the client inputs or its correspondingiputed output. In other
words, a server is not able to distinguish the client inptasnfuniform random vari-
ables.

Provider’s security. The protocol should not give out to the client any informatidpout
the function held by the provider apart from the output offtiection assuming that no
server colludes with the client. Also, the provider privésy-secure.

3 Protocols for PPDSI

In this section, we address the problem of designing prdéolms PPDSI related is-
sues. Those targeted in this paper are the privacy pregesdh intersection prob-
lem and the cardinality of set intersection problem. Thevigker P holds a dataset
Dp = {po,-- -, tn—1} Which is distributed tav serversSy, ..., S, asin Sect. 2.2. The
dataseD of the clientC is {co, . .., ¢n—1 }. Note that it is assumed thd®.| = m and

|Dp| = n are publicly known. We assume that the provifforoadcasts & Zq—{0}
to thew servers.

3.1 Determination of the Set Intersection

Figure 1 represents a protocol which enables the cietst compute the intersection
Dp N Dc by contacting any-subset of serverS,,, ..., Sy,.

Correctness of the Protocol.n order to prove the soundness of our construction, we
need the following lemma.
Lemma2. Letb; = ] ijg, be the coefficient constructed at Step of Fig. 1.
1<k<t =
k#j

Then:



Input: The clientC has a set of dat®c. Each serveS;(1 < ¢ < w) knows the randon
value A and the shared coefficien{3io ¢, . . ., ptn—1,¢} Of the polynomial F'(y) (whose
coefficients are the elements of the provider’s datasex.

Output: The clientC learnsD¢e N Dp.

1. C generates a new key pdisk, sk) — K(1'),r R Za, then
(@) setsr, — Epk(cy) = (g",h"f~ ) forv e [0,...,m—1].

(b) broadcasts pk, 70,...,Tm—1 }t0 t ServersSy,, ..., S,.
2. Forj =1,...,teach contacted servey,
(@) computest,;; «— (¢, B HEGTON) qor v o€ [0,...,m — 1]
andi € [0,...,n—1].
(b) sends §0,0,5, ---» Ton—1,55 T1,0,4, - -+, Tm—1,n—1,; } 1O C.

3. Forv =0,...,m — 1, the clientC
(a) computesl,, i ; < Dsk(Tv,i,5) fori €[0,...,n—1],5 € [1,...,t].
t

(b) computesl,, ; — [ ] (du,:;)" fori=0,...,n—1,whereb; = [] e,ffej in

j=1 1<k<t

) ] k#j
the Lagrange interpolation formula.

(c) concludesg,, € Dp,if d,; = 1fori € [0,...,n—1]; otherwised, ; is a random
integer.

4. When this process concludéslearnsDe N Dp.

Fig. 1. Privacy-preserving set intersection protocol

Proof. Note that our coefficierti; corresponds to thg" coefficient of the first row of

t
the matrixV ~! denotedv; ; in Sect. 2.2. From Lemma 1, we get that b, = 1. Thus,
j=1
(2) provides our result. ad

In the above protocol, the cliegtfirst encrypts each elemeant of her dataset by
using her public key agp(f~“) for v € [0,...,m — 1] and broadcasts all these
encrypted elements toservers. For each encrypted elemé&hqk(f~°), the servers
Se, (1 < j < t) computeE(f*"4 =)y fori € [0,...,n — 1], and send all the
Ep(f#457¢)y's back toC. The clientC then decrypts thos@ ("4 ~))'s

A_Xt: b; (l"i,lj_cv) . .
and computeg /=! ' for eachi = 0,...,n — 1. Note that ifc, = p,; then

t
> bj (pie, — co) = 0. Therefore, the clien€ learns thatc, € Dp if there exists
j=1

) )\ibj (Hi,lj_cv) ..
i €[0,...,n — 1] such thatf =t = 1. When all the steps are finished,

learnsDc N Dp.

Security of the Construction. The two theorems given below characterize the security
of the set intersection protocol. Their proofs can be foumdppendix B and C.



Theorem 1. Given the set intersection protocol described in Fig. 1 assianing that

the underlying homomorphic encryption is semanticallyusecthen each of the con-
tacted servers cannot distinguish inputs generated bylibet€ from random integers

with a non-negligible probability.

Theorem 2. Assuming that the discrete logarithm problem is hard, thentlC cannot
compute any information about shared coefficiehis ¢, ..., un—1¢} (1 < ¢ < w)
distributed by the provideP. In addition,P’s privacy is t-secure.

3.2 Computation of the Cardinality of Set-Intersection

By introducing a permutation into our PPDSI protocol, wealep an algorithm com-
puting the cardinality of the datasets’ intersectjg® N Dp|. DenotelP,, ,, the set of
all permutations of 1, ..., mn}. Assume thaP has a private permutation functian
chosen uniformly at random frof#,,, ,,, which is given to thev servers. This scheme
is represented as Fig. 2.

Input: The clientC has a set of dat®¢. Each serveS;(1 < ¢ < w) knows the randon
value \, the permutation functior and the shared coefficien{go ¢, - - . , ttn—1,¢} Of the
polynomial F'(y) (whose coefficients are the elements of the provider’s daf2sét
Output: The clientC learns|D¢ N Dp|.

1. C generates a new key pdisk, sk) — K(1%),r R Za, then
(@) setsr, — Epk(co) = (¢g",h"f~ ) forv e [0,...,m—1].
(b) broadcasts pk, 7o,...,Tm—1 }t0 t ServersSy,, ..., S,.
2. Forj =1,...,t each contacted servey,
(@) computest,; «— (P RMEGTO) for v o€ [0,...,m — 1]
andi € [0,...,n —1].

(b) obtains {7r(0,0),5, ---» Tr(On—1)j> Tr(1,0),s -+-» Tr(m—l,m—1)5}
(70,045 +++» TOn—1,55 T1,0,55 «++» Tm—1,n—1,5)
() sends{7x(0,0),55 -+ Tr(0,n—1),5 Tr(1,0),45 -+ -+ Tr(m—1,n—1),j} 10C.

3. Forv' =0,...,m — 1, the clientC
(&) computesl.(v’.),; < Dsk(Tr(vr,iy,5) fori € [0,...,n—1],5 € [1,...,t].
t

(b) computes d.(r:) H(dﬂvgi),j)bj for i € [0,....,n — 1],

j=1
whereb; = J] 5 "f[ in the Lagrange interpolation formula.
1<k<t ® I
k#j
4. When this process conclud€dearns/De N Dp| as itis the number af ., ;y's equal

to 1.

Fig. 2. Privacy-preserving cardinality of set-intersection protocol

The protocol, given in Fig. 2, works in the same way as theibigied set inter-
section protocol with the addition that all servers run tame permutation function



7 on their computed cryptograms. This is to prevent the cliefiom learning the set
intersectiorDe N Dp.

Security of the Construction. The security model as well as the proof for this protocol
are similar to what was done for our set-intersection pritpcesented in Sect. 3.1 as
the permutationr was chosen uniformly at random frafy, ,,.

3.3 Efficiency of our Protocols

In this part, we study the communication and computatiom@fosur two constructions.

Communication Cost.For both protocolsC broadcasts a set af encrypted values to
t servers while each contacted senfgr responds withn n messages. Thus, the com-
plexity of the communication cost for both constructions@ct m n x log, p) bits.

Computation Cost. It should be noticed that operationsZg can be done i (logj p)
bit operations.

For our first protocolC needsn + 2 modular exponentiations amd modular mul-
tiplications to encrypt her datasetyn n decryptions,t m n modular exponentiations
andmn (t — 1) modular multiplications for Lagrange interpolation. Nthet each de-
cryption represents one modular multiplication and one ufexdexponentiation. Each
serverS,, executesn n modular exponentiations and multiplications when proicgss
its shares. So, this protocol us@ét m n x log, p) modular multiplications considering
that a single modular exponentiation takes at mast,(p — 1)| modular multiplica-
tions using the Fast Exponentiation algorithm presentétidp

The cost of our second protocol is the same as the first onesg pkecutions of the
permutationr. Assuming thatr is represented by its binary permutation matrib,
each of these queries has a negligible cost sincés a simple reordering of its inputs
(M, has a single coefficient equal ter row).

Therefore, the complexity of computation cost of these tvemstructions is
O(tmn x logj p) bits.

4 Conclusion and Future Work

In this paper, we have proposed a protocol for the priva@ggnving set intersection
computation in a distributed environment. Our constructi@as based on Shamir's se-
cret sharing scheme and homomorphic encryption schemb.ddfitconstruction, each
server only held the shares of the original provider dataset consequently the pri-
vacy of that dataset was protected. Moreover, we have shoatnusing a permutation
7, we could efficiently compute the cardinality of the set ia&etion.

Further research will be to focus on providing a solutiorhef dbove distributed set
intersection and the cardinality of set intersection peaid against an active adversary.
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A Proof of Lemma 1

We havet participants and each of them has a share. Correspondihgtbints, the
Vandermonde matri¥ is constructed as follows:

t—1
1xg ... x;)

V= :
. t—1
Lz ...z

Since the points are pairwise distingt,is invertible. LetV ~! = (v; ;)1<; j<:. By tak-

t
ing first row of V—! and first column of/’, we obtain}_v; ; = LasV~! x V = Id;
j=1
where Id denotes the x t identity matrix.

Thet polynomialsP; (z), ..., P:(z) are defined a®j(z) := J[ ——% for
1<k<t 'k 7Y
. . k#j
any1l < j < t. Note that these polynomials have a nice property, namely

, 1 ifj=e
Vi€l ...t Pj(xie):{o otﬁerwise

t
Those polynomials also can be rewritten @g:c [1,...,t] Pj(z) = Y a;x 2*7!
k=1

where eachu; ;. € Zy.

We now build & x ¢ matrix:

ail a2,1 - Gt1

Art Aot - Gt



Thejt" column of D represents the coefficients Bf(x). We claim thatV ~! = D. It
is sufficient to prove tha’ x D is a identity matrix.

LetV x D =W = (wey)1 <<+ Wefixe,n e [l,..., 1 the coefficientw ,, is
1<n<t
obtained by using thes'* row of V along with the n'* column of D as

t
Wepy = D x}?fl an m. Notice thatw, , = P,(z;_). Using the previous property of

m=1
the polynomial, we obtain

1 ifnp=g¢
Yen =30 otherwise

This property demonstrates that is a identity matrix, which proves th&t—! = D as
the inverse is unique.

Since the sum of the coefficients of the first row ! is 1, we get
t t
>wv,; = >, aj1 = 1. Notice thata,; is the constant coefficient oP;(x),
j=1 j=1
soVj e [1,...,t], a1 = Pj(0) = [] % Combining the previous two find-

xT xT
1<k<t k 7Y

. k#j
ings, we can conclude that:

B Proof of Theorem 1

Denote(g), the subgroup oZ; generated by. By definition, the order ofg) is g.

The clientC sends the group of servers the encrypted valudsu(co), ...,
Epk(¢m—1) Where:

Vi € {07...,m— 1} Epk(ci) — (g’!“7h7‘ f—Ci)
Thus, the group of servers obtains:
g R fTeo, R fTOmt

The elementg andh are two generators of the multiplicative gro(p. Asr is chosen
uniformly at random ovelg), ¢" andh” are two elements uniformly distributed over

(9)-



As thec;’s are all distinct, we getf ~¢ % f~% modp wheni # ;. If A" £ 1 modp
then each elemerit” f~< modp is uniformly distributed ovetg) and we have:

Pr(h" £ 1 modp) = Pr(r 2 0 modg) =1 — é

So, we deduce thatf” f~<0 ... A" f~¢m-1 arem pairwise distinct elements uniformly
distributed overg) with probability 1 — % as the same valueis used for each of these
elements.

As the discrete logarithm problem is assumed to be hardZy@pDH assumption),
the group oft servers cannot computefrom ¢” with non-negligible probability in
polynomial time as a function of the bit size @f Therefore, given the above analysis,
we deduce that thieservers cannot distinguish theelements,” f—c ... A" f~cm-1
from m distinct elements ofg) drawn uniformly.

C Proof of Theorem 2

We first consider that contacts servers. At the end of Stepb, we have:

N by (e, —co)
Voel0,...m—1} Yiel0,...n—1} dy=f = 7

Using the proof of Lemma 2, we get:

()
Voe{0,....m—1} Vie{0,...,n—1} dy;=f \\=

Using that lemma, we deduce that, for eagtirom D¢, we have:
t
CUEDP<:>3’L'0€{O,...,TL—1} ijuiofj —c, =0

j=1

Now, assume that, is not an element dbp. We have:
t

Vie{0,...,n—1} ij/j,i}gj — ¢, Z0modg

j=1

Since\ has been chosen uniformly at random fré@igj— {0}, we deduce that the ele-
t

ment\ bj iie; | — co | is uniformly distributed oveZy — {0} as well. As the

Jj=1
discrete logarithm problem is assumed to be hard @ygiDDH assumption), this ex-
ponent is not computable in polynomial time with non-neiplig probability byC and
thus the coefficientd, o, ..., d, ,—1 appeared to be uniformly drawn frofp) to the
clientC asf generates that multiplicative group.



We now assume that only contacted — 1 serversSy,,...,S,,_,. In this situa-
tion, the polynomiaF'(y) representing the provider dataggt cannot be reconstructed
uniquely identically to the secret polynomial ofiaw)-Shamir secret sharing scheme
when onlyt — 1 participants work together. As a consequence, the missirticipant
involves thatF'(y) can takep equally probable values where a single one is correct.
Thus,C cannot recoveD. N Dp even if he colludes with — 1 servers as he cannot
reconstruct'(y) and use (2) at Stepb.



