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1 Introduction

Let L = F2n , the finite field with 2n elements for some positive integer n.
A function f : L −→ L is said to be almost perfect nonlinear (APN) if the
number of roots in L of the polynomial

f(x + a) + f(x) + b

is at most 2, for all a, b ∈ L, a 6= 0. If the number of roots in L is at most
δ, we say f is differentially δ-uniform. Thus APN is the same as differentially
2-uniform. A differentially 1-uniform function is also called a perfect nonlinear
function; these do not exist in characteristic 2.

APN functions were introduced in [8] by Nyberg, who defined them as the
mappings with highest resistance to differential cryptanalysis. Since then many
papers have been written on APN functions, although not many different
families of such functions are known. Indeed, a recent result of Voloch [10]
shows that APN functions asymptotically have density 0 in the set of all
functions, in a certain sense.

Two functions f, g : L −→ L are called extended affine (EA) equivalent if
there exist affine permutations A1, A2 and an affine map A such that g =
A1 ◦ f ◦A2 +A. The differential uniformity of a function is an invariant of EA
equivalence. However, a bijective function is not necessarily EA equivalent to
its inverse, even though they have the same differential uniformity.

Until recently, all known APN functions were EA equivalent to one of a short
list of monomial functions, namely the Gold, Kasami-Welch, inverse, Welch,
Niho and Dobbertin functions. For some time it was conjectured that this list
was the complete list of APN functions up to EA equivalence.

A more general notion of equivalence has been suggested in [5], which is re-
ferred to as Carlet-Charpin-Zinoviev (CCZ) equivalence. Two functions are
called CCZ equivalent if the graph of one can be obtained from the graph of
the other by an affine permutation of the product space. Differential unifor-
mity and resistance to linear, differential and algebraic attacks are invariants
of CCZ equivalence, and any permutation is CCZ equivalent to its inverse.

EA equivalence is a special case of CCZ equivalence. In [3], Proposition 3,
the authors express necessary and sufficient conditions for EA equivalence
of functions in terms of CCZ equivalence and use this to construct several
examples of APN functions that are CCZ equivalent to the Gold functions
but EA inequivalent to any monomial function. This showed that the original
conjecture is false. The new question was whether all APN functions are CCZ
equivalent to one on the list.
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In 2006 a sporadic example of a binomial APN function that is CCZ inequiv-
alent to any power mapping was given in [7]. A family of APN binomials on
fields F2n where n is divisible by 3 but not 9 was presented in [1]. In [2] these
have been shown to be EA inequivalent to any monomial function, and CCZ
inequivalent to the Gold or Kasami-Welch functions. Dillon [6] presented a
family of hexanomials whose members are differentially 4-uniform. Motivated
by this family, we introduce a new class of APN functions on fields of order
22k where k is odd.

Let k and s be a pair of odd coprime integers. The polynomials we have
discovered are

bx2s+1 + b2k

x2k+s+2k

+ cx2k+s+2s

+
k−1∑
i=0

rix
2i+k+2i

(1)

where b, c ∈ F22k , and ri ∈ F2k for each i. These polynomials have coefficients
in F22k , and have up to k+3 nonzero coefficients, depending on the choice of the
ri, some or all of which could be 0. They are motivated by Dillon’s polynomials,
and are defined on different fields to the binomials in [1] in general.

Let Tr denote the trace map from L to F2. The Fourier transform of any
real-valued function F defined on L is the function F̂ defined by

F̂ (a) =
∑
x∈L

F (x)(−1)Tr(ax)

for a ∈ L. The Fourier spectrum of F is the set {F̂ (a) : a ∈ L} of values of F̂ .

To a Boolean function f : L −→ F2 we associate the real-valued function
F = (−1)f . When we refer to the Fourier spectrum of f , we mean the Fourier
spectrum of the associated function F = (−1)f . For arbitrary f , computing
its Fourier spectrum is often difficult.

Bent functions were introduced in [9] by Rothaus in 1976 as Boolean functions
having maximal distance to the set of all affine Boolean functions (the first
order Reed-Muller code). Equivalently, the bent functions on L are precisely

those whose Fourier spectrum is {±
√
|L|}.

In Section 2 we prove that the trace of (1) is a bent function. In Section 3 we
show that if b, c /∈ F2k , and b is not a cube, then a polynomial of the form
(1) is APN. In a later article we will discuss the inequivalence of these APN
functions to power mappings.

The existence of a bijective APN function on F2n for n even is an open question.
We remark that the polynomials (1) are not bijective. It is easy to verify that
f(αβ) = f(αβ + β) where α2k

+ α + 1 = 0 and β = b−(2s+1).
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Notation: For the remainder, let n be a positive integer. Let k and s be odd
relatively prime integers. Let L and K be the finite fields of orders 2n and 22k

respectively.

2 Proof of Bent Property

An interesting property of the polynomials

f(x) = bx2s+1 + b2k

x2k+s+2k

+ cx2k+s+2s

+
k−1∑
i=0

rix
2i+k+2i

is that Tr(f(x)) is a bent function on K. We include a proof below using
standard techniques.

Theorem 1 Let

f(x) = bx2s+1 + b2k

x2k+s+2k

+ cx2k+s+2s

+
k−1∑
j=0

rjx
2k+j+2j

be a function on K with c /∈ F2k and rj ∈ F2k for each j. Then the Boolean
function Tr(f(x)) is bent.

Proof: We need to show that the Fourier transform F̂ (r), of F (x) = Tr(f(x)),
is limited to the two values ±2k.

By definition
F̂ (r) =

∑
x∈K

(−1)Tr(rx+f(x)).

Squaring gives

F̂ (r)
2

=
∑
y

∑
x

(−1)Tr(rx+f(x)+ry+f(y)).

Replacing y with x + u we have

F̂ (r)
2

=
∑
u

∑
x

(−1)Tr(ru+f(x)+f(x+u)) =
∑
u

(−1)Tr(ru+f(u))
∑
x

(−1)Tr(∆u(x)),

where ∆u(x) = f(u) + f(x) + f(x + u).

Since r2k

j = rj for each j, we may write

∆u(x) = c(x2k+s

u2s

+ x2s

u2k+s

) + b(x2s

u + xu2s

) + (b(x2s

u + xu2s

))2k

+

k−1∑
j=0

(
rjx

2j+k

u2j

+ (rjx
2j+k

u2j

)2k
)
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so taking trace gives the simplification

Tr(∆u(x)) = Tr(c(x2k+s

u2s

+ x2s

u2k+s

)).

Simplifying gives

F̂ (r)
2
=
∑
u

(−1)Tr(ru+Au2k+1)

(∑
x

(−1)Tr(xL(u))

)

where A = c2−s

+
k−1∑
j=0

r2−j

j , L(u) = (c + c2k
)2−s

u2k
. Since c /∈ F2k , L(u) 6= 0

except when u = 0. This means that the inner sum is 0 except when u = 0.

Hence F̂ (r)
2

= 22k and the proof is complete. tu

In [4] it is noted that Tr(vf(x)) will be bent for at least 2
3
(2n − 1) values of v

for any quadratic APN function on L. The same argument as in the proof of
the previous theorem shows that Tr(vf(x)) is bent for v ∈ F2k .

3 Proof of APN Property

We shall now prove that the polynomials (1) are APN under certain conditions.

Theorem 2 Let f be the function on K defined by

f(x) = bx2s+1 + b2k

x2k+s+2k

+ cx2k+s+2s

+
k−1∑
i=0

rix
2i+k+2i

where b, c /∈ F2k , b is not a cube, and ri ∈ F2k for each i. Then f is APN over
K.

Proof: To prove that f is APN we must show that the equation

f(x) + f(x + q) = p (2)

has at most two solutions for all p ∈ K and all q ∈ K∗.

Equation 2 gives the expression
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bx2s+1 + b2k

x2k+s+2k

+ cx2k+s+2s

+
k−1∑
i=0

rix
2i+k+2i

+ b(x + q)2s+1

+b2k

(x + q)2k+s+2k

+ c(x + q)2k+s+2s

+
k−1∑
i=0

ri(x + q)2i+k+2i

= p.

Replacing x with xq and rearranging we obtain

Ax + Bx2k

+ Cx2s

+ Dx2k+s

+
k−1∑
j=1

Rj(x
2k+j

+ x2j

) = E (3)

where

A = r0q
2k+1 + bq2s+1, B = r0q

2k+1 + b2k
q2k+s+2k

, C = bq2s+1 + cq2k+s+2s
,

D = b2k
q2k+s+2k

+ cq2k+s+2s
, E = f(q) + p, and Rj = rjq

2k+j+2j
,

for each j.

As Equation (3) is affine, for the purposes of counting the number of its
solutions we may assume E = 0.

Define

∆(x) := Ax + Bx2k

+ Cx2s

+ Dx2k+s

+
k−1∑
j=1

Rj(x
2k+j

+ x2j

).

Then f is APN on K if and only the equation ∆(x) = 0 has at most two
solutions in K. Obviously 0 is a solution of ∆(x) = 0, and 1 is a solution of
∆(x) = 0 because ∆(1) = A + B + C + D = 0. We will now show there are
no other solutions in K.

Consider

∆(x) + (∆(x))2k

= (C + D2k

)(x2s

+ x2k+s

) = (c + c2k

)q2k+s+2s

(x2s

+ x2k+s

).

As q 6= 0 and c /∈ F2k , the above expression with ∆(x) = 0 implies x2s
+x2k+s

=
0, which means x ∈ F2k . We can now write

∆(x) = (A + B)x + (C + D)x2s

= (A + B)(x + x2s

) = 0.

Since (2k, s) = 1 it remains to show that A+B 6= 0. Suppose that A+B = 0.
Then

bq2s+1 + b2k

q2k+s+2k

= 0,
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which implies
b2k−1 = q(2k+s−1)(2k−1).

Using the fact that 3 divides 2t − 1 if and only if t is even, and recalling that
we chose b not to be a cube, we see that the left-hand side of this equation is
not a cube. As k + s is even, the right hand side of this expression is a cube.
Hence A + B 6= 0.

Acknowledgement: We thank John Dillon for sharing the slides from his
talk at Banff.
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