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Abstract

We present a general framework for constructing two-message oblivious transfer protocols
using a modification of Cramer and Shoup’s notion of smooth projective hashing (2002). This
framework is an abstraction of the two-message oblivious transfer protocols of Naor and Pinkas
(2001) and Aiello et al. (2001), whose security is based on the Decisional Diffie Hellman As-
sumption. In particular, we give two new oblivious transfer protocols. The security of one is
based on the Quadratic Residuosity Assumption, and the security of the other is based on the
N ’th Residuosity Assumption. Our security guarantees are not simulation based, but are similar
to the guarantees of the aforementioned two constructions. Compared to other applications of
smooth projective hashing, in our context we must deal also with maliciously chosen parameters,
which raises new technical difficulties.

We also improve on prior constructions of factoring-based smooth universal hashing, in that
our constructions do not require that the underlying RSA-composite is a product of safe primes.
In fact, we observe that the safe-prime requirement is unnecessary for many prior construc-
tions. In particular, we observe that the factoring-based CCA secure encryption schemes due
to Cramer-Shoup Gennaro-Lindell and Camenisch-Shoup remain secure even if the underlying
RSA-composite is not a product of safe primes. (This holds for the schemes based on the
Quadratic Residuosity Assumption as well as the ones based on the N ’th Residuosity Assump-
tion.)

1 Introduction

In [CS98], Cramer and Shoup introduced the first CCA secure encryption scheme, whose security
is based on the Decisional Diffie Hellman (DDH) Assumption. They later presented an abstraction
of this scheme based on a new notion that they called “smooth projective hashing” [CS02]. This
abstraction yielded two new CCA secure encryption schemes; the security of one is based on the
Quadratic Residuosity Assumption and the security of the other is based on the N ’th Residuosity
Assumption [Pa99].1 This notion of smooth projective hashing was later used by Gennaro and
Lindell [GL03] in the context of key generation from humanly memorizable passwords. That work
abstracts and generalizes an earlier protocol for this problem [KOY01], whose security is based on
the DDH Assumption.

∗Much of this work was carried out while visiting IBM T.J. Watson Research, New York. Also supported in part
by NSF CyberTrust grant CNS-0430450.

1The N ’th Residuosity Assumption is also referred to in the literature as the Decisional Composite Residuosity
Assumption and as Paillier’s Assumption.
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In this paper, we use smooth projective hashing to construct efficient two-message oblivious
transfer protocols. Our work follows the same pattern, in that it abstracts and generalizes earlier
protocols for this problem [NP01, AIR01] whose security is based on the DDH Assumption. Using
smooth projective hashing in this context raises a new issue. Specifically, we must deal with the
case that the hash family itself is chosen maliciously by the adversary. To this end, we add an extra
requirement to the definition of smooth projective hashing. This issue did not arise in the previous
two applications because these were either in the public key model or in the common reference
string model.

We show that even with this additional requirement, we can still construct smooth projective
hashing from any of the following assumptions: the DDH Assumption, the N ’th Residuosity As-
sumption, and the Quadratic Residuosity Assumption. Moreover, for the last two constructions we
can prove security even when the underlying RSA-composite is not a product of safe primes. We
note that all previous factoring-based constructions of smooth projective hashing did rely on the
assumption that the underlying RSA-composite is a product of safe primes.

1.1 Oblivious Transfer

Oblivious transfer is a protocol between a sender, holding two strings γ0 and γ1, and a receiver
holding a choice bit b. At the end of the protocol the receiver should learn the string of his choice
(i.e., γb) but learn nothing about the other string. The sender, on the other hand, should learn
nothing about the receiver’s choice b.

Oblivious transfer, first introduced by Rabin [Rab81], is a central primitive in modern cryp-
tography. It serves as the basis of a wide range of cryptographic tasks. Most notably, any secure
multi-party computation can be based on a secure oblivious transfer protocol [Y86, GMW87, Ki88].
Oblivious transfer has been studied in several variants, all of which have been shown to be equiv-
alent. The variant considered in this paper is the one by Even, Goldreich and Lempel [EGL85]
(a.k.a. 1-out-of-2 oblivious transfer), shown to be equivalent to Rabin’s original definition by
Crépeau [Cr87].

The study of oblivious transfer has been motivated by both theoretical and practical consider-
ations. On the theoretical side, much work has been devoted to the understanding of the hardness
assumptions required to guarantee oblivious transfer. We note that known constructions for oblivi-
ous transfer are based on relatively strong computational assumptions – either specific assumptions
such as factoring or Diffie Hellman (cf. [Rab81, BM89, NP01, AIR01]) or generic assumptions such
as the existence of enhanced trapdoor permutations (cf. [EGL85, Go04, Hai04]). Unfortunately,
oblivious transfer cannot be reduced in a black box manner to presumably weaker primitives such
as one-way functions [IR89]. On the practical side, research has been motivated by the fact that
oblivious transfer is considered to be the main bottleneck with respect to the amount of compu-
tation required by secure multi-party protocols. This makes the construction of efficient protocols
for oblivious transfer a well-motivated task.

In particular, constructing round-efficient oblivious transfer protocols is an important task.
Indeed, [NP01] (in Protocol 4.1) and [AIR01] independently constructed a two-message (1-round)
oblivious transfer protocol based on the DDH Assumption (with weaker security guarantees than
the simulation based security). Their work was the starting point of our work.
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1.2 Smooth Projective Hashing

Smooth projective hashing was introduced by Cramer and Shoup [CS02]. Informally, a projective
hash family is a family of keyed hash functions with two types of keys: the primary hashing key
that can be used to compute the hash function on every point in its domain, and a projective
key that can only be used to compute the hash function on a “special subset” of its domain.
Moreover, to efficiently compute the hash value using the projective key one also needs a “witness”
for membership in the special subset. (The domain is typically denoted by X and the special subset
is typically denoted by L.) A projective hash family is smooth if the projective key gives (almost) no
information about the value of the hash function on points outside the special subset. An important
property that is used in all the applications of such families is that it is hard to distinguish members
of the special subset from non-members. This is called the hard subset membership property.

1.3 Oblivious transfer from smooth projective hashing

We present a methodology for constructing a two-message oblivious transfer protocol from any
(variant of a) smooth projective hash family. In particular, the protocols of [NP01, AIR01] can be
viewed as a special case of this methodology. Moreover, we show that this methodology gives rise
to two new oblivious transfer protocols; one based on the Quadratic Residuosity Assumption, and
the other based on the N ’th Residuosity Assumption.

Our protocols, similarly to the protocols of [NP01, AIR01], are not known to be secure according
to the traditional simulation based definition. Yet, they have the advantage of providing a certain
level of security even against malicious adversaries without having to compromise on efficiency (see
Section 3 for further discussion on the guaranteed level of security).

The basic idea. Given a smooth projective hash family with the hard subset membership prop-
erty, consider the following two-message oblivious transfer protocol. Recall that the sender S takes
as input a pair of strings γ0, γ1, and the receiver R takes as input a choice bit b.

R→ S: Generate the hashing parameters Λ (that define the domain X and the special subset L).
Choose a random triple (x0, x1, wb) where xb ∈R L, wb is a “witness” for membership of
xb ∈ L, and x1−b ∈R X \ L. Send (Λ, x0, x1).

S → R: Choose independently at random two primary hashing keys k0, k1 together with their
corresponding projective keys pk0, pk1. Send pk0 and pk1 along with y0 = γ0 ⊕Hk0(x0) and
y1 = γ1 ⊕Hk1(x1).

R: Retrieve γb by computing yb ⊕Hkb
(xb), using the witness wb and the projective key pkb.

The security of the receiver is implied by the hardness of the subset membership problem on X,
since guessing the value of b implies distinguishing between a random member and a random non-
member. The security of the sender is implied by the smoothness property of the hash family.
Specifically, given a random projective key pk and any element in x ∈ X \ L, the value Hk(x) is
statistically indistinguishable from random. Thus, the message y1−b gives no information about
γ1−b (since x1−b ∈ X \ L). Note that the functionality of the protocol is implied by the projection
property.
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Malicious receivers. The above protocol works for an honest-but-curious receiver, but the se-
curity of the sender is no longer guaranteed when considering malicious receivers. The reason is
that there is no guarantee that the receiver will choose x1−b ∈ X \ L. A malicious receiver might
choose x0, x1 ∈ L and learn both γ0 and γ1. To overcome this problem, we extend the notion of
smoothness so that it is possible to verify that the function is smooth on at least one of x0, x1

(and in particular at least one of them in not in L). Note that this must hold even if the hashing
parameters Λ are maliciously chosen by the receiver.

Implementing this extended notion in the context of the DDH assumption is straightforward
[NP01, AIR01]. Loosely speaking, in this case the hashing parameters consist of a prime p and two
elements g0, g1 ∈ Z∗p of prime order q|(p−1). The hashing domain is X

def= 〈g0〉×〈g1〉 = {(gr0
0 , gr1

1 ) :

r0, r1 ∈ Zq}, the special subset is L
def= {(gr

0, g
r
1) : r ∈ Zq}, and the witness is the exponent r. To

enable the sender to verify that two elements x0, x1 are not both in L, we instruct the receiver to
generate x0, x1 by choosing at random two distinct elements r0, r1 ∈ Zq, setting xb = (gr0

0 , gr0
1 ),

wb = r0, and x1−b = (gr0
0 , gr1

1 ). Notice that xb is uniformly distributed in L, x1−b is uniformly
distributed in X \ L, and the sender can easily verify that at least one of x0, x1 is not in L by
merely checking that they agree on their first coordinate and differ on their second coordinate.

1.4 Factoring-based smooth projective hashing

Implementing smooth projective hashing with the extra verifiability property in the context of the
Quadratic Residuosity Assumption and the N ’th Residuosity Assumption is not as easy. This part
contains the bulk of technical difficulties of this work.

On top of providing the additional verifiability property, we were also able to somewhat relax
the underlying assumptions that were used in prior work. The factoring-based constructions of
smooth projective hashing, in the work of Cramer and Shoup (as well as all subsequent works),
were only proven secure for the special case where the RSA-composite in use is a product of safe
primes. Namely, they used N = pq where p, q are distinct odd primes such that p′ = (p− 1)/2 and
q′ = (q − 1)/2 are also odd primes.2 This restriction was explained by “technical reasons,” but we
observe that it is not needed: in fact our factoring-based constructions can be proven secure also
for “generic” RSA-composites (i.e., for any N = pq where p, q are two odd primes of the same size).

Moreover, using the same tools we can eliminate the need for safe primes in the CCA encryption
schemes that are based on smooth projective hashing (i.e., they too can be implemented without
safe primes). Indeed, we observe that encryption schemes in the literature that are based on the
N ’th Residuosity or Quadratic Residuosity Assumptions (cf. [CS02, GL03, CS03]) remain secure
even when the underlying RSA-composite is not chosen as a product of safe primes. In the appendix
we explain how the proofs for the existing schemes can be modified to prove this stronger result,
and exemplify it in detail for the proof of Camenisch and Shoup from [CS03]. (We did not check
whether the same applies also to the password protocols in [GL03] and [CHK+05] or the proofs of
correct encryption and decryption from [CS03].)

Eliminating the safe primes. We describe the idea that allows us to eliminate the need for safe
primes in the construction of smooth projective hashing based on the N ’th Residuosity Assumption.
(For the construction based on the Quadratic Residuosity Assumption, the idea is similar but even
simpler.)

2p′ and q′ are also called Sophie Germain primes.
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The only place where prior work really used the safe-prime condition is in proving the hard
subset membership property. Namely, one needs to prove that it is hard to distinguish the special
subset of the hashing scheme from the entire domain. In the construction based on the N ’th
Residuosity Assumption, the hashing parameters are the RSA-composite N and a random N ’th
residue g modulo N2, the hashing domain is Z∗N2 and the special subset is the subgroup 〈g〉 that is
generated by g. The safe-prime condition is used to argue that the randomly chosen N ’th residue g
generates the subgroup of all the N ’th residues with high probability.3 Thus, the N ’th Residuosity
Assumption immediately implies that it is hard to distinguish the special subset from the entire
domain.

When N is just a plain old RSA-composite, we lose the property that a random N ’th residue
generates the whole subgroup of N ’th residues (this subgroup is typically not cyclic). We thus need
to work slightly harder to prove the hard subset membership property. In Lemma 2 we show that
the N ’th Residuosity Assumption implies that it is hard to distinguish the subgroup L

def= 〈g〉 from
the subgroup X

def= 〈g〉·〈1 + N〉 of all the elements that can be generated as x← gr(1+N)s mod N2.
We therefore get a smooth projective hashing scheme with domain X and special subset L, and we
have the hard subset membership property.

One can see, however, that this construction is still missing one aspect that was present in prior
notions. Namely, there could be elements of Z∗N2 that are not in the hashing domain X. Moreover,
given the parameters N, g and an element x ∈ Z∗N2 , there does not seem to be an easy way of
deciding whether or not x ∈ X. This does not pose any problem for the application to oblivious
transfer, but it potentially poses some problems in the case of chosen-ciphertext-secure encryption.
Luckily, solving this issue in the context of encryption turns out to be quite straightforward, as we
show in the appendix.

2 Notations

For any positive integer X we denote the set {0, 1, . . . , X − 1} by either [X] or ZX . We always
denote the security parameter by n. A function ν : N → [0, 1] is said to be negligible if for every
polynomial p(·) and for every large enough n, ν(n) < 1/p(n). For an algorithm A, y ← A(x)
denotes running A on input x and assigning the result to y. If A is randomized, then y is a random
variable. We denote by x ∈R S the action of uniformly choosing an element from the set S.

For any two random variables X, Y , we say that X and Y are ε-close, denoted X
ε
≈ Y , if

Dist(X, Y ) ≤ ε, where Dist(X, Y ) denotes the statistical difference between X and Y .4 We say
that the ensembles X = {Xn}n∈N and Y = {Yn}n∈N are statistically indistinguishable, denoted
X

s≡ Y , if there exists a negligible function ε(·) such that for every n ∈ N, the random variables
Xn and Yn are ε(n)-close.

We say that the ensembles X = {Xn}n∈N and Y = {Yn}n∈N are computationally indistinguish-
able, denoted X

c≡ Y , if for every non-uniform probabilistic polynomial-time (PPT) distinguisher
D there exists a negligible function ε(·) such that for every n ∈ N,

|Pr[D(Xn) = 1]− Pr[D(Yn) = 1]| < ε(n)
3Making this argument requires considering only elements with Jacobi symbol +1, but this technicality is irrelevant

for our current discussion.
4Recall that Dist(X, Y ) , 1

2

∑
s∈S |Pr[X = s] − Pr[Y = s]|, or equivalently, Dist(X, Y ) , maxS′⊂S |Pr[X ∈

S′] − Pr[Y ∈ S′]|, where S is any set that contains the support of both X and Y .
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For simplicity, throughout this paper we say that two random variables Xn and Yn are computa-
tionally (or statistically) indistinguishable, meaning that the corresponding distribution ensembles
{Xn}n∈N and {Yn}n∈N are computationally (or statistically) indistinguishable.

3 Security of Oblivious Transfer

Our definition of oblivious transfer is similar to the ones considered in previous works on oblivious
transfer in the Bounded Storage Model [DHRS04, CCM98], and similar to the definition considered
in [NP01] in the context of their DDH-based two-message oblivious transfer protocol. We remark
that the definition below is specific for two-message protocols, as we only deal with such protocols
in this work.

Definition 1 (Secure implementation of Oblivious Transfer) A two-message, two-party pro-
tocol (S, R) is said to securely implement oblivious transfer for `-bit strings (where ` : N→ N) if it is
a protocol in which both the sender and the receiver are probabilistic polynomial-time machines that
get as input a security parameter n in unary representation. Moreover, the sender gets as input
two strings γ0, γ1 ∈ {0, 1}`(n), the receiver gets as input a choice bit b ∈ {0, 1}, and the following
conditions are satisfied:

• Functionality: If the sender and the receiver follow the protocol then for any security parameter
n, any two input strings γ0, γ1 ∈ {0, 1}`(n), and any bit b, the receiver outputs γb whereas the
sender outputs nothing.5

• Receiver’s security: The ensembles {R(1n, 0)}n∈N and {R(1n, 1)}n∈N are computationally in-
distinguishable; i.e.,

{R(1n, 0)}n∈N
c≡ {R(1n, 1)}n∈N

where R(1n, b) denotes the message sent by the honest receiver with input (1n, b).

• Sender’s security: There is a negligible function ν such that for any n > 0, any two messages
γ0, γ1 ∈ {0, 1}`(n), and any message q ∈ {0, 1}∗ (from a possibly cheating, not necessarily
polynomial-time receiver), it holds that

Dist(S(1n, γ0, γ1, q), S(1n, γ0, 0`(n), q)) ≤ ν(n) or Dist(S(1n, γ0, γ1, q), S(1n, 0`(n), γ1, q)) ≤ ν(n)

where S(1n, γ0, γ1, q) denotes the response of the honest sender with input (1n, γ0, γ1) when
the receiver’s first message is q.

Note that Definition 1 (similarly to the definitions in [DHRS04, CCM98, NP01]) departs from
the simulation-based definition in that it handles the security of the sender and of the receiver
separately. This results in a somewhat weaker security guarantee.

The simulation-based definition compares the “real world,” where the parties execute the pro-
tocol, to an “ideal world,” where no message is exchanged between the two parties; rather, there is
an “ideal functionality” (or a trusted party) that takes an input from both parties, computes the
output of the Oblivious Transfer functionality on these inputs, and sends the corresponding output
to each party. Loosely speaking, the simulation-based definition asserts that for every non-uniform

5This condition is also referred to as the completeness condition.
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probabilistic polynomial-time adversary A (controlling either the sender of the receiver) in the
“real world” there exists a non-uniform probabilistic polynomial-time simulator S, controlling the
same party in the “ideal world,” that for any input can simulate the view of the adversary A in a
computationally indistinguishable manner.

We note that Definition 1 does give a simulation-based guarantee in the case that the sender
is corrupted. In this case the simulator, who does not know the choice bit of the receiver, can
simulate the message of the receiver by setting it to be R(1n, 0).6 The fact that this view is
indistinguishable from the “real world” view follows from the receiver’s security which asserts that
{R(1n, 0)}n∈N

c≡ {R(1n, 1)}n∈N.
On the other hand, Definition 1 does not give a simulation-based guarantee in the case that the

receiver is corrupted. The reason is that a malicious receiver is not guaranteed to “know” its input
bit b, and therefore the simulator does not know which input bit to feed the ideal functionality in
order to obtain the desired output γb. However, Definition 1 does guarantee an exponential time
simulation of the receiver’s view of the interaction (similarly to the definition of [NP01]). Loosely
speaking, the simulator extracts the bit b from the malicious receiver (in exponential time), feeds it
to the ideal functionality, receives an output γ, and simulates the sender’s message in the protocol by
setting it to be S(γ, 0`(n), q) if b = 0 and S(0`(n), γ, q) if b = 1, where q is the first message sent by the
malicious receiver. This implies that the interaction gives no information to an unbounded receiver
beyond the value of γb. We note that if the receiver is semi-honest (a.k.a, honest but curious), then
the simulator works in polynomial time, and thus Definition 1 does guarantee simulation-based
security for semi-honest adversaries.

4 Smooth Projective Hash Functions

Our definition of smooth projective hashing differs in some ways from prior definitions [CS02, GL03],
mainly in that we add the requirement that it is possible to verify that at least one of two given
elements is a “non-member.” We also depart from the presentation in previous work and define
the notion of smooth projective hashing in terms of the procedures that are used to implement it
rather than in terms of languages and sets. (This is merely a presentation issue, but we believe
that it makes the presentation clearer.) At the end of this section we briefly discuss the mapping
between our presentation and the one used in previous work.

Syntax. A hash family H is defined by means of the following six polynomial-time algorithms,
H = (PG, IS, IT,HG,Hash, pHash):

• The parameter-generator PG is a randomized algorithm that takes as input the security
parameter and outputs some parameters, Λ ← PG(1n). We sometimes assume for simplicity
that |Λ| = n whenever Λ is in the support of PG(1n).

• The instance-sampler IS is a randomized algorithm that takes as input the parameters Λ and
outputs a triple, (w, x, x′)← IS(Λ). The intent is that x is a member of the special subset, x′

is a non-member, and w is a witness for the membership of x in the special subset.
6Notice that in this case the simulator does not benefit from the ideal functionality since the sender does not

receive any output from the ideal functionality.
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• The instance-testing algorithm IT tests the parameters Λ and two strings x0, x1, namely
IT(Λ, x0, x1) ∈ {0, 1}. The intent is to test that at least one of x0, x1 is not a member in the
special subset.

• The hash-key generator HG is a randomized algorithm that takes as input the parameters Λ
and outputs two keys (i.e., a primary hashing key and a projective key), (hk, pk)← HG(Λ).

• The primary hash algorithm Hash takes the parameters Λ and hash key k and an element x
and outputs a string y ← Hash(Λ, hk, x).

• The secondary (projection) hash algorithm pHash takes the parameters Λ and projective key pk
and two elements (w, x) and outputs a string y ← pHash(Λ, pk, w, x).

For every string Λ, consider using Λ as the hashing parameters and let GΛ denote the set of
possible hash values with these parameters, namely

GΛ
def= {Hash(Λ, hk, x) : (w, x, x′) ∈ support(IS(Λ)), (hk, pk) ∈ support(HG(Λ))}
∪ {Hash(Λ, hk, x′) : (w, x, x′) ∈ support(IS(Λ)), (hk, pk) ∈ support(HG(Λ))}

It helps to think of GΛ as a group where we can efficiently compute the group operation and its
inverse. In most of this paper, the group GΛ will be the set of `-bit strings (with the xor operation)
where ` = `(|Λ|) for some polynomially-bound function `(·).

Definition 2 Let H = (PG, IS, IT,HG,Hash, pHash) and let Λ and x be two strings.

Smoothness. Let ε ≥ 0. We say that H is ε-smooth on (Λ, x) if the following two distributions
are ε-close:[

(pk, Hash(Λ, hk, x))
]

(hk,pk)←HG(Λ)

and
[
(pk, y)

]
(hk,pk)←HG(Λ), y∈RGΛ

The first distribution is induced by choosing (hk, pk)← HG(Λ) and outputting (pk, Hash(Λ, hk, x)),
and the second is induced by choosing independently y ∈R GΛ and (hk, pk)← HG(Λ) and out-
putting (pk, y).

Projection. We say that H is projective on (Λ, x) if whenever both (hk, pk) and (hk′, pk) (with
the same pk) are in the support of HG(Λ), it holds that Hash(Λ, hk, x) = Hash(Λ, hk′, x).

It is easy to verify that ε-smoothness on (Λ, x) and projection on (Λ, x) are contradictory require-
ments (assuming that ε < 1− 1

|GΛ|).

Definition 3 (Smooth Projective Hashing) A family H = (PG, IS, IT,HG,Hash, pHash) is a
smooth projective hash family if there exists a negligible function ε : N → [0, 1] such that for every
Λ ∈ support(PG), every (w, x, x′) ∈ support(IS(Λ)), and every (hk, pk) ∈ support(HG(Λ)), it holds
that

(a) pHash(Λ, pk, w, x) = Hash(Λ, hk, x).

(b) H is ε(|Λ|)-smooth on (Λ, x′).
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(Clearly condition (a) above implies in particular that H is projective on (Λ, x), since the left-hand-
side is independent of hk except via the corresponding pk.)

Definition 4 (Verifiable Smoothness) A smooth projective hash family H = (PG, IS, IT,HG,
Hash, pHash) is verifiably smooth if in addition to (a), (b) it holds that:

(c) For every Λ ∈ support(PG) and every (w, x, x′) ∈ support(IS(Λ)), it holds that IT(Λ, x, x′) =
IT(Λ, x′, x) = 1.

(d) For every Λ, x0, x1 such that IT(Λ, x0, x1) = 1, it holds that either H is ε(|Λ|)-smooth on
(Λ, x0) or it is ε(|Λ|)-smooth on (Λ, x1) (or both).

Definition 5 (Hard Subset Membership) A smooth projective hash family H = (PG, IS, IT,
HG,Hash, pHash) is said to have a hard subset membership property if the distribution ensembles
{An}n∈N, {Bn}n∈N defined below are computationally indistinguishable:

Distribution An: Choose at random Λ← PG(1n) and (w, x, x′)← IS(Λ) and output (Λ, x, x′).
Distribution Bn: Choose at random Λ← PG(1n) and (w, x, x′)← IS(Λ) and output (Λ, x′, x).

Note that the difference between An and Bn is just in the order of x and x′. Note also that this
condition is stronger than just requiring indistinguishability between members and non-members in
the special subset (since x and x′ may be chosen in a dependent manner). This stronger requirement
is needed for the Oblivious Transfer application.

4.1 Comments

The definitions above are formulated in a way that is convenient for use in our application of
Oblivious Transfer, but may make it harder to see the correspondence to the notions that were
defined in previous work [CS02, GL03]. We now briefly discuss this correspondence and provide
some other clarifications.

Dealing with “bad inputs.” We stress from the outset that many of the notations and defini-
tions above do not depend on the inputs to the various algorithms being chosen “the right way.” For
example, the set GΛ is well defined even when Λ is not in the support of the parameter-generation
algorithm, and similarly the property of H being ε-smooth on (Λ, x) is well-defined for any two
strings Λ and x.

In our application to Oblivious Transfer, we will use the hashing values only for instances that
pass the instance-testing procedure, and will use that procedure to weed out nonsensical inputs. In
particular, if we have some parameters Λ′ that are mal-formed (in a recognizable way) we can have
the instance-testing always rejecting them, and then the verifiable-smoothness requirement will be
vacuous for such parameters.

Hash domain and the “special subset.” Previous works presented the definitions in terms
of some (parameter dependent) domain XΛ for the hash function, and a “special subset” of that
domain, which is an NP language LΛ ⊂ XΛ. They also required that it be possible to sample both
members of LΛ and non-members in XΛ \ LΛ. In our case, the special subset LΛ is the support
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of the second element in the output of the instance-sampler, and the non-members XΛ \ LΛ is the
support of the third element, namely

LΛ = {x : ∃ w, x′ s.t. (w, x, x′) ∈ support(IS(Λ))}
XΛ \ LΛ = {x′ : ∃ w, x s.t. (w, x, x′) ∈ support(IS(Λ))}.

Since we require that the hash family is projective on members of the special subset and smooth
on non-members, it follows that these two sets are indeed disjoint (assuming that |GΛ| > 1).

The sampleable distributions on these sets are the ones induced by the instance-sampler. We
comment that for our application we need to choose these elements in a dependent manner, since
we need to sample pairs (x, x′) that the instance-testing procedure accepts.

Projection and smoothness. The projection definition that we use is the usual one: for x ∈ LΛ

(i.e., x that was output as the second element in the output of IS(Λ)), the value of Hash(Λ, hk, x)
is determined by the corresponding projective key pk, and moreover it can be efficiently computed
given a “witness” w using the algorithm pHash(Λ, pk, w, x). (This implies in particular that if there
are a few “witnesses” for the same x, the value of pHash(Λ, pk, w, x) is the same for all of them.)

Our smoothness definition is the per-instance definition of Gennaro-Lindell rather than “random
instance” definition of Cramer-Shoup. That is, we need H to be smooth for every non-member x
rather than just for a random non-member.

The group GΛ. Although it is always possible to use GΛ = {0, 1}` (see discussion after Defini-
tion 6 in Section 6) one can sometime gain efficiency by working with other groups. (For example,
for constructions based on DDH it is more natural to work with the underlying DDH group.) The
properties that we need from GΛ for our construction to work are the following:

• GΛ should be a quasigroup7 where the operation and “its inverse” can be efficiently computed.
Namely, there should be polynomial-time algorithms op(Λ, ·, ·) and inv(Λ, ·, ·) such that op
computes the quasigroup operation in GΛ and inv(Λ, op(Λ, x, y), y) = x for all x, y ∈ GΛ.

• It should be possible to encode and decode the sender’s inputs as elements in GΛ. If the
sender’s inputs are `-bit strings, there should be polynomial-time algorithms Encode,Decode
so that for all s ∈ {0, 1}` it holds that Encode(Λ, s) ∈ GΛ and Decode(Λ,Encode(Λ, s)) = s.

Some redundancies. One can observe that the definitions above are somewhat redundant. For
example, it is not hard to see that conditions (a), (c) and (d) of Definitions 3 and 4 together imply
also condition (b) (assuming that |GΛ| > 1). Also if H has the hard subset membership property
then requiring IT(Λ, x, x′) = 1 in condition (c) of Definition 4 implies that also IT(Λ, x′, x) = 1
(except perhaps with a negligible probability).

5 Constructing 2-Message OT Protocols

We now show how to construct a two-message Oblivious Transfer protocol from smooth projective
hash functions (defined in Section 4).

7(G, ·) is a quasigroup if for all a, b ∈ G there exist unique x, y ∈ G such that a · x = y · a = b.
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Let ` : N→ N be a (polynomially-bounded, efficiently computable) function, letH = (PG, IS, IT,
HG,Hash, pHash) be a verifiably-smooth projective hash family with the hard subset membership
property (cf. Definitions 3-5), and assume for simplicity that for every setting of the parameters
Λ ∈ {0, 1}∗ it holds that GΛ = {0, 1}`(|Λ|).8 (At the end of this section we briefly discuss the
(straightforward) modifications that are needed to deal with other domains.)

Let n be the security parameter. Let (γ0, γ1) be the input of the sender, where γ0 and γ1 are
`(n)-bit strings, and let b ∈ {0, 1} be the input of the receiver.

R → S: The receiver chooses the hashing parameters Λ ← PG(1n). He then samples random
instances (w, x, x′)← IS(Λ), sets xb := x and x1−b := x′, and sends (Λ, x0, x1) to the sender.

S → R: The sender invokes the testing algorithm IT(Λ, x0, x1) (to verify that the hashing is
smooth on at least one of x0, x1). If the test fails then the sender aborts.

Otherwise the sender runs the hash-key generation algorithm twice independently to get
(hk0, pk0) ← HG(Λ) and (hk1, pk1) ← HG(Λ), sets y0 ← γ0 ⊕ Hash(Λ, hk0, x0) and y1 ←
γ1 ⊕ Hash(Λ, hk1, x1), and sends (pk0, pk1, y0, y1) to the receiver.

R: The receiver retrieves γb by computing γb ← yb ⊕ pHash(Λ, pkb, w, x).

We next prove that the above protocol is secure according to Definition 1. The functional-
ity follows from the fact that H is projective, which means that the value Hash(Λ, hk, xb) that the
sender computes is equal to the value pHash(Λ, pkb, w, x) that the receiver computes. The receiver’s
security follows from the hard subset membership property, which means that it is hard to distin-
guish between the pairs (x, x′) and (x′, x). The sender’s security follows from verifiable smoothness,
which means that for at least one of b ∈ {0, 1} the value of Hash(Λ, hkb, xb) is (almost) random in
GΛ = {0, 1}`, even given the projective key pkb.

Theorem 1 The above 2-message OT protocol is secure according to Definition 1, assuming that
H is a verifiably-smooth projective hash family that has the hard subset membership property.

Proof The functionality trivially follows from H being projective. Similarly, the receiver’s secu-
rity trivially follows from H having the hard subset membership property, since {R(1n, 0)}n∈N =
{An}n∈N and {R(1n, 1)}n∈N = {Bn}n∈N. Hence a probabilistic polynomial-time sender Ŝ that can
predict with non-negligible advantage the choice bit b when interacting with R(1n, b) (on infinitely
many auxiliary inputs {zn}n∈N with |zn| ≤ poly(n)) is by definition a distinguisher between {An}n∈N
and {Bn}n∈N from Definition 5.

It is left to prove the sender’s security. Fix n ∈ N and γ0, γ1 ∈ {0, 1}`(n). Let X be the first
message sent by the receiver, and parse X = (Λ, x0, x1). If X is rejected by the testing algorithm,
i.e. IT(Λ, x0, x1) = 0, then the sender aborts regardless of its input (so the three random variables
S(1n, γ0, γ1, X), S(1n, γ0, 0`(n), X), and S(1n, 0`(n), γ1, X) are identical). If IT(Λ, x0, x1) = 1 then
by verifiable smoothness we know that either H is ε-smooth on (Λ, x0) or it is ε-smooth on (Λ, x1),

8Recall that mal-formed Λ’s can be handled using the instance-testing algorithm. See discussion in Section 4.1.
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for some negligible ε. In the latter case we have

S(1n, γ0, γ1, X) = (pk0, pk1, γ0 ⊕ Hash(Λ, hk0, x0), γ1 ⊕ Hash(Λ, hk1, x1))
ε
≈ (pk0, pk1, γ0 ⊕ Hash(Λ, hk0, x0), γ1 ⊕ y)y∈R{0,1}`(n)

= (pk0, pk1, γ0 ⊕ Hash(Λ, hk0, x0), 0`(n) ⊕ y)y∈R{0,1}`(n)

ε
≈ (pk0, pk1, γ0 ⊕ Hash(Λ, hk0, x0), 0`(n) ⊕ Hash(Λ, hk1, x1))
= S(1n, γ0, 0`(n), X)

and in the former case we similarly get S(1n, γ0, γ1, X)
2ε
≈ S(1n, 0`(n), γ1, X). This concludes the

proof, since ε = ε(n) is negligible in n.

5.1 Working with different GΛ

In the protocol above we assumed that for all Λ the group GΛ is {0, 1}`(|Λ|). To work with other
(quasi) groups we need the additional properties that were discussed at the end of Section 4.1. The
protocol then needs to be modified so that instead of just computing yb ← γb⊕Hash(Λ, hkb, xb), the
sender encodes γb as an element Γb ∈ GΛ and then sends to the receiver Yb ← Γb · Hash(Λ, hkb, xb)
with ‘·’ being the (quasi) group operation. Similarly, the receiver computes the “inverse operation”
Γb ← inv(Λ, Yb, pHash(Λ, pkb, w, x)) and decode Γb to get γb.

The security of this protocol is proven similarly to Theorem 1. The arguments for functionality
and receiver security are exactly as before. As for the sender security, we now replace γ ⊕ y for
y ∈R {0, 1}`(n) by Γ ·Y for y ∈R GΛ. Since GΛ is a quasigroup, this last distribution is the uniform
distribution over GΛ, regardless of what Γ is, and the proof follows.

6 Constructing Smooth Projective Hash Families

We next present two constructions of verifiably-smooth projective hash families with the hard
subset membership property. In one construction the hard subset membership property is based
on the Quadratic Residuosity Assumption, and in the other the hard subset membership property
is based on the N ’th Residuosity Assumption. A key vehicle in both constructions is the notion of
a verifiably-ε-universal projective hash family.

Definition 6 (Universal Hashing) Let H = (PG, IS, IT,HG,Hash, pHash), let Λ and x be two
strings, and let ε > 0. We say that H is ε-universal on (Λ, x) if for any y0 ∈ GΛ and any pk0 it
holds that

Pr
(hk,pk)

[pk = pk0 and Hash(Λ, hk, x) = y0] ≤ ε · Pr
(hk,pk)

[pk = pk0]

where the probability is taken over a random choice (hk, pk)← HG(Λ).

Definition 7 (Verifiably-ε-universal Projective Hashing) Let ε(·) be a function. A family
H = (PG, IS, IT,HG,Hash, pHash) is an ε-universal projective hash family if for every Λ in the
support of PG, every (w, x, x′) in the support of IS(Λ), and every (hk, pk) in the support of HG(Λ),
it holds that
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(a) pHash(Λ, pk, w, x) = Hash(Λ, hk, x).

(b′) H is ε(|Λ|)-universal on (Λ, x′).

We say that H is verifiably-ε-universal projective hash family if in addition:

(c) For every Λ in the support of PG and every (w, x, x′) in the support of IS(Λ), it holds that
IT(Λ, x, x′) = IT(Λ, x′, x) = 1.

(d′) For every Λ, x0, x1 such that IT(Λ, x0, x1) = 1, it holds that either H is ε(|Λ|)-universal on
(Λ, x0) or it is ε(|Λ|)-universal on (Λ, x1) (or both).

Note that conditions (a) and (c) are identical to the ones in Definitions 3 and 4, and con-
ditions (b′) and (d′) only differ in that we replaced ε-smooth by ε-universal (and ε need not be
negligible).

Cramer and Shoup have shown in [CS02] how to transform an ε-universal projective hash family
into a smooth projective hash family (for any ε < 1), and the same transformation also works for
transforming verifiably-ε-universal projective families into verifiably-smooth projective families. In
a nutshell, one first reduces ε to εt by choosing t independent hashing key-pairs and hashing t
times the same element. One then uses a “strong randomness extractor” [NZ96] to extract a nearly
uniform bit string from the t hash values. The new hash algorithms thus use t keys of the original
algorithms and also the seed s for the extractor, setting

Hash′(Λ, (s, hk1, . . . , hkt), x) = Extract(s;Hash(Λ, hk1, x), . . . ,Hash(Λ, hkt, x))
pHash′(Λ, (s, pk1, . . . , pkt), w, x) = Extract(s; pHash(Λ, pk1, w, x), . . . , pHash(Λ, pkt, w, x))

To extract ` bits, it is sufficient to choose t so that t · log(1/ε) ≥ ` + ω(log(|Λ|)). We comment
that the resulting construction always has G′Λ = {0, 1}`, regardless of the group GΛ of the original
construction. Further details are omitted and the reader is referred to [CS02]. We conclude that
to prove existence of verifiably-smooth projective hash families it suffices to construct verifiably-ε-
universal projective hash families. In the remaining of this paper we present two such constructions,
one based on the N ’th Residuosity Assumption and the other based on the Quadratic Residuosity
Assumption. Both schemes are obtained by modifying the universal projective schemes of Cramer
and Shoup to add the verifiable-universality property (and also to improve some parameters).

6.1 A construction based on the N ’th Residuosity Assumption

Let p, q be two distinct odd primes, let N = pq and let RN be the subgroup consisting of all N ’th
powers of elements in the multiplicative group Z∗N2 . The N ’th Residuosity Assumption, originally
introduced by Paillier [Pa99], asserts (informally) that given only N , it is hard to distinguish
random elements of Z∗N2 from random elements of RN .

The Cramer-Shoup Scheme. Cramer and Shoup constructed in [CS02] an ε-universal projec-
tive hash family from the N ’th Residuosity Assumption (in the special case where N is a product
of two safe primes). Omitting some details, the hash parameters Λ are the modulus N = pq
and an N ’th residue g ∈ RN (with Jacobi symbol +1), the hashing key is a random integer
k ∈R {1, 2, . . . , bN2/2c}, the projective key is pk = gk mod N2, and the hash is computed as
Hash(N, g, k, x) = xk mod N2. The “special subset” is LN,g = {gw : w < N/2}, the exponent w is
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a “witness” for x ∈ LN,g, and the “non-members” are those elements x ∈ Z∗N2 (with Jacobi symbol
+1) whose order is divisible by p or q.9 Given the witness w for the element x and the projective
key pk, one can compute the hash value as

pHash(N, g, pk, w, x) = pkw = gkw = xk mod N2

Cramer and Shoup proved that when N is a product of two safe primes, this scheme is an ε-universal
projective family with ε ≈ max{1/p, 1/q}). Moreover, for that case they reduced distinguishing
members from non-members to the N ’th Residuosity Assumption. In their proofs they make strong
use of the fact that when N is a product of two safe primes, the N ’th residues are exactly those
elements of Z∗N2 whose order is co-prime to N , and moreover the subgroup of N ’th residues with
Jacobi symbol +1 is cyclic.

Our Modifications. In our case we must also consider a maliciously chosen modulus N that is
not necessarily a product of two primes. To get verifiable smoothness (or verifiable universality) we
need a way of checking that (a) the order of the element g is co-prime with N , and (b) the order of
at least one of the two given elements x0, x1 is not co-prime with N . For the former, since we do
not know how to test that g belongs to the subgroup of elements whose order is co-prime with N ,
we instead force it into that subgroup by raising it to the power of N d2 log Ne. Namely, instead of
using the element g itself we use the element gNd2 log Ne

mod N2.
The latter verification can in principle be done simply by checking that the order of x1/x0 in

Z∗N2 is divisible by N (and greater than one), which implies that if one of them has order that
is co-prime with N then the other one necessarily does not. In our scheme, however, we use a
slightly more elaborate test that yields better universality bound ε. Specifically, we test that x1/x0

is of the form (1 + vN) where v and N are co-primes. Other modifications that we made to the
Cramer-Shoup scheme are (a) we eliminate the need of safe primes and (b) we do not restrict our
attention to elements with Jacobi symbol +1.

6.1.1 Detailed Construction

Using our notations from Section 4, we now describe the six algorithms that define the hash family
HNR = (PG, IS, IT,HG,Hash, pHash).
Parameter-generator PG(1n). Choose two random n-bit prime numbers p, q (with p < q < 2p).
Set N ← pq, choose an element g′ ∈R Z∗N2 , set g ← (g′)N mod N2, and output Λ = (N, g).

Instance-sampler IS(N, g). Choose v, w ∈R Z∗N , compute T ← N d2 log Ne, x← gTw mod N2 and
x′ ← x · (1 + vN) mod N2. Output (w, x, x′).
Instance-testing algorithm IT(N, g, x, x′). Check that N > 22n and that g, x ∈ Z∗N2 . Then set
d← x′/x mod N2, verify that (d− 1) is divisible by N (over the integers) and set v ← (d− 1)/N .
Finally, verify that v and N are co-primes. Output ‘1’ if all the tests pass and ‘0’ otherwise.
Hash-key generator HG(N, g). Choose k ∈R ZN2 , set T ← N d2 log Ne and pk ← (gT )k mod N2.
Output (k, pk).
Primary hashing algorithm Hash(N, g, k, x). Output xk mod N2.
Projective hash algorithm pHash(N, g, pk, w, x). Output pkw mod N2.

9Note that Paillier’s assumption implies that it is hard to distinguish a random element in Z∗
N2 with Jacobi symbol

+1 from a random N ’th residue with Jacobi symbol +1.
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6.1.2 Proof of Security

Before proving that the construction above satisfies the properties that we need, we recall some
useful facts about the structure of Z∗N2 and restate the N ’th Residuosity Assumption.

Fact 6.1 Let N be a positive integer and let Z∗N2 be the multiplicative group of integers modulo N2.

Then the set GN
def= {1 + vN : v ∈ ZN} is a subgroup of Z∗N2 which is homomorphic to the additive

group ZN . In particular, the order of (1 + vN) in Z∗N2 equals the order of v in ZN .

Assumption 8 (N ’th Residuosity [Pa99]) The following ensembles are computationally indis-
tinguishable

{(N,x) : p, q ∈R Primes(n), N ← pq, x ∈R Z∗N2}n∈N
c≡ {(N, y) : p, q ∈R Primes(n), N ← pq, x ∈R Z∗N2 , y ← xN mod N2}n∈N

where Primes(n) denotes the set of prime numbers between 2n and 2n+1.

Lemma 2 Under the N ’th Residuosity Assumption, the construction of HNR from Section 6.1.1
has the hard subset membership property.

Proof We need to prove indistinguishability between the ensembles

An =
〈
N, g, x, x′

〉
n

and Bn =
〈
N, g, x′, x

〉
where both are taken over choosing

p, q ∈R Primes(n), N ← pq, T ← N d2 log Ne,
g′ ∈R Z∗N2 , g ← (g′)N mod N2,
w, v ∈R Z∗N , x← gTw mod N2, x′ ← x(1 + vN) mod N2

Assume for the sake of contradiction that there exists a PPT algorithm D that distinguishes between
the ensembles An and Bn with non-negligible probability. Let

p1(n) def= Pr[D(N, g, x, x′) = 1], p2(n) def= Pr[D(N, g, x′, x) = 1], and ε(n) def= |p1(n)− p2(n)|

Assume without loss of generality that there is an infinite set S ⊆ N such that for every n ∈ S it
holds that p1(n) ≥ p2(n), and moreover ε(n) = p1(n) − p2(n) ≥ 1

poly(n) . We now describe a PPT
distinguisher D′ for the N ’th Residuosity Assumption, that for every n ∈ S, has an advantage
(close to) ε(n)/2, using D as a subroutine. D′(N, z) works as follows:

1. Choose a random bit b ∈R {0, 1} and v, w ∈R Z∗N .

2. Set g ← zN mod N2, x← zw mod N2, and x′ ← x(1 + vN) mod N2.

3. Set xb ← x and x1−b ← x′, run D to get b′ ← D(N, g, x0, x1), and output b′ ⊕ b.
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We first claim that when the input z is chosen as a random N ’th residue modulo N2 then the
distribution on (N, g, x, x′) is nearly identical to the distribution in the actual scheme. To see this,
first note that since N was chosen as N ← pq where p, q are primes and p < q < 2p − 1, then N
and ϕ(N) are co-primes. Next, we make the simplifying assumption that the exponent w is chosen
at random in Zϕ(N) instead of from Z∗N (in both the reduction and the instant-sampling algorithm
of the scheme itself). It is well known that this modification changes the various distributions by
only O(2−n) (where n is the bit-length of p, q).

Since N and ϕ(N) are co-primes, then multiplication by powers of N is a permutation modulo
ϕ(N), which implies also that exponentiation to powers of N is a permutation on RN . Hence
choosing g ∈R RN (as done in the scheme) induces the same distribution as choosing z ∈R RN

and setting g ← zN mod N2 (as in the reduction). Moreover, choosing w ∈R Zϕ(N) and setting
x← gTw mod ϕ(N) mod N2 (as in the scheme) induces the same distribution as choosing w ∈R Zϕ(N)

and setting x← zw = gN−1w mod ϕ(N) mod N2 (as in the reduction). Finally, computing x′ from x
is done in exactly the same way in the scheme and in the reduction. We thus get that for every
n ∈ S,

Pr
RN

[D′(N, z) = 1] ≥ Pr[b = 0] · Pr[D(N, g, x, x′) = 1] + Pr[b = 1] · Pr[D(N, g, x′, x) = 0]−O(2−n)

=
1
2
·
(
Pr[D(N, g, x, x′) = 1] + (1− Pr[D(N, g, x′, x) = 1])

)
−O(2−n)

=
1 + ε(n)

2
−O(2−n)

where by Pr
RN

[·] we mean the probability over the choice of N and a random choice of z ∈R RN .

We next show that when z is a random element in Z∗N then the input distribution of the
subroutine D of D′ is independent of the bit b. We observe that setting x′ ← x(1 + vN) = zw(1 +
vN) mod N2 induces the same distribution as setting x′ ← x(1 + vwN) = (z(1 + vN))w mod N2.
(Since v, w are uniform and independent in Z∗N , and thus so are w, vw). We therefore consider
this alternate setting of x′ in the analysis. Notice that when z is a random element in Z∗N , the
distribution of the random variable (N, z, z(1 + vN)) is identical to the distribution of the random
variable (N, z(1 + vN), z). This implies that the distribution of the random variable (N, zw, (z(1 +
vN))w) is identical to the distribution of the random variable (N, (z(1 + vN))w, zw). Finally, it
remains to notice that since zN = (z(1 + vN))N mod N2, it holds that the distribution of the
random variable (N, zN , zw, (z(1 + vN))w) = (N, g, x, x′) is identical to the distribution of the
random variable (N, zN , (z(1 + vN))w, zw) = (N, g, x′, x). This in turn implies that the output bit
b′ of the subroutine D of D′ must be independent of the bit b, and thus that Pr[D′(N, z) = 1] = 1

2 .
Combining the analysis for the two cases, we get that for every n ∈ S,

Pr
RN

[D′(N, z) = 1]− Pr
Z∗

N2

[D′(N, z) = 1] ≥ 1 + ε(n)
2

−O(2−n)− 1
2

=
ε(n)
2
−O(2−n)

The following immediate corollary is not needed for our application to Oblivious Transfer, but
it is useful for other purposes (such as the application to CCA secure encryption that is described
in the appendix):
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Corollary 3 Under the N ’th Residuosity Assumption, the uniform distribution on
〈
gN

〉
⊆ Z∗N2

is indistinguishable from the uniform distribution on
〈
gN

〉
· 〈1 + N〉 ⊆ Z∗N2, given a random RSA-

composite N and a random N ’th residue gN ∈ Z∗N2 (where g ∈R Z∗N2). More precisely, the following
two ensembles are computationally indistinguishable:〈

N, gN , gNr
〉 c≡

〈
N, gN , gNr(1 + N)s

〉
where both are taken over choosing

p, q ∈R Primes(n), N ← pq, g ∈R Z∗N2 , r ∈R Zϕ(N), s ∈R ZN

Lemma 4 The construction of HNR from Section 6.1.1 is a verifiable-ε-universal projective hash
family where ε(n) ≤ 2−n + 2−2n.

Proof The projection and the completeness of the scheme (conditions (a) and (c) in Definition 7)
are easy to check: For any RSA modulus N and any g ∈ RN , w ∈ Z∗N , and k ∈ ZN2 , setting
x = gTw mod N2 and pk = (gT )k mod N2 (where T = N d2 log Ne) we get for Condition (a):

pHash(N, g, pk, w, x) = pkw = (gTk)w = (gTw)k = xk = Hash(N, g, k, x) mod N2

As for Condition (c), the instance-sampler sets x′ ← x(1 + vN) mod N2 for some v ∈ Z∗N . Con-
dition (c) follows from the fact that (x′/x)−1

N = v, (x/x′)−1
N = −v, and both v and −v are co-prime

with N .
The more interesting property is the verifiable-ε-universality (property (d′)), which we prove

next. (Note that properties (a), (c), and (d′) together imply also property (b′).) Fix any (N, g, x, x′)
such that IT(N, g, x, x′) = 1. Namely, N > 22n, g, x ∈ Z∗N2 , and x′ = x(1 + vN) mod N2 for some
v ∈ Z∗N (which means that also x′ ∈ Z∗N2). We show that either HNR is ε-universal on (N, g, x) or
it is ε-universal on (N, g, x′).

Recall that the hashing key is chosen as k ∈R ZN2 , the projective key is then computed as
pk ← gTk mod N2 where T = N d2 log Ne, and the hash function is computed as Hash(N, g, k, x) =
xk mod N2. We make the simplifying assumption that the hashing key k is chosen from Zϕ(N2)

instead of from ZN2 , thus introducing an error of O(1/
√

N) = O(2−n) into the analysis. For the
rest of the proof denote τ

def= ord(gT ) and observe that τ must be co-prime with N and therefore
must divide ϕ(N).

Consider now the following procedure for choosing the hashing key k, that implies the same dis-
tribution as choosing k ∈R Zϕ(N2): First choose k0 ∈R {0, . . . , τ − 1}, then k1 ∈R {0, 1, . . . , ϕ(N2)

τ −
1}, and then set k ← k0 + τk1. Observe that the projective key pk depends only on the choice of
k0, since gT (k0+τ ·k1) = gTk0 mod N2. Below we prove, however, that the hash value on at least
one of x, x′ must depend also on the choice of k1.

Denote d
def= (x′/x) = 1+vN mod N2, and recall from Fact 6.1 that since v is co-prime with N

then the order of d in Z∗N2 is exactly N . Let α
def= GCD(N, ord(x)). Thus γ

def= N/α divides the
order of x′.

We now show that H is ( 1
γ + 1

N )-universal on (N, g, x′), and a similar argument shows that it is
also ( 1

α + 1
N )-universal on (N, g, x). Observing that N > 22n and thus either α or γ must be larger

than 2n completes the proof.
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Recall the alternate procedure from above for choosing k ← k0 + τk1, which implies that

Hash(N, g, k, x′) = (x′)k = (x′)k0 · (x′)τk1 mod N2.

Also recall that τ (which is the order of gT ) is co-prime with N . Thus τ is also co-prime with γ since
γ divides N . Hence for two different values k1 6= k′1 mod γ we have τk1 6= τk′1 mod γ and therefore
also τk1 6= τk′1 mod ord(x′) (since γ also divides ord(x′)), which means that (x′)τk1 6= (x′)τk′1

mod N2.
Next notice that τ |ϕ(N) implies τ ≤ ϕ(N) and so ϕ(N2)

τ − 1 ≥ N − 1 ≥ γ − 1. It follows that

when choosing k1 ∈R {0, 1, . . . , ϕ(N2)
τ −1}, the random variable (k1 mod γ) can assume all the values

between 0 and γ − 1, so (x′)k1τ can assume at least γ different values modulo N2. Moreover, each
value of (k1 mod γ) occurs either bϕ(N2)

τ −1/γc or dϕ(N2)
τ −1/γe times, and with ϕ(N2)

τ −1 ≥ N −1
it means that no value has probability of more than 1

γ + 1
N−1 . Hence H is ( 1

γ + 1
N−1)-universal on

(N, g, x′)
A symmetric argument shows that H is ( 1

α + 1
N−1)-universal on (N, g, x). Since αγ = N > 22n

then at least one of α, γ must be larger than 2n, hence H is (2−n + 2−2n)-universal on at least one
of (N, g, x) or (N, g, x′).

6.2 A construction based on the Quadratic Residuosity Assumption

Let p, q be distinct odd primes; Let N = pq and let QRN be the subgroup consisting of all squares
of elements in the multiplicative group Z∗N . Also, let JN be the subgroup of Z∗N consisting of all
elements with Jacobi symbol 1. The Quadratic Residuosity Assumption asserts (informally) that
given only N , it is hard to distinguish random elements of JN from random elements of QRN .

The Cramer-Shoup Scheme. Cramer and Shoup constructed in [CS02] an ε-universal pro-
jective hash family from the Quadratic Residuosity Assumption (in the special case where N is a
product of two safe primes). This construction is very similar to the N ’th Residuosity construction,
with the group of N residues modulo N2 replaced with the group of quadratic residues modulo
N . Again, omitting some details the hash parameters are the modulus N = pq and a quadratic
residue g ∈R QRN , the hashing key is a random integer k ∈R {1, 2, . . . , N/2}, the projective key is
pk = g2k mod N , the “special subset” is LN,g = {g2w : w < N/2}, the exponent w is a “witness”
for x ∈ LN,g, and the “non-members” are those elements x ∈ JN whose order is even. Given the
witness w for the element x and the projective key pk, one can compute the hash value as

pHash(N, g, pk, w, x) = pkw = g2kw = xk mod N

Cramer and Shoup proved that when N is a product of two safe primes, this scheme is an (1/2)-
universal projective family. Moreover, they also proved that when N is a product of two safe
primes, distinguishing members from non-members can be reduced to the Quadratic Residuosity
Assumption. Similarly to the N ’th Residuosity construction, here too the proofs make strong use
of the fact that when N is a product of two safe primes, the subgroup of quadratic residues is cyclic
and consists of exactly those elements in Z∗N whose order is odd.
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Our Modifications. We modify the Cramer-Shoup scheme to handle moduli that are not prod-
uct of safe primes, similarly to the way we did for N ’th residues. Specifically, to get verifiable
universality we (a) force the element g into the group of odd-order elements by raising it to the
power of 2dlog Ne; and (b) verify that at least one of the two element x0, x1 has even order by
checking that x1/x0 = −1 mod N . Just like in the case of N ’th residues, here too forcing g into
“the special subgroup” eliminates the need to rely on safe primes.10

6.2.1 Detailed Construction

Using our notations from Section 4, we now describe the six algorithms that define the hash family
HQR = (PG, IS, IT,HG,Hash, pHash).
Parameter-generator PG(1n). Choose at random two n-bit prime numbers p, q, with p < q <
2p − 1 and p ≡ q ≡ 3 mod 4. Set N ← pq, choose at random an element g′ ∈R Z∗N , set g =
(g′)2 mod N , and output Λ = (N, g).
Instance-sampler IS(N, g). Choose at random w ∈R ZN , compute T ← 2dlog Ne, x← gTw mod N
and x′ ← N − x. Output (w, x, x′).
Instance-testing algorithm IT(N, g, x, x′). Check that N > 22n, g, x ∈ Z∗N , and x′ = N − x.
Output ‘1’ if all the tests pass and ‘0’ otherwise.
Hash-key generator HG(N, g). Choose at random k ∈R ZN , set T ← 2dlog Ne and pk ←
(gT )k mod N . Output (k, pk).
Primary hashing algorithm Hash(N, g, k, x). Output xk mod N .
Projective hash algorithm pHash(N, g, pk, w, x). Output pkw mod N .

6.2.2 Proof of Security

We now show that the construction above has a hard subset membership domain under the
Quadratic Residuosity Assumption, and that it is a verifiable-ε-universal projective hash family
with ε ≈ 1

2 . We begin by recalling the Quadratic Residuosity Assumption.

Assumption 9 (Quadratic Residuosity) The following ensembles are computationally indis-
tinguishable

{(N,x) : p, q ∈R Primes(n), N = pq, x ∈R JN}n∈N
c≡ {(N, y) : p, q ∈R Primes(n), N = pq, x ∈R Z∗N , y ← x2 mod N}n∈N

where Primes(n) denotes the set of prime numbers between 2n and 2n+1 and JN is the subgroup of
Z∗N of elements with Jacobi symbol +1.

Lemma 5 Under the Quadratic Residuosity Assumption, the construction of H from Section 6.2.1
has the hard subset membership property.

Proof We need to prove indistinguishability between the ensembles

An =
〈
N, g, x, x′

〉
n

and Bn =
〈
N, g, x′, x

〉
10We note that the trick of forcing g into the odd-order subgroup as a way of eliminating the need for moduli of a

special form was used also in [Hal99].
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where both are taken over choosing

p, q ∈R Primes(n) s.t. p ≡ q ≡ 3 mod 4, N ← pq, T ← 2dlog Ne,
g′ ∈R Z∗N , g ← (g′)2 mod N, w ∈R ZN , x← gTw mod N, x′ ← N − x

Assume for the sake of contradiction that there exists a PPT algorithm D that distinguishes between
the ensembles An and Bn with non-negligible probability. Let

p1(n) def= Pr[D(N, g, x, x′) = 1], p2(n) def= Pr[D(N, g, x′, x) = 1], and ε(n) def= |p1(n)− p2(n)|

We begin by observing that when choosing p, q ∈R Primes(n), there is a non-negligible proba-
bility to get p ≡ q ≡ 3 mod 4 (in which case the modulus N is called a Blum integer). Hence, if
the Quadratic Residuosity Assumption holds, it must also hold for Blum integers. From now on
we therefore assume the Quadratic Residuosity Assumption for Blum integers. Next we recall that
when N is a Blum integer, then the quadratic residues modulo N are exactly these elements that
have odd order in Z∗N . Moreover, every quadratic residue has exactly four square roots modulo N .
If (r1, r2, r3, r4) are the four square roots of some x ∈ QRN then exactly one of them is itself a
quadratic residue modulo N (call it r1), and exactly two have Jacobi symbol +1 modulo N , namely
r1 and N − r1.

Assume without loss of generality that there is an infinite set S ⊆ N such that for every n ∈ S
it holds that p1(n) ≥ p2(n), and moreover ε(n) = p1(n)− p2(n) ≥ 1

poly(n) . We now describe a PPT
distinguisher D′ for Quadratic Residuosity modulo Blum integers that for every n ∈ S has an
advantage (close to) ε(n), using D as a subroutine. D′(N, z) works as follows:

1. Choose w ∈R ZN and set T ← 2dlog Ne.

2. Set g ← z2 mod N , x0 ← z · gTw mod N and x1 ← N − x.

3. Run D to get b← D(N, g, x0, x1), and output b.

As was done in the proof of Lemma 2, below we analyze the reduction under the simplifying
assumption that the exponent w is chosen uniformly in Zϕ(N) rather than in ZN , both in the
scheme and in the reduction. Under this assumption, we show that when z is a quadratic residue
the input to D is distributed according to An, and when z is a quadratic non-residue the input
to D is distributed according to Bn. It thus follows that when z is a random element in QRN then
D′ outputs 1 with probability p1(n) and when z is a random element in Jn then D′ outputs 1 with
probability p2(n), so the advantage of D′ is p1(n) − p2(n) = ε(n) (minus the negligible deviation
caused by our simplifying assumption).

In both cases, the modulus N is chosen just like in the scheme HQR and the element g is a
random quadratic residue modulo N . It is left to show that x0, x1 in the reduction are distributed
like (x, x′) in the scheme when z is a quadratic residue and like x′, x in the scheme when z is a
quadratic non-residue.

Case 1: z ∈ QRN . In this case we know that β
def= ordN (z) is an odd integer, which implies that

the order of g = z2 mod N is the same as the order of z, namely ordN (g) = ordN (z) = β. Also,
since β is odd then µ

def= 2−1 mod β and τ
def= T−1 mod β exist and we have z = gµ mod N . Hence

in this case we can write

x0 = z · gTw = gµ+Tw = gT (τµ+w) mod N
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Now notice that since w is random in Zϕ(N) and β divides ϕ(N), the random variables τµ+w mod β

and w mod β are identically distributed, so x0 = gT (w+µτ) mod N in the reduction is distributed
identically to x = gTw mod N in the protocol.

Case 2: z ∈ JN \QRN . In this case we know that z′
def= N − z is a quadratic residue modulo N .

By the same reasoning as above, we know that β
def= ordN (z′) is an odd integer, which implies that

the order of g = z2 = (z′)2 mod N is also β, that µ
def= 2−1 mod β and τ

def= T−1 mod β exist, and
that z′ = gµ mod N . Hence in this case we can write

x1 = −(z · gTw) = z′ · gTw = gµ+Tw = gT (τµ+w) mod N

and by the same arguments as above we have that x1 = gT (w+µτ) mod N in the reduction is
distributed identically to x = gTw mod N in the protocol.

Lemma 6 The construction of HQR from Section 6.2.1 is a verifiable-ε-universal projective hash
family, where ε < 1

2 + O(2−n).

Proof The projectiveness and the completeness of the instance-testing (conditions (a) and (c) in
Definition 7) are easy to check: For any RSA modulus N and any g ∈ RN , w ∈ ZN , and k ∈ ZN ,
setting x = gTw mod N and pk = (gT )k mod N (where T = 2dlog Ne) we get for Condition (a):

pHash(N, g, pk, w, x) = pkw = (gTk)w = (gTw)k = xk = Hash(N, g, k, x) mod N

Also Condition (c) holds trivially.
The more interesting property is the verifiable-ε-universality (property (d′)), which we prove

next. (Note that properties (a), (c), and (d′) together imply also property (b′).) Let (N, g, x, x′)
be any four elements such that IT(N, g, x, x′) = 1. Namely, N > 22n, g, x ∈ Z∗N , and x′ = N − x.
Note that since x/x′ = −1 mod N and ordN (−1) = 2, then at least one of x, x′ has an even order
modulo N . We next show that for any element z of even order, HQR is ε-universal on (N, g, z),
which implies that it must be ε-universal on at least one of x, x′.

Fix an odd modulus N > 2 and some g, z ∈ Z∗N such that e
def= ordN (z) is even. Also denote

τ
def= ordN (gT ) (where T = 2dlog Ne) and observe that τ must be odd and must divide ϕ(N). We

again make the simplifying assumption that the hashing key k is chosen from Zϕ(N) instead of from
ZN , thus introducing an error of O(1/

√
N) = O(2−n) into the analysis. Under this assumption we

show that for any pk and any y, it holds that

Pr
k∈RZϕ(N)

[gTk = pk, y = zk mod N ] ≤ 1
2
· Pr

k∈RZϕ(N)

[gTk = pk mod N ]

We consider the following procedure for choosing k ∈R Zϕ(N): First choose k0 ∈R {0, . . . , τ − 1},
then k1 ∈R {0, 1, . . . , ϕ(N)

τ −1}, and then set k ← k0+τ ·k1. Note that pk = (gT )k mod N depends
only on the choice of k0. It is therefore sufficient to show that for any k0 (that determines pk) and
any y, it holds that Prk1 [z

k0+τ ·k1 = y mod N ] ≤ 1
2 . In other words, let Ky be the set of all values

that yield y, namely

Ky
def=

{
k1 ∈

[
0,

ϕ(N)
τ
− 1

]
: zk0+τ ·k1 = y mod N

}
.
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We need to show that Ky contains no more than ϕ(N)
2τ values. We observe that e (the order of z)

does not divide τ (the order of gT ) since e is even and τ is odd. Therefore zτ 6= 1 mod N , which
means that for any value of k1, zk0+τ ·k1 6= zk0+τ ·(k1+1) mod N . Hence the set Ky cannot contain
two consecutive integers, and since ϕ(N)

τ is even then Ky cannot contain more than half the values
in [0, ϕ(N)

τ − 1]. This concludes the proof.
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A Factoring-Based CCA-Secure Encryption without Safe Primes

In this section we show that the factoring-based CCA secure encryption schemes from [CS02, GL03,
CS03] — all of which were only proven secure when used with RSA-composites that are product
of safe primes — remain secure even when used with “non-safe” RSA composites. These schemes
are all very similar and all are proved in more-or-less the same way. Below we first give a very
high level explanation of how to modify the security proofs from [CS02, GL03] to get security even
when used with “non-safe” RSA composites. We then give a detailed description of how to modify
the proof from [CS03] to get security even when used with “non-safe” RSA composites.
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A.1 Modifying the Proofs: High Level Description

We begin with a very high-level description of the Cramer-Shoup construction of a CCA-secure
encryption scheme from a smooth projective hash family. (This description is over-simplified and
contains only the details that are important to convey our ideas.)

The encryption scheme. Very loosely speaking, the key generation algorithm first runs the
parameter-generator algorithm PG to obtain parameters Λ ← PG(1n). Then it runs the hash-key
generator algorithm HG to obtain a primary hashing key and a projective key (hk, pk) ← HG(Λ).
It outputs (Λ, pk) as the public key, and hk as the secret key. The parameters Λ define a hashing
domain X and a “special subset” L. The encryption algorithm chooses an element x in the special
subset L (together with a corresponding witness), and computes a tag π̂ which is (essentially) the
hash of x, computed using the projective key pk included in the public key. The ciphertext is a
triple (x, π̂, e), where e is the element that actually carries information about the encrypted message
(but we mostly ignore the element e in this high-level description). The decryption algorithm uses
the corresponding primary hashing key hk included in the secret key to re-compute the hash of x.
It rejects the ciphertext if the computed hash differs from π̂, and otherwise it extracts the message
from e. The proof of CCA-security then uses the following arguments:

1. The answers to decryption queries, where the x component belongs to the special subset
L, do not give any more information about the primary hashing key beyond what’s implied
by the public key itself. (This is an information-theoretic argument that follows from the
projectiveness of the hashing scheme.)

2. Decryption queries where x is not in the special subset L (i.e., where x ∈ X\L), have incorrect
tags w.h.p. (This is an information-theoretic argument that follows from the smoothness of
the hashing scheme.)

3. The adversary cannot distinguish whether the x component of the challenge ciphertext is in
the special subset L or is in X \ L (because of the hard subset membership property).

4. If the x component of the target ciphertext is in X \ L, then the target ciphertext con-
tains no information about the plaintext, assuming no additional information about the pri-
mary hashing key hk is given beyond its corresponding projective key pk. (This is again an
information-theoretic argument, similar to the argument about the smoothness of the hashing
scheme.)

Roughly speaking, the last two arguments imply that barring some additional information from
the decryption queries, the target ciphertext cannot be distinguished from an entity that carries
no information about the plaintext. The first two arguments, on the other hand, imply that the
attacker cannot use the decryption queries to get any information beyond what’s already implied
by the public key. Combining these arguments, CCA security follows.

The difficulty in removing the “safe prime requirement.” Trying to use the constructions
from Section 6 to get CCA security as above we run into some issues. Consider for example the
construction of projective hashing based on the N ’th Residuosity Assumption. In this case, the
parameters are Λ = (N, g) where N is an RSA composite and g is an N ’th residue modulo N2,
the “special subset” is L = 〈g〉, and the witness for membership in L is the exponent r such that

24



gr = x mod N2. When N is not a product of safe primes, the set of N ’th residues in Z∗N2 is not
a cyclic group (even when restricted to elements with Jacobi symbol +1), and in particular the
“special subset” L = 〈g〉 does not contain all the N ’th residues in Z∗N2 . Since the hash function is
only smooth on non-N ’th-residues, we can no longer claim that it is smooth on any x /∈ L.

In the Oblivious-Transfer application we “solved” this problem by defining X = 〈g〉 · 〈1 + N〉,
which ensures that every element in X \ L is a non-N ’th-residue. However, in a CCA attack the
attacker may choose to supply ciphertext elements that are not in this set X, and there does not
seem to be an easy way of deciding whether or not x ∈ X. In essence, our problem is that we
cannot rule out the possibility that the attacker may find ciphertext elements which are neither in
the smooth domain nor in the projective domain.

Our solution. We overcome this problem by considering four sets rather than two: Namely, we
have the “big domain” X = Z∗N2 , the “small domain” X∗ = 〈g〉 · 〈1 + N〉, the “projective subset”
L = RN (of all the N ’th residues modulo N2) and the “special subset” L∗ = 〈g〉 = X∗ ∩ L. The
encryption scheme itself would produce only elements that belong to the “special subset” L∗, but
the attacker can submit decryption queries with arbitrary elements from the “big domain” X.

Then we use the facts that (a) the hashing scheme is projective on the “projective subset” L,11

(b) the hashing scheme is smooth (or at least universal) on X \L, and (c) the uniform distributions
on L∗ and X∗ are indistinguishable (this is Corollary 3). The four arguments from above are refined
as follows:

1′. The answers to decryption queries, where the x component belongs to the projective subset
L, do not give any more information about the primary hashing key beyond what’s implied
by the public key itself.11 (This is an information-theoretic argument that follows from the
protectiveness of the hashing scheme.)

2′. Decryption queries where x is in X \ L have incorrect tags w.h.p. (This is an information-
theoretic argument that follows from the smoothness of the hashing scheme.)

3′. The adversary cannot distinguish whether the x component of the challenge ciphertext is in
the special subset L∗ or is in X∗ \ L∗ (because of the hard subset membership property).

4′. If the x component of the target ciphertext is in X∗ \ L∗ then the target ciphertext con-
tains no information about the plaintext, assuming no additional information about the pri-
mary hashing key hk is given beyond its corresponding projective key pk. (This is again an
information-theoretic argument, similar to the argument about the smoothness of the hashing
scheme.)

As before, arguments 3′ and 4′ imply that barring some additional information from the decryption
queries, the target ciphertext cannot be distinguished from an entity that carries no information
about the plaintext. Arguments 1′ and 2′, on the other hand, imply that the attacker cannot use
the decryption queries to get information that will help him distinguish the target ciphertext from
an entity that carries no information about the plaintext.

Remark. Argument 1′ from above is slightly incorrect, in that the hashing schemes from Section 6
may fail to be projective on the “projective subset” L. Specifically, if the order of the element g

11This statement is not precise; see remark below.
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(which is a random N ’th residue) is not maximal (among the N ’th residues), then the projective
key ghk does not contain enough information on the hashing key hk to fully determine the value of
xhk for every N ’th residue x.

An easy solution here is to consider a mental experiment in which the hashing scheme is aug-
mented by including a maximal-order N ’th residue h as a parameter and hhk as part of the projective
key (so both h, hhk are included in the public key of the encryption scheme). These elements are
never used by the encryption or decryption algorithms; their sole purpose is to leak to the adversary
more information on the secret key, so as to make the Argument 1′ from above correct.

A.2 Reconstructing the Camenisch-Shoup Proof

We next reconstruct the proof from (the full version of) [CS03], augmenting it to show that the
N ’th-Residuosity-based encryption scheme of Gennaro-Lindell/Camenisch-Shoup [GL03, CS03] is
CCA secure even when the modulus is not a product of safe primes.12 This modification is based
on the same approach as in Section A.1, but is explained in greater detail. The encryption scheme
consists of the following three algorithms.

Key generation. On security parameter n, choose a seed s for a collision-resistant hash function
Hs, choose p, q ∈R Primes(n), and set N ← pq. Next choose at random g′ ∈R Z∗N2 and three integers
x1, x2, x3 ∈R [N2/4], and set g ← (g′)2N , y1 ← gx1 , y2 ← gx2 , and y3 ← gx3 (all modulo N2).
Output (s,N, g, y1, y2, y3) as the public key, and (x1, x2, x3) as the secret key.

Encryption. To encrypt m ∈ [N ] (with label L ∈ {0, 1}∗) choose at random r ∈R [N/4] and set

e← yr
1(1 + N)m, u← gr, α← Hs(u, e, L), v ← abs ((y2y

α
3 )r) ,

where all the calculation are modulo N2, and abs(x) def=min{x,N2 − x}. The ciphertext is (e, u, v).

Decryption. To decrypt the ciphertext (e, u, v) with label L, set α← Hs(u, e, L), and check that
v = abs(v) and u2(x2+αx3) = v2 (mod N2). If so, let z ← (e/ux1)N+1 (mod N2), and if z − 1 is
divisible by N (over the integers) then compute m← z−1

N and output m.

Remark. Some aspects of this construction are not really relevant for our discussion: These
include the squaring of g′ during key-setup, the use of the “absolute values”, the squaring of u and v
and exponentiation to the N + 1 power during decryption, and also the inclusion of the attached
labels. The reason that we keep these aspects here is because they are present in the scheme and
proof from [CS03], and we want to stress that we are proving the exact same scheme (using an
almost identical proof), except that we omit the requirement of using safe primes. However, it
is clear that the same proof as below can be applied also to the simplified scheme without these
components.

A.2.1 Proof of security

Lemma 7 Under the N ’th Residuosity Assumption, the encryption scheme from Section A.2 is
CCA secure.

12We chose to reconstruct the proof from [CS03] since the presentation of that proof is more “from first principles”
than that of the proof from [GL03].
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Proof The proof mimics closely the proof of Theorem 1 from the full version of [CS03] by
describing almost the exact same nine games that were considered in the proof of Theorem 1 there.
In fact, the only steps in which our proof differs from the one in [CS03] are Games 4-5 (see below).

Game 0. This is the standard CCA-game. Namely, the key-generation algorithm is run on security
parameter n, resulting in public key (s,N, g, y1, y2, y3) and secret key (x1, x2, x3) as above. The
attacker gets the public key as input, and it may issue decryption queries (ei, ui, vi, Li), i = 1, 2, . . .
For each query, the attacker gets the result of running the decryption algorithm on these ciphertexts
and labels. (This is called “Probing phase I”).

Next the attacker outputs two messages m0,m1 ∈ [N ] and label L∗. Then a random bit
σ ∈R {0, 1} is chosen and the message mσ is encrypted (with label L∗). This is done by choosing
r∗ ∈R [N2/4] and setting

u∗ ← gr∗ , e∗ ← yr∗
1 (1 + N)mσ , α∗ ← Hs(e∗, u∗, L∗), and v∗ ← abs

(
(y2y

α∗
3 )r∗

)
.

Below we call m0,m1 the “target messages” and (e∗, u∗, v∗) the “target ciphertext”. The target
ciphertext is returned to the attacker, and then the attacker can keep making decryption queries as
before, under the condition that (ei, ui, vi, Li) 6= (e∗, u∗, v∗, L∗). (This is called “Probing phase II”.)
Finally the attacker outputs a bit σ′, and it is considered successful if and only if σ′ = σ.

The goal of the analysis is to prove that under the N ’th Residuosity Assumption, the attacker
cannot succeed with probability noticeably better than 1/2. The analysis proceeds by making
successive small changes to the way some variables are computed in this game, each time proving
that the change can have at most a negligible effect on the success probability of the attacker, until
arriving at a game where the attacker’s view is independent of the bit σ (and therefore its success
probability is exactly 1/2).

Game 1. The only difference between this game and the previous one is that the decryption
oracle rejects any ciphertext query (ei, ui, vi, Li) during “Probing phase II” such that (ei, ui, Li) 6=
(e∗, u∗, L∗) but Hs(ei, ui, Li) = Hs(e∗, u∗, L∗). Clearly this only happens if the attacker finds a
collision in the hash function Hs, so the success probability in this game is at most negligibly
different than in Game 0.

Game 2. Next we also reject ciphertext queries (ei, ui, vi, Li) during “Probing phase II” such that
vi 6= v∗ but v2

i = (v∗)2. Observe that since vi, v
∗ < N2/2 then the condition above implies finding

a nontrivial square root of unity, and hence factoring N . It follows that this modification too can
only change the success probability by a negligible amount.

Game 3. We now change the way the target ciphertext is computed. Specifically, we now compute

e∗ ← (u∗)x1(1 + N)mσ , and v∗ ← abs
(
(u∗)x2+α∗x3

)
(where α∗ = Hs(u∗, e∗, L∗)). As these values coincide with the values of e∗, v∗ that were computed
before, this modification has no effect on the success probability.

Games 4-5. This is the only difference between our proof the the one from [CS03]. In the proof
from [CS03], Game 4 modifies the choice of u∗, choosing it as a random square in the set of N ’th
residues modulo N2 (instead of setting u∗ ← gr∗ for a random exponent r∗ ∈R [N2/4]), and Game 5
modified this choice again, choosing u∗ as a random square in Z∗N2 .
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In our proof, we skip Game 4 altogether and in Game 5 we choose u∗ as a random element in
〈g〉 · 〈1 + N〉. Here we appeal to Corollary 3, which tells us that for an N ’th residue g, a random
element in 〈g〉 is indistinguishable from a random element in 〈g〉 · 〈1 + N〉. Hence the difference in
success probability between Game 3 and Game 5 must be negligible. (Note that in Corollary 3 g was
chosen as a random N ’th residue, whereas here g is chosen as a random 2N ’th residue. However,
it is clear that if

〈
µN

〉
is indistinguishable from

〈
µN

〉
· 〈1 + N〉 then also

〈
µ2N

〉
is indistinguishable

from
〈
µ2N

〉
· 〈1 + N〉.)

Game 6. As done in the proof from [CS03], we now choose u∗ not as a completely random element
in 〈g〉 · 〈1 + N〉, but rather a random element in that group subject to the restriction that its
order is divisible by N . Since a random element in that group satisfies this restriction with all but
exponentially small probability, then this has almost no effect on the success probability.

Game 7. We now modify the key-generation algorithm, choosing x1, x2, x3 ∈R [N · ϕ(N)/4]
(instead of choosing them from [N2/4]). This only has an exponentially small effect on the success
probability.

Game 8. The last game modifies again the decryption oracle, this time rejecting any ciphertext
query (ei, ui, vi, Li) for which ui is not an N ’th residue modulo N2.

Denote λ(N) def= ϕ(N)/4 and let x′1 = x1 mod λ(N) and x′′1 = x1 mod N . It is fairly easy to
see that in this game, the public key and the answers of the decryption oracle are independent of
x′′1 and depend on x1 only through x′1 (recall that g is a 2N ’th residue, so its order divides λ(N)).
Moreover we know that x′′1 ∈R [N ], and we know that the order of u∗ is divisible by N (and u∗ is a
square), which means that u∗ = w(1 + N)t with w a 2N ’th residue and t co-prime with N . Since
the element e∗ is computed as

e∗ ← (u∗)x1(1 + N)mσ = wx′1(1 + N)t·x′′1+mσ ,

then the distribution of e∗ is independent of mσ (and thus also of σ). It follows that the view of
the attacker is independent of σ, and therefore its success probability in this game is exactly 1/2.

It remains to bound the difference between the success probability of the attacker in games 7
and 8. Namely, we need to bound the probability that there exists some decryption query (ei, ui, vi, Li)
in Game 8 such that vi = abs(vi), u

2(x2+αix3)
i = v2

i , the two conditions from Games 1 and 2 do not
hold, and yet ui is not an N ’th residue modulo N2.

Consider a particular decryption query (ei, ui, vi, Li) for which ui is not an N ’th residue mod-
ulo N2, and denote by oi the order of ui in Z∗N2 . We first observe that oi is not co-prime with N .
Indeed, if oi were co-prime with N then there would exist integers a, b such that aN + boi = 1, and
therefore

(ua
i )

N = (ua
i )

N (uoi
i )b = uaN+boi

i = ui mod N2,

contradicting our working assumption that ui is not an N ’th residue modulo N2. Since N = pq
with p, q primes, it follows that the order of ui is divisible by either p or q (or both).

The rest of the argument follows the exact same line as in the proof of [CS03] (but our presen-
tation is slightly different). We observe that the view of the attacker is completely determined by
the following values:

• N, g and xi mod λ(N) (which completely determine the answers of all the decryption queries),

• u∗, σ and x1 mod N (which together with the values above determine the value of the element
e∗ of the target ciphertext), and
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• x2 + α∗x3 mod N (which together with the values above determines the value of the element
v∗ of the target ciphertext.

We therefore consider the alternative view of Game 8 where the values N, g, xi mod λ(N), u∗, σ,
and x1 mod N are chosen at the outset, and the values of x2, x3 are chosen as follows:

• If the i’th decryption query was made during “Probe phase I” then we choose x2, x3 mod N
after the attacker makes this query. Since both x2, x3 are uniform in [N ] and since ui, vi are
fixed and the order of ui is divisible by p or q (and therefore so is the order of u2

i ), then the
probability of getting u

2(x2+αix3)
i = v2

i is at most 1/min(p, q).

• If the i’th decryption query was made during “Probe phase II” then we choose the value of
x2 + α∗x3 mod N after the attacker determines the target messages m0,m1, and we choose
x2 +αix3 mod N after the attacker makes the i’th decryption query. Since αi 6= α∗ (and they
are both smaller than N) then the value of x2 +αix3 mod N is still uniform in [N ] even after
x2 +α∗x3 mod N is fixed. Again, this implies that the probability of getting u

2(x2+αix3)
i = v2

i

is at most 1/min(p, q).

We therefore determine that the probability that any decryption query i induces a difference
between Game 7 and Game 8 is at most 1/min(p, q), and therefore the difference in the success
probability between these two games is at most κ/min(p, q) where κ is the number of decryption
queries. This completes the security proof.
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