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Abstract. The recent algebraic attacks have received a lot of atten-
tion in cryptographic literature. The algebraic immunity of a Boolean
function quantifies its resistance to the standard algebraic attacks of the
pseudo-random generators using it as a nonlinear filtering or combining
function. Very few results have been found concerning its relation with
the other cryptographic parameters or with the r-th order nonlinear-
ity. As recalled by Carlet at Crypto’06, many papers have illustrated
the importance of the rth-order nonlinearity profile (which includes the
first-order nonlinearity). The role of this parameter relatively to the cur-
rently known attacks has been also shown for block ciphers. Recently,
two lower bounds involving the algebraic immunity on the rth-order
nonlinearity have been shown by Carlet et al. None of them improves
upon the other one in all situations. In this paper, we prove a new lower
bound on the rth-order nonlinearity profile of Boolean functions, given
their algebraic immunity, that improves significantly upon one of these
lower bounds for all orders and upon the other one for low orders.

Keywords. stream cipher, block cipher, algebraic attack, Boolean func-
tion, algebraic immunity, algebraic degree, higher order nonlinearity, anni-
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Introduction

Symmetric cryptosystems are commonly used for encrypting and decrypt-
ing owing to their efficiency. A classical model of symmetric cryptosystem
are stream ciphers. They are composed of one or several Linear Feedback
Shift Register (LFSR) combined or filtered by a Boolean function. These
cryptosystems have been the objects of a lot of cryptanalyses and several
design criteria have been proposed concerning the filtering or combining
functions. A survey on this topic can be found in [2]. The most basic re-
quirement concerning Boolean functions used in stream ciphers is to be of
algebraic degree as high as possible. We recall that the algebraic degree of
a Boolean function f is the degree of its unique representation as a multi-
variate polynomial over F2, that we denote by deg(f).
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Recently, new kinds of attacks drawn from an original idea of Shannon
[15] has emerged; these attacks are called algebraic attacks and fast algebraic
attacks [6, 12]. They proceed by modelling the problem of recovering the
secret key by means of an over-defined system of multivariate nonlinear equa-
tions of algebraic degree at most deg(f). The core of algebraic attacks is to
find out low degree Boolean functions g 6= 0 and h such that fg = h. Meier,
Pasalic and Carlet [13] have shown that it is equivalent to the existence of
low degree annihilators of f , that is, of n-variable Boolean functions g such
that fg = 0 or (1 ⊕ f)g = 0. The minimum degree of such g is called the
algebraic immunity of f , and that we denote by AI(f). It must be as high
as possible (the optimum value of AI(f) being equal to

⌈
n
2

⌉
). Fast algebraic

attacks proceed in a different way but having a high algebraic immunity is
not only a necessary condition for a resistance to standard algebraic attacks
but also for a resistance to fast algebraic attacks. Few authors have investi-
gated the relation between the algebraic immunity of Boolean function and
other cryptographic parameters. The first result found concerns the Ham-
ming weight wt(f) of f , that is, the number of 1 in its truth table. Carlet,
Dalai and Gupta [3] shown that :

∑AI(f)−1
i=0

(
n
i

) ≤ wt(f) ≤ ∑n−AI(f)
i=0

(
n
i

)
.

It implies in particular that a Boolean function with optimum nonlinearity
is necessarily balanced in odd dimension, that is outputs 1 with probabil-
ity 1

2 . Another important cryptographic parameter is the nonlinearity of
a Boolean function f , that we denote by nl(f), which equals the number
of bits to change in the truth table of f to get an affine Boolean function
(that is, a Boolean function of algebraic degree 1). The first lower bound
on the nonlinearity of f involving the algebraic immunity was given in [3].
Lobanov [11] improved further upon this lower bound and proved that :
nl(f) ≥ 2

∑AI(f)−2
i=0

(
n−1

i

)
for every n-variable Boolean function f . More-

over, he has exhibited a family of Boolean function achieving the equality
nl(f) = 2

∑AI(f)−2
i=0

(
n−1

i

)
.

Carlet introduced in [1] the term of nonlinearity profile of Boolean func-
tions, which is the sequence whose rth-order term equals the rth-order non-
linearity of the function that we denote by nlr(f), and that is the minimum
distance between f and all n-variable Boolean functions of algebraic degrees
at most r. This parameter extends the standard (first-order) nonlinearity
nl(f) of a Boolean function f . Several papers [5, 8, 9, 10, 14] have shown the
role played by this parameter in relation to some cryptanalyses (note that
contrary to the (first-order) nonlinearity, it must have low value for allowing
the attacks to be realistic). Computing theoretically and algorithmicly the
rth-order nonlinearity of an n-variable Boolean function is a hard task for
r > 1. Therefore the knowledge of upper and lowers bounds for the rth-order
nonlinearity on a particular class of Boolean functions is important.

Lobanov’s result has been extended to the rth-order nonlinearity nlr(f)
of an n-variable Boolean function f in two different lower bounds [1, 3].
None of the two lower bounds improves upon the other one in all situations.
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Basically, these lower bounds say that the rth-order nonlinearity of an n-
variable Boolean function f of algebraic immunity k is greater than or equal
to the maximum value between

∑k−r−1
i=0

(
n
i

)
and 2

∑k−r−1
i=0

(
n−r

i

)
. In this

paper, we improve further the lower bound of [3] for all orders and the lower
bound of [1] for low orders (which are the most important from a practical
point of view) : for every n-variable Boolean function f , we prove that the
rth-rder nonlinearity nlr(f) of a n-variable Boolean function of algebraic
immunity k is greater than or equal to

∑k−r−1
i=0

(
n
i

)
+

∑k−r−1
i=k−2r

(
n−r

i

)
.

The paper is organized as follows. Firstly, we begin with fixing our main
notation in Section 1. Secondly, we study in Section 2 the dimension of
the annihilators with prescribed algebraic degrees of Boolean functions with
given algebraic degrees. The results of this Section are crucial to obtain
in Section 3 a new lower bound on the rth-order nonlinearity of a Boolean
function of given algebraic immunity (Theorem 10).

1. Preliminaries

Let n be any positive integer. In this paper, we shall denote by Bn the set
of all n-variable Boolean functions over Fn

2 . Any n-variable Boolean function
f (that is an application from Fn

2 to F2) admits a unique algebraic normal
form (ANF), that is, a representation as a multivariate polynomial over F2

f(x1, . . . , xn) =
⊕

I⊆{1,...,n}
aI

∏

i∈I

xi,

where the aI ’s are in F2. The terms
∏

i∈I xi are called monomials. The
algebraic degree deg(f) of a Boolean function f equals the maximum degree
of those monomials whose coefficients are nonzero in its algebraic normal
form. A slightly different form for the algebraic normal form is f(x) =⊕

u∈Fn
2

auxu, where au ∈ F2 and where xu =
∏n

i=1 xui
i . Then deg(f) equals

max
au 6=0

wt(u), where wt(u) denotes the Hamming weight of u, that is, wt(u) =

|{i = 1, . . . , n | ui = 1}|. Given a positive integer r, we make an abuse of
notation and denote by RM(r, n) the set of all n-variable Boolean functions
of algebraic degrees at most r, that is, the so-called r-th order Reed-Muller
code of length 2n. We recall that RM(r, n) is a vector subspace over F2 of
dimension

∑r
i=0

(
n
i

)
.

The Hamming weight wt(f) of a Boolean function is the size of its support
{x ∈ Fn

2 | f(x) = 1} that we denote by supp(f). The Hamming distance
between two n-variable Boolean functions is the Hamming weight of f ⊕ g,
that is dist(f, g) = |{x ∈ Fn

2 | f(x) 6= g(x)}|.
Definition 1 (rth-order nonlinearity). Let f be an n-variable Boolean func-
tion. Let r be a positive integer such that r ≤ n. The r-th order nonlinearity
of f is the minimum Hamming distance between f and all n-variable Boolean
functions from RM(r, n). We shall denote the r-th order nonlinearity of f
by nlr(f).
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The first-order nonlinearity of f is simply called the nonlinearity of f and
is denoted by nl(f) (instead of nl1(f)). Clearly we have nlr(f) = 0 if and
only if f has degree at most r. So, the knowledge of the nonlinearity profile
(i.e. of all the nonlinearities of orders r ≥ 1) of a Boolean function includes
the knowledge of its algebraic degree. It is in fact a much more complete
cryptographic parameter than are the single (first-order) nonlinearity and
the algebraic degree. Very little is known on nlr(f). The best known upper
bound on nlr(f) has asymptotic version [4] :

nlr(f) ≤ 2n−1 −
√

15
2

(1 +
√

2)r−22
n
2 + O(nr−2)

for every n-variable Boolean functions f .
The algebraic immunity [13] of a Boolean function f quantifies the re-

sistance to the standard algebraic attack of the pseudo-random generators
using it as a nonlinear function. It is defined as follows.

Definition 2 (Algebraic immunity). Let f be an n-variable Boolean func-
tion. An n-variable Boolean function g is said to be an annihilator of f if
the product f · g is null (that is, the support of g is included in the support
of 1⊕ f). We denote by An(g) the vector space of all annihilators of g. The
algebraic immunity of f is the minimum algebraic degree of all the nonzero
annihilators of f or of f ⊕ 1. The algebraic immunity of f , is denoted by
AI(f).

Clearly, the algebraic immunity of a Boolean function f is less than or
equal to its algebraic degree since 1 ⊕ f is an annihilator of f . As shown
in [12], we have AI(f) ≤ dn

2 e. It was shown in [7] that the Hamming
weight of a Boolean function f with given algebraic immunity satisfies :∑AI(f)−1

i=0

(
n
i

) ≤ wt(f) ≤ ∑n−AI(f)
i=0

(
n
i

)
. In particular, if n is odd and f has

optimum algebraic immunity then f is balanced.

2. Some results on the dimension of the vector space of
prescribed degree annihilators of a Boolean function

An important parameter for evaluating the complexity of algebraic attacks
on the systems using a given Boolean function is the number of linearly
independent low degree annihilators of this Boolean function g and of the
function g⊕1. We shall see in the next Section that it plays also an important
role in relation to the r-th order nonlinearity.

Definition 3. Let g be a Boolean function and let k be a positive integer.
We denote by Ank(g) the vector space of those annihilators of degrees at
most k of g and by dk,g the dimension of Ank(g).

The dimension dk,g is an affine invariant, that is, we have dk,g = dk,g◦A
for every affine automorphism A of Fn

2 (this comes from the affine invariance
of the algebraic degree and the fact that p is an annihilator of g if and only
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if p ◦ A is an annihilator of g ◦ A). Little is known on the behavior of dk,g.
Carlet [1] proved the following upper bound on dk,g.

Proposition 1. For every n-variable Boolean function g of algebraic degree
at most r, we have dk,g ≤

∑k
i=0

(
n
i

) − ∑k
i=0

(
n−r

i

)
. This upper bound is

achieved by the indicators of an (n − r)-dimensional affine subspace of Fn
2

for which the dimension dk,g is exactly equal to
∑k

i=0

(
n
i

)−∑k
i=0

(
n−r

i

)

We can derive from this upper bound a lower bound on dk,g. Let us
introduce some notation before. For every n-variable Boolean function g
and every positive integer k, we denote by Mulk(g) the vector space of all
n-variable Boolean functions p that can be written as p = gh where h is of
algebraic degree at most k. There exists a simple relation between dk,g and
dimMulk(g).

Lemma 2. Let g be an n-variable Boolean function of algebraic degree r. Let
k be any positive integer less than n. Then dimMulk(g) =

∑k
i=0

(
n
i

)− dk,g.

Proof. Let φg be the linear map from RM(k, n) to Mulk(g) which maps
h to gh. This linear map is onto and its kernel equals Ank(g). Thus, by
applying the rank theorem to φg, one gets that dim RM(k, n) =

∑k
i=0

(
n
i

)
=

dim Im(φg) + dim ker(φg) = dimMulk(g) + dk,g. ¤
The upper bound of [1] (that we have recalled in Proposition 1) and

Lemma 2 lead us to a lower bound on dk,g achieved by the complements of
the indicators of affine subspaces of Fn

2 . More precisely,

Proposition 3. Let g be an n-variable Boolean function of algebraic degree
at most r. Then, for every positive integer k, one has dk,g ≥

∑k−r
i=0

(
n−r

i

)
. If

g is the complement of the indicator of an (n−r)-dimensional affine subspace
of Fn

2 then dk,g =
∑k−r

i=0

(
n−r

i

)
.

Proof. Let g be an n-variable Boolean function of algebraic degree at most
r. We can assume that k ≥ r (otherwise the lower bound is trivial). Take
h ∈ Anr(g). We have dk,h ≤ ∑k−r

i=0

(
n
i

) − ∑k−r
i=0

(
n−r

i

)
by Proposition 1.

Now, according to Lemma 2, dimMulk−r(h) =
∑k−r

i=0

(
n
i

) − dk−r,h. Thus
dimMulk−r(h) ≥ ∑k−r

i=0

(
n−r

i

)
. Moreover, we have the inclusion Mulk−r(h) ⊆

Ank(g). Therefore, it holds that dk,g ≥ dimMulk−r(h) ≥ ∑k−r
i=0

(
n−r

i

)
. This

latter inequality becomes an equality whenever g is the complement of an
(n− r)-dimensional affine subspaces of Fn

2 because it has been shown in [1]
that dk,g is equal to

∑k−r
i=0

(
n−r

i

)
for such Boolean functions. ¤

We prove a result that we shall use to improve the lower bound of [1, 3].
To this aim, we need to introduce some additional notation. We shall use
the partial ordering ¹ on Fn

2 defined as follows :

u, v ∈ Fn
2 , (u ¹ v) ⇐⇒ (supp(u) ⊂ supp(v))

Given an element u of Fn
2 , we call the subset {i ∈ {1, . . . , n} | ui = 1}

the support of u, and we denote it by supp(u). The Hamming weight of
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u, denoted by wt(u), is the cardinality of supp(u). Moreover, for every
pair (u, v) of elements of Fn

2 , we denote by u ∨ v the element of Fn
2 defined

as: ∀i = 1, . . . , n, (u ∨ v)i = max(ui, vi), that is, the element of Fn
2 whose

support is the union of the two supports supp(u) and supp(v). We say that
an element u of a subset Π of Fn

2 is a maximal element of Π with respect to
the word partial ordering ¹ if : v ∈ Π, u ¹ v ⇒ v = u. For every element
u of Fn

2 , we denote by ū the bitwise complement of u, that is, the element
of Fn

2 defined by : ∀i ∈ {1, . . . , n}, ūi = 1 ⊕ ui. We begin with proving the
following key Lemma.

Lemma 4. Let g be an n-variable Boolean function whose algebraic normal
form is : ∀x ∈ Fn

2 , g(x) =
⊕

u∈Fn
2

auxu. Set Π = {u ∈ Fn
2 | au = 1}. Let

u be a maximal element of Π with respect to the partial ordering ¹. Set
Θ = {v ∈ Fn

2 | v ¹ ū}. Then {xv · g, v ∈ Θ} is a linearly independent family
of Bn.

Proof. Let (cv)v∈Θ be a collection of elements of F2 such that : ∀x ∈ Fn
2 ,⊕

v∈Θ cvx
vg(x) = 0. Replacing g by its algebraic normal form yields to :

∀x ∈ Fn
2 ,

⊕
(u,v)∈Π×Θ cvx

u∨v = 0. We now prove that, for every v ∈ Θ, the
monomial xu∨v appears only once time in the sum

⊕
(u,v)∈Π×Θ cvx

u∨v. To
this end, let us fix v ∈ Θ and let us look forward v′ ∈ Θ and u ∈ Π such
that u ∨ v′ = u ∨ v. This requires that u ¹ u ∨ v′. The support of u being
disjoint from the support of v′, we must have u ¹ u which is possible only
if u = u because u is a maximal element of Π with respect to the word
ordering ¹. The equality u ∨ v′ = u ∨ v becomes u ∨ v′ = u ∨ v from which
we deduce that v = v′ (since they are both disjoint from u). We hence
prove that, for every v ∈ Θ, the monomial xu∨v appears only once time in
the sum

⊕
(u,v)∈Π×Θ cvx

u∨v which vanishes for every word x in Fn
2 . That

requires that x 7→ cvx
u∨v is null on Fn

2 yielding to cv = 0. The element v
being arbitrary, that proves that the collection {xv · g, v ∈ Θ} is a linearly
independent family of Bn. ¤

We then use Lemma 4 to show the following result.

Proposition 5. Let g be an n-variable Boolean function of algebraic degree
at most r and g(x) =

⊕
u∈Fn

2
auxu be its ANF. Let k be a positive integer

less than n. Set Π = {u ∈ Fn
2 | au = 1}. Let u be a maximal element of Π

with respect to the partial ordering ¹. Then
(1) The vector space Ank(g ⊕ 1) is contained in Mulk(g).
(2) dimMulk(g) ≥ ∑k

i=k−wt(u)+1

(
n−wt(u)

i

)
+ dk,1⊕g.

Proof.
(1) Every annihilator h of 1⊕ g satisfies gh = h and thus is an element

of Mulk(g).
(2) The algebraic normal form of g can be rewritten as g(x) =

⊕
u∈Π xu.

Define Θ = {v ∈ Π | v ¹ ū}. Let Σ be the subset of Θ defined
by Σ = {v ∈ Θ | k − wt(u) + 1 ≤ wt(v) ≤ k} (this subset is non
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empty because maxv∈Θ wt(v) = n − wt(u) ≥ n − r ≥ k − r + 1).
Now, {xv · g, v ∈ Σ} is a subfamily of {xv · g, v ∈ Θ} which is a
linearly independent family of Bn according to Lemma 4. Thus,
{xv ·g, v ∈ Σ} is also a linearly independent family of Bn. Moreover,
every element of this family belongs to Mulk(g) since, for every
v ∈ Σ, we have that wt(v) ≤ k.

Now, let V be the vector subspace spanned by all the Boolean
functions xvg where v ranges over Σ. The vector subspace V is by
construction a vector subspace of Mulk(g) and its dimension over
F2 equals the cardinality of the family {xv · g, v ∈ Σ}, that is, its
dimension equals

∑k
i=k−wt(u)+1

(
n−wt(u)

i

)
.

We are now going to prove that the vector sum V + Ank(1 ⊕ g)
is a direct sum of Mulk(g). The ANF of an element of V is of the
form

⊕
(u,v)∈Π×Σ cvx

u∨v. The algebraic degree of such a Boolean
function is at least k + 1. Indeed, for every v ∈ Σ, the monomial
xu∨v appears at most once time in the sum

⊕
(u,v)∈Π×Σ cvx

u∨v (see
proof of Lemma 4) and is of algebraic degree wt(u)+ wt(v) ≥ k +1.
Hence, the intersection V ∩ Ank(1 ⊕ g) is reduced to {0} because
every non null element of V is of algebraic degree at least k + 1
while every non null element of Ank(1⊕ g) is of algebraic degree at
most k. This proves that the vector sum V + Ank(1⊕ g) is a direct
sum. This implies that dimMulk(g) ≥ dimV + dimAnk(1 ⊕ g) =∑k

i=k−wt(u)+1

(
n−wt(u)

i

)
+ dk,1⊕g.

¤

We can deduce from the Proposition 5 the following lower bound on the
difference dimMulk(g) − dk,1⊕g valid for every Boolean function of degree
at most r.

Corollary 6. Let k be a positive integer. Then, for every n-variable Boolean
function g of algebraic degree at most r, we have

dimMulk(g)− dk,1⊕g ≥
k∑

i=k−r+1

(
n− r

i

)

Proof. Assume that the algebraic normal form of g is : ∀x ∈ Fn
2 , g(x) =⊕

u∈Fn
2

auxu. Set Π = {u ∈ Fn
2 | au = 1}. The algebraic degree of g equals

r then there exists at least one maximal element u of Π with respect to the
word partial ordering ¹ whose hamming weight equals r. We then deduce
the result from Proposition 5. ¤

Remark 1. Proposition 5 says that, for every w ≤ r,

dimMulk(g)− dk,1⊕g ≥
k∑

i=k−w+1

(
n− w

i

)
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if the algebraic normal form of g contains a monomial xω, with wt(ω) = w,
which is not contained in any another monomial of g. Now, we have

k∑

i=k−w+1

(
n− w

i

)
≥

k∑

i=k−r+1

(
n− r

i

)
.

This follows from the identity
(
n−w

i

)
=

∑i
p=i−r+w

(
n−r

p

)(
r−w
i−p

)
and the se-

quence of equalities
∑k

i=k−w+1

(
n−w

i

)
=

∑k
i=k−w+1

∑i
p=i−r+w

(
n−r

p

)(
r−w
i−p

)
=

∑k
p=k−r+1

(
n−r

p

) ∑min(p−w+r,k)
i=max(p,k−w+1)

(
r−w
i−p

) ≥ ∑k
p=k−r+1

(
n−r

p

)
.

Therefore, the preceding lower bound on dimMulk(g) − dk,1⊕g is better
than that of Corollary 6 if we take w < r. However, it requires more
information on the n-variable Boolean function g than that of Corollary 6
that simply depends on the algebraic degree of g. Now, we shall need a lower
bound that does not depend on the n-variable Boolean function g to get our
result. This is the reason why we shall restrict ourselves to use Corollary 6
rather than Proposition 5 in the sequel.

Remark 2. The lower bound of Corollary 6 is achieved by the complements of
the indicators of (n−r)-dimensional affine subspaces of Fn

2 , that is, whenever
g is the complement of an (n−r)-dimensional affine subspace of Fn

2 , it holds
dimMulk(g) − dk,1⊕g =

∑k
i=k−r+1

(
n−r

i

)
. Indeed, we have that dk,1⊕g =∑k

i=0

(
n
i

) − ∑k
i=0

(
n−r

i

)
(Proposition 1) and dk,g =

∑k−r
i=0

(
n−r

i

)
(Proposi-

tion 3). Therefore, according to Lemma 2, dimMulk(g) =
∑k

i=0

(
n
i

) −
dk,g =

∑k
i=0

(
n
i

)−∑k−r
i=0

(
n−r

i

)
=

∑k
i=0

(
n
i

)−∑k
i=0

(
n−r

i

)
+

∑k
i=k−r+1

(
n−r

i

)
=

dk,1⊕g +
∑k

i=k−r+1

(
n−r

i

)
.

However, we do not know whether there exists or not another Boolean
functions that achieve the equality dimMulk(g)−dk,1⊕g =

∑k
i=k−r+1

(
n−r

i

)
.

The only fact that we are able to say is deduced from the arguments exposed
in Remark 1, that is, if an n-variable Boolean function g achieves the equal-
ity, then all the maximal elements xw in the ANF of g are all of algebraic
degree r.

Lemma 7. Let g be an n-variable Boolean functions of algebraic immunity k
and of algebraic degree r. Suppose that k > r. Then the subspace Mulk−r(1⊕
g) is contained in Ank(g).

Proof. Let p be an element of Mulk−r(1 ⊕ g). Assume that p = (1 ⊕ g)q
where q ∈ RM(k− r, n). Now, deg(p) ≤ deg(1⊕ g)+deg(q) ≤ r +k− r = k.
Moreover, one has p(x) = 0 for every x ∈ supp(g), that is, p is an annihilator
of g. Thus, Mulk−r(1⊕ g) ⊂ Ank(g). ¤

Remark 3. In the particular case where the n-variable Boolean function g
is the complement of the indicator of an (n − r)-dimensional affine sub-
space of Fn

2 , the subspaces Mulk−r(1⊕g) and Ank(g) coincide because their
dimensions are equal.
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Indeed, note first that dimMulk−r(1 ⊕ g) =
∑k−r

i=0

(
n
i

) − dk−r,1⊕g =∑k−r
i=0

(
n−r

i

)
(since dk−r,1⊕g =

∑k−r
i=0

(
n
i

)−∑k−r
i=0

(
n−r

i

)
by virtue of Proposi-

tion 1). On the other hand, Proposition 3 says that dk−r,g =
∑k−r

i=0

(
n−r

i

)
.

Thus, dimMulk−r(1⊕ g) =
∑k−r

i=0

(
n−r

i

)
= dk−r,g.

3. A new lower bound on the r-th-order nonlinearity of
n-variable Boolean function with respect to their

algebraic immunity

In this section, we shall see that the dimension of the vector subspace
of all annihilators with prescribed algebraic degree of a Boolean function
plays also an important role in relation to the r-th order nonlinearity of this
Boolean function.

Given an n-variable Boolean function f and a positive integer r, we de-
note by <f (r, n) the restriction of the generator matrix of the rth-order
Reed-Muller code to the support of f , that is, the columns of this matrix
correspond to the evaluation of the monomials of algebraic degree at most
k on the support of f . This matrix has wt(f) rows and

∑k
i=0

(
n
i

)
columns.

But above, we have

Proposition 8. An n-variable Boolean function f has no annihilator of
algebraic degree at most k if and only if all the matrices <f (r, n), r ≤ k− 1,
are of full rank. Moreover, one has, for every positive integer k ≤ n,

(1) dk,f + rank (<f (k, n)) =
k∑

i=0

(
n

i

)
.

Proof. We begin with proving the first assertion. We shall prove it by con-
traposition, that is, we prove that an n-variable Boolean function f admits
an annihilator of algebraic degree at most k if and only if the matrix <f (k, n)
is singular.

Suppose first that f admits an annihilator of algebraic degree at most k,
that is, there exists an n-variable Boolean function p ∈ RM(k, n) such that
f(x)p(x) = 0 for every x ∈ Fn

2 . This is equivalent to say that p(x) = 0 for
every x ∈ supp(f) or, in matrix form, that <f (k, n)Ap = 0 (where Ap is the
column vector whose entries are the coefficients av of the ANF of p, that we
assume to be p(x) =

⊕
wt(v)≤k avx

v). Now, the latter equality is equivalent
to say that the matrix <f (k, n) is singular.

Conversely, suppose that the matrix <f (k, n) is singular. The columns
vectors (Cv)wt(v)≤k of <f (k, n) are then linearly dependent, that is, there
exists a family {av, wt(v) ≤ k} of elements of F2 such that

⊕
wt(v)≤k avCv =

0. Now, a column Cv is the truth table of the restriction of the monomial
xv to supp(f). Thus, we have

⊕
wt(v)≤k avx

v = 0 for every x ∈ supp(f).
Let then p ∈ RM(k, n) be the n-variable Boolean function whose ANF is
p(x) =

⊕
wt(v)≤k avx

v. The latter equality is hence equivalent to say that
the n-variable Boolean function p is an annihilator of f .
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Identity (1) is obtained by noting that the dimension of the subspace
Mulk(f) and the rank of <f (k, n) are equal. The result follows then from
the fact that dimMulk(f) =

∑k
i=0

(
n
i

)− dk,f (Lemma 2). ¤

The rth-order nonlinearity of a Boolean function g is the minimum Ham-
ming distance from f to an n-variable Boolean function g of algebraic degree
at most r. Our approach is to establish a lower bound on dist(f, g) holding
for every Boolean function g of algebraic degree r. To this end, we first
establish a lower bound on dist(f, g) involving the sum of the two dimen-
sions dk−1,g and dk−1,1⊕g. This is the key result that will enable to improve
further the lower bound of [3, 1].

Lemma 9. Let f be an n-variable Boolean function. Suppose that AI(f) =
k. Let r be a positive integer less than k. Then, for every n-variable Boolean
function g of algebraic degree at most r, we have

dist(f, g) ≥ dk−1,g + dk−1,1⊕g.

Proof. Denote by d the number of bits to be modified in the truth table of
f to obtain g. Denote by di, i ∈ {0, 1}, the number of words of supp(i⊕ f)
for which we modify the output value of i⊕ f . Clearly, we have dist(f, g) =
d = d0 + d1.

Now, for every positive integer `, The matrix <g(`, n) is deduced from
the matrix <f (`, n) by deleting d0 rows and adding d1 rows. The matrix
<f (k − 1, n) being of full rank according to proposition 8, we hence have
that rank(<g(k − 1, n)) ≥ ∑k−1

i=0

(
n
i

) − d0 and thus that d0 ≥
∑k−1

i=0

(
n
i

) −
rank(<g(k − 1, n)) = dk−1,g.

Similarly, the matrix <1⊕g(`, n) is deduced from the matrix <1⊕f (`, n) by
deleting d1 rows and adding d0 rows. The matrix <f (k− 1, n) being also of
full rank, we hence deduce by similar arguments as those exposed previously
that d1 ≥ dk−1,1⊕g. ¤

Remark 4. Collecting together Lemma 3 applied to affine Boolean functions
and Lemma 9 leads to dist(f, l) ≥ dk−1,l +dk−1,1⊕l = 2

∑k−2
i=0

(
n−1

i

)
for every

n-variable affine Boolean functions, that is, we recover the lower bound of
[11].

Similarly, Applying Lemma 9 to n-variable Boolean functions of algebraic
degree at most r leads to dist(f, g) ≥ 2

∑k−r−1
i=0

(
n−r

i

)
, that is, we recover

the first lower bound of [1, Theorem 1].

We then deduce from Lemma 5 and Lemma 9 our lower bound on the
rth-order linearity of an n-variable Boolean function with prescribed alge-
braic immunity. Our idea is to get a lower bound on this sum rather than
considering separately the two dimensions dk−1,g and dk−1,1⊕g.
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Theorem 10. Let f be an n-variable Boolean function of algebraic immu-
nity k and let r be a positive integer less than k. Then

nlr(f) ≥
k−r−1∑

i=0

(
n

i

)
+

k−r−1∑

i=k−2r

(
n− r

i

)

Proof. Let g be an arbitrary n-variable Boolean function of algebraic degree
at most r. According to Lemma 9, we have

dist(f, g) ≥ dk−1,g + dk−1,1⊕g.

Now, according to Lemma 7, one has Ank−1(g ⊕ 1) ⊃ Mulk−r−1(g) and
Ank−1(g) ⊃ Mulk−r−1(1⊕ g). Hence

dist(f, g) ≥ dk−1,g + dk−1,1⊕g ≥ dimMulk−r−1(g) + dimMulk−r−1(1⊕ g)

Next, thanks to Lemma 2, we get

dist(f, g) ≥ dimMulk−r−1(g) + dimMulk−r−1(1⊕ g)

=
k−r−1∑

i=0

(
n

i

)
+ dimMulk−r−1(g)− dk−r−1,1⊕g.

We finally conclude thanks to Corollary 6 that says that

dimMulk−r−1(g)− dk−r−1,1⊕g ≥
k−r−1∑

i=k−2r

(
n− r

i

)
.

¤
Remark 5. In the particular case where r = 1, Theorem 10 says that

nl(f) ≥
k−2∑

i=0

(
n

i

)
+

(
n− 1
k − 2

)
.(2)

Now, use the identity
(
n
i

)
=

(
n−1

i

)
+

(
n−1
i−1

)
in the first summation of the

right-hand side of (2) :
k−2∑

i=0

(
n

i

)
= 1 +

k−2∑

i=1

(
n− 1

i

)
+

k−2∑

i=1

(
n− 1
i− 1

)
= 2

k−3∑

i=0

(
n− 1

i

)
+

(
n− 1
k − 2

)

Thus, we get

nl(f) ≥ 2
k−2∑

i=0

(
n− 1

i

)

which is exactly the lower bound of [11].

Remark 6. Theorem 10 improves further the result of [3] for all orders. We
present in Table 3 the comparison between our lower bound and the lower
bound of [3]. On the other hand, it only improves partially the result of [1].
We present in table 2 the comparison between the lower bound of Theorem
10 and the lower bound of [1]. Moreover, we give in table 1 the best lower
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bound between ours (that we write in bold text) and those of [1]. We have
checked by computer experiments that, for every n ≤ 60, our lower bound
improves the lower bound of [1] for 2 ≤ k ≤ dn

2 e and 2 ≤ k ≤ dn
2 e while it

does not improve the lower bound of [1] for 2 ≤ k ≤ dn
2 e and bk−1

2 c + 3 ≤
r ≤ k. However, we do not know whether it holds for every positive integer
n or not. Concerning the cases where r ∈ {bk−1

2 c+ 1, bk−1
2 c+ 2

}
, we have

found by computer experiments that our lower bound is better than the
lower bound of [1] for some values of (k, n) with n ≤ 60 and 2 ≤ k ≤ dn

2 e.
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HHHHHn
r 2 3 4 5 6 7
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Table 1. Best lower bounds on nlr(f) for 18 ≤ n ≤ 30, AI(f) =⌈
n
2

⌉
, r ≤ 7
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⌉
, r ≤ 7
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HHHHHn
r 2 3 4 5 6 7

18 1.40 1.38 1.36 1.38 1.46 1.63
19 1.34 1.32 1.30 1.29 1.33 1.41
20 1.37 1.35 1.32 1.31 1.35 1.44
21 1.31 1.30 1.26 1.25 1.26 1.30
22 1.34 1.32 1.28 1.27 1.28 1.32
23 1.29 1.27 1.24 1.21 1.21 1.23
24 1.32 1.29 1.25 1.23 1.23 1.25
25 1.28 1.26 1.22 1.19 1.18 1.18
26 1.30 1.27 1.23 1.20 1.19 1.20
27 1.26 1.24 1.20 1.17 1.15 1.15
28 1.28 1.26 1.22 1.18 1.17 1.16
29 1.25 1.23 1.19 1.16 1.14 1.13
30 1.27 1.24 1.20 1.17 1.15 1.14

Table 3. The new lower bound over the Lower bound of [3] for
18 ≤ n ≤ 30, AI(f) =

⌈
n
2

⌉
, r ≤ 7


