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Abstract. The recent algebraic attacks have received a lot of atten-
tion in cryptographic literature. The algebraic immunity of a Boolean
function quantifies its resistance to the standard algebraic attacks of
the pseudo-random generators using it as a nonlinear filtering function.
Very few relevant results have been found concerning its relation with
the other cryptographic parameters especially with the standard nonlin-
earity or with the r-th order nonlinearity. As recalled by Carlet in his
Crypto’06 paper, many papers have illustrated the importance of the
rth-order nonlinearity profile (which includes the first-order nonlinear-
ity). The role of this parameter relatively to the currently known attacks
has been also shown for block ciphers. Recently, two lower bounds in-
volving the algebraic immunity on the rth-order nonlinearity have been
shown by Carlet and Carlet et al. None of them improves upon the other
one in all situations. In this paper, we prove a new lower bound on the
rth-order nonlinearity profile of Boolean functions, given their algebraic
immunity, that improves significatively the previous lower bounds.

Keywords. stream cipher, block cipher, algebraic attack, Boolean func-
tion, algebraic immunity, algebraic degree, higher order nonlinearity, anni-
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Introduction

The Boolean functions defined on the vector space Fn
2 of binary vectors of

a given length n are used in the pseudo-random generators of stream ciphers.
The generation of the keystream consists, in many stream ciphers, of a linear
part, producing a sequence with a large period, usually composed of one or
several LFSR’s, and a nonlinear combining or filtering function f which
produces the output, given the state of the linear part. The most usual
representation of an n-variable Boolean function f is called the algebraic
normal form, that is, the representation of f as a multivariate polynomial
over F2. This representation is unique and its degree, that we denote by
deg(f), is called the algebraic degree of f .

Stream ciphers, which are very efficient, in particular in hardware, have
been the objects of a lot of cryptanalyses; resist those attacks, different
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design criteria have been proposed. One of the most basic requirements
concerning a Boolean function f used in cryptosystems is to be of high
algebraic degree.

Recently, a new kind of attacks drawn from an original idea of Shan-
non [13] have emerged that are called algebraic attacks [10]. They pro-
ceed by modelling the problem of recovering the secret key by means of an
over-defined systems of multivariate nonlinear equations of algebraic degree
deg(f). Those attacks can be used even if the algebraic degree of f is high.
The core of those attacks is to find out low degree Boolean functions g 6= 0
and h such that fg = h. Meier, Pasalic and Carlet [11] have shown that
it is equivalent to the existence of low degree annihilators of f , that is, of
n-variable Boolean functions g such that fg = 0 or (1⊕ f)g = 0. The min-
imum degree of such g is often called the algebraic immunity of f , that we
denote it by AI(f), and it must be as high as possible (the maximum being
equal to the minimum between deg(f) and

⌈
n
2

⌉
). We know that having a

high algebraic immunity is not only a necessary condition for a resistance to
standard algebraic attacks but also for a resistance to fast algebraic attacks.

Very little is known about the relation between the algebraic immunity of
a Boolean function and its other cryptographic parameters. The question of
finding Boolean functions with a high algebraic immunity that are balanced
remains open (a fortiori if we look forward a Boolean function with a high
order of resiliency). Carlet introduced in [1] the notion of nonlinearity profile
of Boolean functions, which is the sequence whose rth-order term, for r from
r to n− 1, equals the rth-order nonlinearity of the function that we denote
by nlr(f) and that is, the minimum distance between f and all n-variable
Boolean functions of algebraic degrees at most r. Several papers [4, 6, 7,
8, 12] have shown the role played by this parameter in relation to some
cryptanalyses (note that, contrary to the (first order) nonlinearity, it must
have low value for allowing the attacks to be realistic). Also, as explained in
[1], the knowledge of lower and upper bounds on the rth-order nonlinearity
simplifies the question of designing cryptographic Boolean function meeting
all necessary criteria. The values of the nonlinearity profile are known for
very few functions and these functions have little cryptographic interest.

A lower bound has been established on the (first-order) nonlinearity of a
Boolean functions f with given algebraic immunity [9], and that we denote
nl(f) instead of nl1. Lobanov [9] proved that nl(f) ≥ 2

∑AI(f)−2
i=0

(
n−1

i

)
for

every n-variable Boolean functions. Moreover, by constructing a family of
Boolean function achieving the equality nl(f) = 2

∑AI(f)−2
i=0

(
n−1

i

)
, he proved

that this lower bound cannot be improved further . Lobanov’s result has
been extended to the rth-order nonlinearity nlr(f) of an n-variable Boolean
function f in two different lower bounds [1, 2]. None of the two lower
bounds improves upon the other one in all situations. Basically, those lower
bounds say that the rth-order nonlinearity of an n-variable Boolean function
is greater than or equal to max

( ∑AI(f)−r−1
i=0

(
n
i

)
, 2

∑AI(f)−r−1
i=0

(
n−r

i

))
. In
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this paper, we prove a lower bound that improves further the lower bound
of [2] for all orders and the lower bound of [1] for the first orders (which are
the most important from a practical point of view) : for every n-variable
Boolean function f , we have nlr(f) ≥

∑AI(f)−r−1
i=0

(
n
i

)
+

∑AI(f)−r−1
i=AI(f)−2r

(
n−r

i

)
.

The paper is organized as follows. Firstly, we begin with fixing our main
notation in Section 1. Secondly, we study in Section 2 the dimension of
the annihilators with prescribed algebraic degrees of Boolean functions with
given algebraic degrees. The results of this Section are crucial to obtain
in Section 3 a new lower bound on the rth-order nonlinearity of a Boolean
function of given algebraic immunity (Theorem 7).

1. Preliminaries

Let n be any positive integer. In this paper, we shall denote by Bn the set
of all n-variable Boolean functions over Fn

2 . Any n-variable Boolean function
f (that is an application from Fn

2 to F2) admits a unique algebraic normal
form, that is, a representation as a multivariate polynomial over F2

f(x1, . . . , xn) =
⊕

I⊆{1,...,n}

aI

∏
i∈I

xi,

where the aI ’s are in F2. The terms
∏

i∈I xi are called monomials. The
algebraic degree deg(f) of a Boolean function f equals the maximum degree
of those monomials whose coefficients are nonzero in its algebraic normal
form. A slightly different form for the algebraic normal form is f(x) =⊕

u∈Fn
2

auxu, where au ∈ F2 and where xu =
∏n

i=1 xui
i . Then deg(f) equals

max
au 6=0

wt(u), where wt(u) denotes the Hamming weight |{i = 1, . . . , n | ui =

1}| of u. Given a positive integer r, we make an abuse of notation and denote
by RM(r, n) the set of all n-variable Boolean functions of algebraic degrees
at most r, that is, the so-called r-th order Reed-Muller code of length 2n.
We recall that RM(r, n) is a vector subspace over F2 of dimension

∑r
i=0

(
n
i

)
.

The Hamming weight wt(f) of a Boolean function is the size of its support
{x ∈ Fn

2 | f(x) = 1} that we denote by supp(f). The Hamming distance
between two n-variable Boolean functions is the Hamming weight of f ⊕ g,
that is dist(f, g) = |{x ∈ Fn

2 | f(x) 6= g(x)}|.

Definition 1 (rth-order nonlinearity). Let f be an n-variable Boolean func-
tion. Let r be a positive integer such that r ≤ n. The r-th order nonlinearity
of f is the minimum Hamming distance between f and all n-variable Boolean
functions from RM(r, n). We shall denote the r-th order nonlinearity of f
by nlr(f).

The first-order nonlinearity of f is simply called the nonlinearity of f
and is denoted by nl(f). Clearly we have nlr(f) = 0 if and only if f has
degree at most r. So, the knowledge of the nonlinearity profile (i.e. of all the
nonlinearities of orders r ≥ 1) of a Boolean function includes the knowledge
of its algebraic degree. It is in fact a much more complete cryptographic
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parameter than are the single (first-order) nonlinearity and the algebraic
degree. Very little is known on nlr(f). The best known upper bound on
nlr(f) has asymptotic version [3] :

nlr(f) ≤ 2n−1 −
√

15
2

(1 +
√

2)r−22
n
2 + O(nr−2)

for every n-variable Boolean functions f .
The algebraic immunity [11] of a Boolean function f quantifies the re-

sistance to the standard algebraic attack of the pseudo-random generators
using it as a nonlinear function. It is defined as follows.

Definition 2 (Algebraic immunity). Let f be an n-variable Boolean func-
tion. An n-variable Boolean function g is said to be an annihilator of f if
the product f · g is null (that is, the support of g is included in the support
of 1⊕ f). We denote by An(g) the vector space of all annihilators of g The
algebraic immunity of f is the minimum algebraic degree of all the nonzero
annihilators of f or of f ⊕ 1. The algebraic immunity of f , is denoted by
AI(f).

Clearly, the algebraic immunity of a Boolean function f is less than or
equal to its algebraic degree since 1 ⊕ f is an annihilator of f . As shown
in [10], we have AI(f) ≤ dn

2 e. It was shown in [5] that the Hamming
weight of a Boolean function f with given algebraic immunity satisfies :∑AI(f)−1

i=0

(
n
i

)
≤ wt(f) ≤

∑n−AI(f)
i=0

(
n
i

)
. In particular, if n is odd and f has

optimum algebraic immunity then f is balanced.

2. Some results on the dimension of the vector space of
prescribed degree annihilators of a Boolean function

An important parameter for evaluating the complexity of algebraic attacks
on the systems using this function is the number of linearly independent low
degree annihilators of a given Boolean function g and of the function g ⊕ 1.
We shall see in the next Section that it plays also an important role in
relation to the r-th order nonlinearity.

Definition 3. Let g be a Boolean function and let k be a positive integer.
We denote by Ank(g) the vector space of those annihilators of degrees at
most k of g and by dk,g the dimension of Ank(g).

The dimension dk,g is an affine invariant, that is, we have dk,g = dk,g◦A for
every affine automorphism A of Fn

2 (this comes from the affine invariance
of the algebraic degree and the fact that p is an annihilator of g if and
only if p ◦ A is an annihilator of g ◦ A). Little is known on the behavior
of dk,g. Carlet [1] proved the following upper bound on dk,g : for every
n-variable Boolean function g of algebraic degree at most r, we have dk,g ≤∑k

i=0

(
n
i

)
−

∑k
i=0

(
n−r

i

)
. This upper bound is achieved by the indicators of

an (n − r)-dimensional affine subspace of Fn
2 for which the dimension dk,g

is exactly equal to
∑k

i=0

(
n
i

)
−

∑k
i=0

(
n−r

i

)
. We can derive from this upper
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bound a lower bound on dk,g. Let us introduce some notation before. For
every n-variable Boolean function g and every positive integer k, we denote
by Mulk(g) the vector space of all n-variable Boolean functions p that can
be written as p = gh where h is of algebraic degree at most k. There exists
a simple relation between dk,g and dim Mulk(g).

Lemma 1. Let g be an n-variable Boolean function of algebraic degree r. Let
k be any positive integer less than n. Then dim Mulk(g) =

∑k
i=0

(
n
i

)
− dk,g.

Proof. Let φg be the linear map from RM(k, n) to Mulk(g) which maps
h to gh. Clearly, this map is onto and its kernel equals Ank(g). Thus,∑k

i=0

(
n
i

)
= dim Im(φg) + dim ker(φg) = dim Mulk(g) + dk,g. �

The upper bound of [1] and Lemma 1 will lead us to a lower bound on
dk,g achived by some classes of Boolean functions. More precisely,

Lemma 2. Let g be an n-variable Boolean function of algebraic degree at
most r. Then, for every positive integer k, one has

dk,g ≥
k−r∑
i=0

(
n− r

i

)
If g is the complement of an indicator of an (n − r)-dimensional affine
subspace of Fn

2 then dk,g =
∑k−r

i=0

(
n−r

i

)
.

Proof. Let g be an n-variable Boolean function of algebraic degree at most
r. We can assume that k ≥ r (indeed otherwise the lower bound is triv-
ial). Take h ∈ Anr(g). Now, according to Lemma 1, dim Mulk−r(h) =∑k−r

i=0

(
n
i

)
−dk−r,h ≥

∑k−r
i=0

(
n−r

i

)
since dim Mulk−r(h) ≥

∑k−r
i=0

(
n−r

i

)
. More-

over, we have the inclusion Mulk−r(h) ⊆ Ank(g). Therefore, it holds that
dk,g ≥ dim Mulk−r(h) ≥

∑k−r
i=0

(
n−r

i

)
. This latter inequality becomes an

equality whenever g is the complement of an (n− r)-dimensional affine sub-
spaces of Fn

2 . Indeed, it has been shown in [1] that dk,g is equal to
∑k−r

i=0

(
n−r

i

)
for such Boolean functions. �

We prove a result that we shall use to improve the lower bound of [1, 2].
To this aim, we need to introduce some additional notation. We shall use
the word partial ordering � on Fn

2 defined as follows :

u, v ∈ Fn
2 , (u � v) ⇐⇒ (supp(u) ⊂ supp(v))

Given an element u of Fn
2 , we call the support of u, that we denote by

supp(u), the subset {i ∈ {1, . . . , n} | ui = 1}. The Hamming weight of
u, denoted by wt(u), is the cardinality of supp(u). Moreover, for every
pair (u, v) of elements of Fn

2 , we denote by u ∨ v the element of Fn
2 defined

as: ∀i = 1, . . . , n, (u ∨ v)i = max(ui, vi), that is, the element of Fn
2 whose

support is the union of the two supports supp(u) and supp(v). We say that
an element u of a subset Π of Fn

2 is a maximal element of Π with respect to
the word partial ordering � if : v ∈ Π, u � v ⇒ v = u. For every element
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u of Fn
2 , we denote by ū the bitwise complement of u, that is, the element

of Fn
2 defined by : ∀i ∈ {1, . . . , n}, ūi = 1 ⊕ ui. We begin with proving the

following key Lemma.

Lemma 3. Let g be an n-variable Boolean function whose algebraic normal
form is : ∀x ∈ Fn

2 , g(x) =
⊕

u∈Fn
2

auxu. Set Π = {u ∈ Fn
2 | au = 1}. Let

u a maximal element of Π with respect to the word partial ordering �. Set
Θ = {v ∈ Fn

2 | v � ū}. Then {xv · g, v ∈ Θ} is a linearly independent family
of Bn.

Proof. Let (cv)v∈Θ be a collection of elements of F2 such that : ∀x ∈ Fn
2 ,⊕

v∈Θ cvx
vg(x) = 0. Replacing g by its algebraic normal form yields to :

∀x ∈ Fn
2 ,

⊕
(u,v)∈Π×Θ cvx

u∨v = 0. We now prove that, for every v ∈ Θ, the
monomial xu∨v appears only once in the sum

⊕
(u,v)∈Π×Θ cvx

u∨v. To this
end, let us fix v ∈ Θ and let us look forward v′ ∈ Θ and u ∈ Π such that
u∨v′ = u∨v. This requires that u � u∨v′. The support of u being disjoint
from the support of v′, we must have u � u which is possible only if u = u
because u is a maximal element of Π with respect to the word ordering �.
The equality u∨v′ = u∨v becomes u∨v′ = u∨v from which we deduce that
v = v′ (since they are both disjoint from u). We hence prove that, for every
v ∈ Θ, the monomial xu∨v appears only once in the sum

⊕
(u,v)∈Π×Θ cvx

u∨v

which vanishes for every word x in Fn
2 . That requires that x 7→ cvx

u∨v is
null on Fn

2 yielding to cv = 0. The element v being arbitrary, that proves
that the collection {xv · g, v ∈ Θ} is a linearly independent family of Bn. �

We then use the preceding lemma to show the following result.

Proposition 4. Let k be a positive integer. Let g be an n-variable Boolean
function of algebraic degree at most r whose algebraic normal form is : ∀x ∈
Fn

2 , g(x) =
⊕

u∈Fn
2

auxu. Set Π = {u ∈ Fn
2 | au = 1}. Let u a maximal

element of Π with respect to the word partial ordering �. Then
(1) The vector space Ank(g ⊕ 1) is contained in Mulk(g).
(2) dim Mulk(g) ≥

∑k
i=k−wt(u)+1

(
n−wt(u)

i

)
+ dk,1⊕g.

(3) If g is the complement of the indicator of an (n − r)-dimensional
affine subspace of Fn

2 then dim Mulk(g) =
∑k

i=k−r+1

(
n−r

i

)
+ dk,1⊕g.

Proof.
(1) Every annihilator h of 1⊕ g satisfies gh = h and thus is an element

of Mulk(g).
(2) The algebraic normal form of g can be rewritten as : ∀x ∈ Fn

2 ,
g(x) =

⊕
u∈Π xu.

Let u be a maximal element of Π with respect to the word partial
ordering �. Define Θ = {v ∈ Π | v � ū}. Let Σ be the subset
of Θ defined by Σ = {v ∈ Θ | k − wt(u) + 1 ≤ wt(v) ≤ k}. Now,
{xv · g, v ∈ Σ} is a subfamily of {xv · g, v ∈ Θ} which is a linearly
independent family of Bn according to Lemma 3. Thus, {xv · g, v ∈



7

Σ} is also a linearly independent family of Bn. Moreover, every
element of this family belongs to Mulk(g) since, for every v ∈ Σ, we
have that wt(v) ≤ k.

Now, let V be the vector subspace spanned by all the Boolean
functions xvg where v ranges over Σ. The vector subspace V is by
construction a vector subspace of Mulk(g) and its dimension over
F2 equals the cardinality of the family {xv · g, v ∈ Σ}, that is, its
dimension equals

∑k
i=k−wt(u)+1

(
n−wt(u)

i

)
.

We are now going to prove that the vector sum V + Ank(1 ⊕ g)
is a direct sum of Mulk(g). Every element of V is of the form⊕

(u,v)∈Π×Σ cvx
u∨v where (cv)v∈Σ is any collection of elements of

F2. The algebraic degree of such a Boolean function is at least k+1.
Indeed, for every v ∈ Σ, the monomial xu∨v appears only once in the
sum

⊕
(u,v)∈Π×Σ cvx

u∨v (see proof of Lemma 3) and is of algebraic
degree wt(u)+wt(v) ≥ k+1. Hence, the intersection V ∩Ank(1⊕g)
is reduced to {0} because every non null element of V is of algebraic
degree at least k + 1 while every non null element of Ank(1 ⊕ g)
is of algebraic degree at most k. This proves that the vector sum
V + Ank(1 ⊕ g) is a direct sum. This implies that dim Mulk(g) ≥
dim V +dim Ank(1⊕g) = dim V +dk,1⊕g =

∑k
i=k−wt(u)+1

(
n−wt(u)

i

)
+

dk,1⊕g.
(3) Let g be the complement of an (n − r)-dimensional affine subspace

of Fn
2 . We have that dk,1⊕g =

∑k
i=0

(
n
i

)
−

∑k
i=0

(
n−r

i

)
and dk,g =∑k−r

i=0

(
n−r

i

)
. According to Lemma 1, dim Mulk(g) =

∑k
i=0

(
n
i

)
−

dk,g =
∑k

i=0

(
n
i

)
−

∑k−r
i=0

(
n−r

i

)
=

∑k
i=0

(
n
i

)
−

∑k
i=0

(
n−r

i

)
+

∑k
i=k−r+1

(
n−r

i

)
=

dk,1⊕g +
∑k

i=k−r+1

(
n−r

i

)
.

�

We can deduce from the preceding Proposition the following lower bound
on the difference dim Mulk(g)− dk,1⊕g.

Corollary 5. Let k be a positive integer. Then, for every n-variable Boolean
function g of algebraic degree at most r, we have

dim Mulk(g)− dk,1⊕g ≥
k∑

i=k−r+1

(
n− r

i

)

Proof. Assume that the algebraic normal form of g is : ∀x ∈ Fn
2 , g(x) =⊕

u∈Fn
2

auxu. Set Π = {u ∈ Fn
2 | au = 1}. The algebraic degree of g equals

r then there exists at least one maximal element u of Π with respect to the
word partial ordering � whose hamming weight equals r. We then deduce
the result from Proposition 4. �
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Remark 1. Proposition 4 says that, for every w ≤ r,

dim Mulk(g)− dk,1⊕g ≥
k∑

i=k−w+1

(
n− w

i

)
if the algebraic normal form of g contains a monomial xω, with wt(ω) = w,
which is not contained in any another monomial of g. Now, we have

k∑
i=k−w+1

(
n− w

i

)
≥

k∑
i=k−r+1

(
n− r

i

)

Indeed, using the identity
(
n−w

i

)
=

∑i
p=i−r+w

(
n−r

p

)(
r−w
i−p

)
, we get

∑k
i=k−w+1

(
n−w

i

)
=∑k

i=k−w+1

∑i
p=i−r+w

(
n−r

p

)(
r−w
i−p

)
=

∑k
p=k−r+1

(
n−r

p

) ∑min(p−w+r,k)
i=max(p,k−w+1)

(
r−w
i−p

)
≥∑k

p=k−r+1

(
n−r

p

)
.

Therefore, the preceding lower bound on dim Mulk(g) − dk,1⊕g is better
than that of Corollary 5 if we take w < r. However, it requires more
information on the n-variable Boolean function g than that of Corollary 5
that simply depends on the algebraic degree of g. Now, we shall need a lower
bound that does not depend on the n-variable Boolean function g to get our
result. This is the reason why we shall restrict ourselves to use Corollary 5
rather than Proposition 4 in the sequel.

3. A new lower bound on the r-th-order nonlinearity of
n-variable Boolean function with respect to their

algebraic immunity

In this Section, we shall see that the dimension of the vector subspace
of all annihilators with prescribed algebraic degree of a Boolean function
plays also an important role in relation to the r-th order nonlinearity of this
Boolean function.

Given an n-variable Boolean function f and a positive integer r, we denote
by <f (r, n) the restriction of the generator matrix of the rth-order Reed-
Muller code to the support of f . Clearly, an n-variable Boolean function f
has no annihilator of algebraic degree at most k if and only if all the matrices
<f (r, n), r ≤ k − 1, are of full rank. Moreover, one has, for every positive
integer k ≤ n,

(1) dk,f + rank (<f (k, n)) =
k∑

i=0

(
n

i

)
.

The rth-order nonlinearity of a Boolean function g is the minimum Ham-
ming distance from f to an n-variable Boolean function g of algebraic degree
at most r. Our approach is to establish a lower bound on dist(f, g) holding
for every Boolean function g of algebraic degree r. To this end, we first
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establish a lower bound on dist(f, g) involving the sum of the two dimen-
sions dk−1,g and dk−1,1⊕g. This is the key result that will enable to improve
further the lower bound of [2, 1].

Lemma 6. Let f be an n-variable Boolean function. Suppose that AI(f) =
k. Let r be a positive integer less than k. Then, for every n-variable boolean
function g of algebraic degree at most r, we have

dist(f, g) ≥ dk−1,g + dk−1,1⊕g.

Proof. Denote by d the number of bits to be modified in the truth table of
f to obtain g. Denote by di, i ∈ {0, 1}, the number of words of supp(i⊕ f)
for which we modify the output value of i⊕ f . Clearly, we have dist(f, g) =
d = d0 + d1.

Now, for every positive integer `, The matrix <g(`, n) is deduced from
the matrix <f (`, n) by deleting d0 rows and adding d1 rows. The matrix
<f (k − 1, n) being of full rank, we hence have that rank(<g(k − 1, n)) ≥∑k−1

i=0

(
n
i

)
− d0 and thus that d0 ≥

∑k−1
i=0

(
n
i

)
− rank(<g(k − 1, n)) = dk−1,g.

Similarly, the matrix <1⊕g(`, n) is deduced from the matrix <1⊕f (`, n) by
deleting d1 rows and adding d0 rows. The matrix <f (k− 1, n) being also of
full rank, we hence deduce by similar arguments as those exposed previously
that d1 ≥ dk−1,1⊕g. �

Remark 2. Collecting together Lemma 2 applied to affine Boolean functions
and Lemma 6 leads to dist(f, l) ≥ dk−1,l +dk−1,1⊕l = 2

∑k−2
i=0

(
n−1

i

)
for every

n-variable affine Boolean functions, that is, we recover the lower bound of
[9].

Similarly, Applying Lemma 6 to n-variable Boolean functions of algebraic
degree at most r leads to dist(f, g) ≥ 2

∑k−r−1
i=0

(
n−r

i

)
, that is, we recover

the first lower bound of [1, Theorem 1].

We then deduce from Lemma 6, thanks to Lemma 4 and 6 our lower bound
on the rth-order linearity of an n-variable Boolean function with prescribed
algebraic immunity. Our idea is to get a lower bound on this sum rather
than considering separately the two dimensions dk−1,g and dk−1,1⊕g.

Theorem 7. Let f be an n-variable Boolean function of algebraic immunity
k and let r be a positive integer less than k. Then

nlr(f) ≥
k−r−1∑

i=0

(
n

i

)
+

k−r−1∑
i=k−2r

(
n− r

i

)
Proof. Let g be an arbitrary n-variable Boolean function of algebraic degree
at most r. According to Lemma 6, we have

dist(f, g) ≥ dk−1,g + dk−1,1⊕g.

Now, note that Ank−1(g⊕1) ⊃ Mulk−r−1(g) and Ank−1(g) ⊃ Mulk−r−1(1⊕
g). Hence

dist(f, g) ≥ dk−1,g + dk−1,1⊕g ≥ dim Mulk−r−1(g) + dim Mulk−r−1(1⊕ g)
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Next, thanks to Lemma 1, we get

dist(f, g) ≥ dim Mulk−r−1(g) + dim Mulk−r−1(1⊕ g)

=
k−r−1∑

i=0

(
n

i

)
+ dim Mulk−r−1(g)− dk−r−1,1⊕g.

We finally conclude thanks to Corollary 5 that says that

dim Mulk−r−1(g)− dk−r−1,1⊕g ≥
k−r−1∑
i=k−2r

(
n− r

i

)
�
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HH
HHHn

r 2 3 4 5 6 7

18 43556 17439 5518 1976 344 38

19 126008 57992 21592 6507 2320 382

20 188368 81404 28568 8826 2702 422

21 527900 257396 103784 34780 15094 3124

22 803860 369748 141064 44844 18218 3588

23 2195580 1123220 483680 176660 53954 21806

24 3396320 1645660 672784 233827 68071 25902

25 9080772 4838490 2202164 863975 289301 136812

26 14239032 7211198 3125248 1169920 374371 167364

27 37392864 20633040 9846132 4104275 1484042 458054
28 59333408 31214643 14221898 5670245 1963795 581338
29 153434536 87279291 43393566 19055725 7355234 2462995
30 246025562 133797407 63665462 26799567 9928262 3194667

Table 1. Best lower bounds on nlr(f) for 18 ≤ n ≤ 30, AI(f) =⌈
n
2

⌉
, r ≤ 8

HHH
HHn
r 2 3 4 5 6 7

18 1.46 1.76 1.88 0.69 0.73 0.82
19 1.53 1.95 2.18 1.01 0.66 0.71
20 1.49 1.87 2.07 0.92 0.67 0.72
21 1.55 2.04 2.38 2.30 0.63 0.65
22 1.52 1.96 2.26 2.38 0.64 0.66
23 1.58 2.13 2.57 2.83 1.33 0.62
24 1.55 2.05 2.44 2.67 1.21 0.62
25 1.60 2.20 2.74 3.13 2.11 0.59
26 1.57 2.12 2.60 2.95 2.24 0.60
27 1.61 2.27 2.90 3.42 3.74 1.77
28 1.59 2.19 2.76 3.22 3.50 1.60
29 1.63 2.33 3.05 3.69 4.17 2.12
30 1.60 2.26 2.90 3.48 3.90 2.08

Table 2. The new lower bound over the Lower bound of [1] for
18 ≤ n ≤ 30, AI(f) =

⌈
n
2

⌉
, r ≤ 8

13. C.E. Shannon, Communication theory of secrecy systems, vol. 28, pp. 656–715, Bell
system technical journal, 1949.

Appendix A. Tables

Our result improves further the result of [2] for all orders and improves
the result of [1] for all low orders (see the tables 1 and 2). We give in the
next table the best lower bound between ours (that we write in bold text)
and those of [1] for n ranging from 18 to 30, for optimum algebraic immunity⌈

n
2

⌉
and for r ranging from 2 to 7.
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HH
HHHn

r 2 3 4 5 6 7

18 1.40 1.38 1.36 1.38 1.46 1.63
19 1.34 1.32 1.30 1.29 1.33 1.41
20 1.37 1.35 1.32 1.31 1.35 1.44
21 1.31 1.30 1.26 1.25 1.26 1.30
22 1.34 1.32 1.28 1.27 1.28 1.32
23 1.29 1.27 1.24 1.21 1.21 1.23
24 1.32 1.29 1.25 1.23 1.23 1.25
25 1.28 1.26 1.22 1.19 1.18 1.18
26 1.30 1.27 1.23 1.20 1.19 1.20
27 1.26 1.24 1.20 1.17 1.15 1.15
28 1.28 1.26 1.22 1.18 1.17 1.16
29 1.25 1.23 1.19 1.16 1.14 1.13
30 1.27 1.24 1.20 1.17 1.15 1.14

Table 3. The new lower bound over the Lower bound of [2] for
18 ≤ n ≤ 30, AI(f) =

⌈
n
2

⌉
, r ≤ 8


