
Anonymous Rerandomizable RCCA Encryption

Manoj Prabhakaran Mike Rosulek
Department of Computer Science, University of Illinois, Urbana-Champaign.

{mmp,rosulek}@cs.uiuc.edu

April 1, 2007

Abstract

We give the first rerandomizable Replayabale-CCA (RCCA [7]) secure encryption scheme,
answering an open problem posed in [19]. We also extend the notion of receiver-anonymity (or
key-privacy) [3] to the setting of rerandomizable RCCA-secure encryption schemes, and show
that our protocol enjoys this property as well. To justify our definitions, we define a powerful
“Replayabale Message Posting” functionality in the Universally Composable (UC) framework,
and show that any encryption scheme that satisfies our definitions of rerandomizability, RCCA
security, and receiver-anonymity is a UC-secure implementation of this functionality. We point
out that this is perhaps the most sophisticated functionality that has been UC-securely real-
ized in the standard model, without global setups, super-polynomial simulation, or an honest
majority assumption.

Our encryption scheme is a non-trivial extension of the popular Cramer-Shoup encryption,
which we call the Double-strand Cramer-Shoup scheme. Its security is based on the standard
DDH assumption.

Contents

1 Introduction 1

2 Definitions 3
2.1 Encryption and security definitions . 3

2.1.1 Perfectly rerandomizable encryption (syntax and correctness) 3
2.1.2 Replayable CCA (RCCA) security . 4
2.1.3 Receiver-anonymity . 4

2.2 Replayable message posting functionality . 5
2.3 Decisional Diffie-Hellman (DDH) assumption . 5

3 Motivating the double-strand construction 6

4 Results 7

5 Our construction 9
5.1 Double-strand malleable encryption scheme . 9
5.2 Double-strand Cramer-Shoup encryption scheme . 10
5.3 Complexity . 12

6 Proof of Theorem 1 12
6.1 Correctness properties . 12
6.2 Replay interactions . 14
6.3 Decisional Diffie-Hellman assumption . 15
6.4 Encryption and decryption as linear algebra . 16
6.5 The alternate encryption functionality . 18
6.6 The alternate decryption procedure . 19

7 Replayable message posting 27

8 Proof of Theorem 2 28

9 Extensions 33

10 Conclusion 35

1 Introduction

Non-malleability and rerandomizability are opposing demands to place on an encryption scheme.
Non-malleability requires that an adversary should not be able to use one ciphertext to produce
another one which would decrypt to a related ciphertext. Rerandomizability on the other hand
requires that anyone can alter a ciphertext into another ciphertext in an unlinkable way, such that
both will decrypt to the same plaintext. It is precisely this requirement that is formalized in the
notion of Rerandomizable Replayable-CCA security [19]. Achieving it (without restricting security
to generic group adversaries) was left as an open problem there.

Another very useful property that a public-key encryption scheme can have is receiver-anonymity
(or key-privacy) [3]. Indeed, Bellare, et al. [3] show that the popular CCA-secure Cramer-Shoup
encryption scheme [11] already enjoys such a security guarantee.

In this work, we combine these two properties to obtain a powerful encryption tool. In a system
with multiple users it is unlikely that rerandomizability by itself would be useful. For instance, while
rerandomizability allows unlinkability of multiple encryptions in terms of their contents, without
anonymity they could all be linked as going to the same receiver. Adding anonymity brings out
the power of rerandomizability and yields a potent cryptographic primitive.

Our results. We present the first rerandomizable Replayable-CCA-secure public-key encryption
scheme. We also show that it is receiver-anonymous. Our scheme is a non-trivial variant of the
Cramer-Shoup scheme, which we call the Double-strand Cramer-Shoup encryption. As with that
scheme, the security of our scheme is based on the Decisional Diffie Hellman (DDH) assumption.

Going further, we give a combined security definition in the Universally-Composable (UC)
security framework by specifying a “Replayable Message Posting” functionality Frmp, and show
that any scheme which satisfies our notions of rerandomizability, Replayable-CCA security, and
receiver-anonymity is also a UC-secure realization of the functionality Frmp (without any setup
assumptions, and without superpolynomial simulation). The functionality Frmp allows users to
post messages and obtain “handles” for them. These handles can then be used by any party to
repost a message and obtain a new handle. The handles do not reveal the content or the receiver
of the messages. Nor is it revealed if a handle is freshly created or obtained by reposting an old
handle. The adversary is allowed to post and repost handles, and arbitrarily interact with the
environment (which instructs honest players to post, repost or retrieve messages).

Once we achieve this UC-secure functionality, simple modifications can be made to add extra
functionality like replay-testability (by the designated receiver) and authentication.

We point out that this is perhaps the most sophisticated functionality that has been UC-securely
realized in the standard model, without super-polynomial simulation and without using an honest
majority assumption. However, in this work, we do restrict ourselves to static adversaries (as
opposed to adversaries who corrupt the parties adaptively).

Related work. Replayable-CCA (RCCA) security was defined by Canetti et. al. [7] as a re-
laxation of CCA security (also often called CCA2 security, to distinguish it from the “lunch-time
attack” version). Gröth [19] raised the problem of rerandomizable RCCA security, but achieved
only a weaker notion. For the full-fledged RCCA security, [19] presents a scheme with a security
analysis in the idealized so-called generic group model. Our work improves on [19], answering the
open problem posed there. Our encryption scheme is also more efficient compared to that of [19].

1

Bellare et. al. [3] formally introduced notions of key-privacy and showed that the El Gamal
encryption scheme (which is only secure against chosen plaintext attacks) and the Cramer-Shoup
scheme already achieve their notions of key-privacy. Our work is an extension of theirs in the sense
that we consider anonymity for rerandomizable encryption schemes.

As mentioned before, our encryption scheme is based on the Cramer-Shoup scheme [11, 12],
which in turn is modeled after the El Gamal encryption [16]. Security of these schemes are based
on the DDH assumption (see, e.g. [4]). In [12], Cramer and Shoup show a wide range of encryption
schemes based on various assumptions, which provide CCA security, under a framework subsuming
the original Cramer-Shoup scheme [11]. We believe that much of their generalization can be adapted
to our current work as well, though we do not investigate this in detail here. (See the remark in
the concluding section.)

[27] and [1] introduced a variant of RCCA security, called benignly malleable security or gCCA2
security. It is similar to RCCA security, but uses an arbitrary equivalence relation over ciphertexts
to define the notion of replaying. However, these definitions preclude rerandomizability by requiring
that the equivalence relation be efficiently computable publicly. A simple extension of our scheme
achieves a similar definition of RCCA security and receiver-anonymity, where the replay-equivalence
relation is computable only by the ciphertext’s designated recipient. Such a functionality precludes
perfect rerandomization, though our modification does achieve a computational relaxation of the
rerandomization requirement.

A motivating example. We sketch the problem which motivated our investigation, and for
which the functionality Frmp provides a fitting solution. Consider the following network routing
problem (adapted from a private communication [20]) in a futuristic secure network, with the
following requirements: (1) each packet should carry its entire path to the destination, (2) each
node, including the node from which a packet originates, should not get any information about
the path encoded in the packet, other than the length of the path and where that node must
send the packet to next (next-hop), and (3) there should be a mechanism to broadcast link-failure
information so that any node holding a packet can check if the failed link occurs in (the remainder
of) the packet’s path (without gaining any other information). The nodes obtain objects encoding
the paths by listening to advertisements broadcast by one’s immediate neighbors who have already
discovered a path (i.e., have an object encoding a path) to the particular destination. It is beyond
the scope of this paper to consider specific networking scenarios where such a scheme could be
deployed; however, we mention peer-to-peer networks as a likely situation where the nodes in a
path may wish to remain anonymous.

In fact a lot of work on anonymity has been carried out both in theoretical cryptography and
in government funded implementations [8, 9, 10, 26, 18, 13, 5, 15, 21] (also see references collected
at [25]). Of these, the problem most similar to the one above is “Onion Routing” [18, 13, 5, 21].
However, it turns out that adding requirement (3) above makes the above problem fundamentally
different from previous works.

We point out some of the implicit anonymity requirements in our example. If a node receives
multiple path objects (during path discovery or during packet routing), it should not be able to
tell if the paths share common links (any more than it can tell by just knowing what is considered
legitimate for it to know, like the next/previous hops in the paths). In general, given many paths,
one should not be able to tell anything more than is revealed by their lengths and one’s own
immediate neighbors in each path, and when given link-failure information, it should only let each

2

node know which paths use that link, and nothing more about the identity of the link.
An approach to solving this routing problem is by employing the functionality Frmp. The path

objects are collections of handles, one for each node in the path, inserted into the collection by
the node itself. These handles correspond to self-addressed messages; the message includes the
next-hop information, which would let a node route a packet correctly later when it reaches the
node. Whenever a path object is passed on, during path discovery or during routing, each handle in
it is turned into a new handle, and the collection of handles re-sorted. In routing, the data packets
are also carried using handles which are renewed each time. Finally, to declare a link failure, the
corresponding private key is broadcast (this feature is not modeled in Frmp, but is not hard to
incorporate). The details of the problem and the solution are deferred to future work.

2 Definitions

We call a function ν negligible if it asymptotically approaches zero faster than any inverse polyno-
mial; that is, ν(n) = n−ω(1). We call a function noticeable if it is non-negligible. A probability is
overwhelming if it is negligibly close to 1 (negligible in an implicit security parameter). In all the
encryption schemes we consider, the security parameter is the number of bits needed to represent
an element from the underlying cyclic group.

2.1 Encryption and security definitions

In this section we formally define the strong notions mentioned above. First we give the syntax of a
perfectly rerandomizable encryption scheme, and then state two security requirements for it. These
security definitions are of the indistinguishability flavour: specific games are described to capture
the security notion and the adversary is required to have only a negligible advantage in the game.
Then we give a strong and convincing definition of security which combines all these properties.
This definition is in the simulation-based setting with an arbitrary network environment (also
variously known as UC (Universally Composable) security [6, 22], environmental security [17, 24]
and network-aware security [23]). As a justification of our indistinguishability-based definitions, we
show in Theorem 2 that a rerandomizable encryption scheme satisfying both indistinguishability
definitions also satisfies the simulation-based definition.

2.1.1 Perfectly rerandomizable encryption (syntax and correctness)

A perfectly rerandomizable encryption scheme consists of four efficient algorithms (i.e., polynomial
time in the security parameter): KeyGen, Enc, Rerand, and Dec.

• KeyGen is a randomized algorithm which generates a public key PK and a private key SK.

• Enc is a randomized encryption algorithm which takes a plaintext msg (from a plaintext space)
and a public key produced by KeyGen, and outputs a ciphertext ζ ← EncPK(msg).

• Rerand is a randomized algorithm which takes a ciphertext and outputs another ciphertext.

• Dec is a deterministic decryption algorithm which takes a private key and a ciphertext, and
outputs either a plaintext or an error indicator ⊥.

The correctness requirements on Dec are as follows:

3

• For any key pair (PK,SK) generated by KeyGen, all plaintexts msg and all honestly-generated
ciphertexts ζ ← EncPK(msg), we must have DecSK(ζ) = msg.

The correctness requirement on Rerand is as follows:

• For any message msg, any key pair (PK,SK), and any honestly generated ciphertext ζ ←
EncPK(msg), the distribution of Rerand(ζ) is identical to that of EncPK(msg).

• For key pair (PK,SK), any (purported) ciphertext ζ, and any ζ ′ ← Rerand(ζ), we must have
DecSK(ζ ′) = DecSK(ζ).

In other words, rerandomizing an honestly generated ciphertext induces the same distribution as
an independent encryption of the same message, while the only guarantee for an adversarially
generated ciphertext is that rerandomization preserves the value of its decryption (under every
key).1

2.1.2 Replayable CCA (RCCA) security

We use the definition of Replayable CCA security from Canetti, et al. [7]. The encryption scheme
is said to be RCCA secure if the advantage of any PPT adversary in the following experiment is
negligible.

1. Setup: Pick (PK,SK)← KeyGen. Arcca is given PK.

2. Phase I: Arcca gets access to decryption oracle DecSK(·).
3. Challenge: Pick b← {0, 1}. Arcca outputs a pair of plaintexts (msg0,msg1). Let

ζ∗ ← EncPK(msgb). Arcca is given ζ∗.

4. Phase II: Arcca gets access to a guarded decryption oracle GDec
(msg1,msg2)
SK which on

input ζ, first checks if DecSK(ζ) ∈ {msg1,msg2}. If so, it returns replay; otherwise
it returns DecSK(ζ).

5. Guess: Arcca outputs a bit b′.

The advantage of the adversary is Pr[b′ = b]− 1
2 .

2.1.3 Receiver-anonymity

Our receiver-anonymity (or key-privacy) definition is similar to that of [3], but modified to allow
replayability. An encryption scheme is said to be RCCA receiver-anonymous (or simply receiver-
anonymous) if the advantage of any PPT adversary in the following experiment is negligible.

1. Setup: Pick (PK0, SK0) ← KeyGen and (PK1, SK1) ← KeyGen. Aanon is given
(PK0, PK1)

2. Phase I: Aanon gets access to decryption oracles DecSK0(·) and DecSK1(·)
3. Challenge: Pick b← {0, 1}. Aanon outputs a plaintext msg. Let ζ∗ ← EncPKb

(msg).
Aanon is given ζ∗.

1 A stronger requirement for rerandomization would be that for all (purported) ciphertexts ζ such that DecSK(ζ) 6=
⊥, the distribution of Rerand(ζ) is identical to that of EncPK(DecSK(ζ)). This is stronger than we need in our
target application. As adversarially generated ciphertexts may be addressed to the adversary anyway, we provide no
guarantee on the distribution of rerandomizations of such ciphertext.

4

4. Phase II: Aanon gets access a guarded decryption oracle GDecmsg
SK0,SK1

(·), on input
ζ, first checks if DecSK0(ζ) = msg or DecSK1(ζ) = msg. If so, it returns replay;
otherwise it returns (DecSK0(ζ),DecSK1(ζ)).

5. Guess: Aanon outputs a bit b′.

The advantage of the adversary is Pr[b′ = b]− 1
2 .

In both experiments, we call ζ∗ the challenge ciphertext.

2.2 Replayable message posting functionality

We define the “Replayable Message Posting” functionality Frmp in the Universally Composable
(UC) framework which concisely presents the security achieved by an encryption scheme which
simultaneously enjoys the RCCA security, anonymity and rerandomizability. The functionality
allows parties to publicly post messages which are represented by handles. The handles are arbitrary
strings provided by the adversary. The adversary is only told who posts a message but not the
contents of the message, nor to whom it is addressed. Only the party to whom it is addressed is
allowed to obtain a message from the functionality.

Further, Frmp provides a reposting functionality: any party can request Frmp to “repost” (i.e,
make a copy of) a handle handle that has already been posted. Requesting a repost does not reveal
the message or its designated recipient. To everyone except the party requesting the repost, the
repost behaves exactly like a normal message posting (unless the original handle handle was posted
by the adversary or derived as a repost of a handle posted by the adversary).2 In particular, neither
the adversary nor the recipient of the message is told whether a handle is the result of a repost of
a previous handle.

In Section 7 we define the functionality Frmp in full detail. There we also incorporate a regis-
tration feature as part of Frmp which allows parties to (dynamically) obtain identities.

2.3 Decisional Diffie-Hellman (DDH) assumption

Our constructions are proven secure under the standard Decisional Diffie-Hellman (DDH) assump-
tion. Consider a (multiplicative) cyclic group G = 〈g〉 of prime order p.3 The Decisional Diffie-
Hellman (DDH) assumption in G is that the following two distributions are computationally indis-
tinguishable:

• DDH distribution. Pick random elements g1, g2 ← G, and pick a random v ← Zp. Output
(g1, g2, g

v
1 , gv

2).

• Rand distribution. Pick random elements g1, g2 ← G, and pick random v1, v2 ← Zp. Output
(g1, g2, g

v1
1 , gv2

2).

Our Double-strand Cramer-Shoup construction requires two (multiplicative) cyclic groups with
a specific relationship: G of prime order p, and Ĝ of prime order q, where Ĝ is a subgroup of Z∗p. We
require the DDH assumption to hold in both groups (with respect to the same security parameter).

2Note that we cannot expect to give any significant security guarantee when a handle that was originally posted
by the adversary is reposted, because it could have been addressed to the adversary itself.

3It is likely that our security analysis can be extended to groups of orders with large prime factors, as is done in
[12]. For simplicity, we do not consider this here.

5

As a concrete example, the DDH assumption is believed to hold in QR∗
p, the group of quadratic

residues modulo p, when p and (p − 1)/2 are both prime (i.e, p is a safe prime). Supposing we
have a sequence of prime numbers of the form q, 2q + 1, 4q + 3, the two groups Ĝ = QR∗

2q+1 and
G = QR∗

4q+3 satisfy the needs of our construction. A sequence of primes of this form is called a
Cunningham chain (of the first kind) of length 3 (See [2]). Such Cunningham chains are known to
exist having q as large as 20,000 bits. It is conjectured that there are infinitely many such chains.

3 Motivating the double-strand construction

Conceptually, the crucial enabling idea in our construction is that of using two “strands” of cipher-
texts (from an extended version of the Cramer-Shoup scheme) which can then be recombined with
each other for rerandomization, without changing the encrypted value. To motivate this idea, we
consider the much simpler case of security against chosen plaintext atacks. In this case a simple
variant of the El Gamal encryption scheme works:

Recall that in an El Gamal encryption scheme over a group G of order p, a message µ ∈ G
is encrypted into (gv, µ(ga)v), where a ∈ Zp is the private key and ga is the public key. To
encrypt a message µ ∈ G, in the “Double-strand El Gamal” scheme, we pick a random exponents
v, w ∈ Zp and output the ciphertext ζ = (gv, µgav, gw, gaw). To rerandomize a given ciphertext ζ =
(A,B, C, D), let Rerand(ζ) = (ACr, BDr, Cs, Ds) for random r, s ∈ Zp. Finally ζ = (A,B, C, D)
can be decrypted as µ = BA−a. The security of this scheme can be proven under the DDH
assumption in G.

Our Double-strand Cramer-Shoup scheme tries to adapt this paradigm of rerandomization us-
ing two pieces of ciphertexts, to the case when adaptive chosen ciphertext attacks are considered.
The main technical difficulty is in ensuring that the scheme remains secure even though two corre-
lated “strands” of encryption are made available, and even though the additional functionality of
rerandomization is provided, which the adversary may be able to exploit.

Cramer-Shoup encryption. We briefly recall the Cramer-Shoup scheme. We work over a
group G of prime order p in which the DDH assumption is believed to hold. The private key
is b1, b2, c1, c2, d1, d2 ∈ Zp and the public key is g1, g2 ∈ G, B =

∏2
i=1 gbi

i , C =
∏2

i=1 gci
i , and

D =
∏2

i=1 gdi
i .

To encrypt a message msg, first pick x ∈ Zp. and for i = 1, 2 let and Xi = gx
i . Encode msg into

an element µ in G. The ciphertext is (X1, X2, µBx, (CDm)x) where m = H(X1, X2, µBx) (H being
a collision resistant hash function from G3 to Zp).

In our scheme the ciphertext will contain two “strands,” each one similar to a Cramer-Shoup
ciphertext, and allowing rerandomization as in the El Gamal example above. However, instead of
pairs we require 5-tuples of gi, bi, ci, di (i.e., for i = 1, . . . , 5). To allow for rerandomization, we use
a direct encoding of the message for the exponent m (instead of a hash of part of the ciphertext).
Finally, we thwart attacks which splice together multiple encryptions by correlating the two strands
with shared random mask values.

Our security analysis is fairly more complicated than the ones in [11, 3, 19]. However all these
analyses as well as the current one follow the basic idea that if the encryptions were to be carried
out using the secret key in a “bad” way, it will remain indistinguishable from the actual encryptions
(by the DDH assumption), but will also become independent of the message and the public key.

6

4 Results

We present two main results below. The first says that the DSCS encryption scheme presented in
Section 5 meets the security guarantees defined earlier using standalone games. The second result
says that any construction which meets these guarantees yields a UC-secure realization of the Frmp

functionality.

Theorem 1 The DSCS encryption scheme (Section 5) is a perfectly rerandomizable encryption
scheme which achieves the definitions of RCCA security and receiver-anonymity, under the DDH
assumption in G and Ĝ.

Proof overview: The construction itself is given in Section 5. Here we give an outline of the
structure of the proof, without getting into the details of the construction. The full proof appears
in Section 6.

The correctness and perfect rerandomization properties of our construction are straight-forward
to verify. We focus on proving RCCA security and receiver-anonymity. It is convenient to formulate
our proof in terms of alternate encryption and decryption procedures – AltEnc which uses the private
key for encryption and AltDec which uses the public key for decryption – as described below. We
remark that this outline is similar to that used in previous proofs related to the Cramer-Shoup
construction [11, 3, 12, 14]. However the implementation is significantly more involved in our case.

• First, we would like to argue that the ciphertexts hide the message and the public key used
in the encryption. For this we describe an alternate encryption procedure AltEnc. When
using this procedure to generate the challenge ciphertext in either security experiment, the
difference is indistinguishable to any adversary (including when the adversary queries the
decryption oracle which has the private keys). AltEnc will actually use the private key (not
the public key) to generate the challenge ciphertext. That the adversary’s behavior in the
experiment will not change significantly when using such an alternate ciphertext follows from
the DDH assumption in G and Ĝ.

Secondly, the ciphertexts produced by AltEnc are information-theoretically independent of
the message (even given the public key) and of the public key (even given the message). This
property will be useful in proving RCCA security and receiver-anonymity, respectively.

• However, an adversary may be able to get information about the message or the public key
used in the encryption not only from the challenge ciphertext, but also from the answers to
the decryption queries that it makes. Indeed, since the decryption oracle uses the private key
there is a danger that information about the private key is leaked, especially when answering
maliciously crafted ciphertexts. To show that this is not the case with our encryption scheme,
we describe an alternate decryption procedure AltDec to be used in the security experiments,
which can be implemented using only the public key(s) and challenge ciphertext (things which
are already known to the adversary). AltDec will be computationally unbounded, but as it
is only accessed as an oracle, this is not problematic. More importantly, its functionality
will be indistinguishable from the honest decryption procedure (even when the adversary is
computationally unbounded and is given a ciphertext generated by AltEnc).

We conclude that with these two modifications – alternate challenge ciphertext and the alternate
decryption procedure – the adversary’s view in either experiment is independent of the secret bit

7

b chosen in the experiment, and so the adversary has no advantage in guessing the bit. Further,
the outcome of this modified experiment is negligibly different from the outcome of the original
experiment, so the security claims follow. C

Realizing Frmp. Given an encryption scheme which meets our RCCA security, rerandomizability
and anonymity definitions, Frmp can be realized in the standard UC model (and without super-
polynomial simulation) using a simple “protocol.” For simplicity we consider all communications
to use a broadcast channel. The identities are the public keys, and the handles are the ciphertexts.
Registering oneself involves generating a public-private key pair and publishing (broadcasting) the
public key as one’s identity. To post a message addressed to a party, one simply encrypts the
message under the intended party’s public key and publishes the encryption. Reposting a handle
(i.e., a ciphertext) involves rerandomizing the ciphertext. To retrieve a message in a handle one
simply decrypts it using one’s private key.

Theorem 2 Any rerandomizable encryption scheme which satisfies the definitions of Replayable-
CCA2 security, rerandomizability and receiver-anonymity, is a secure realization of the replayable
message posting functionality Frmp.

To prove this theorem we need to demonstrate a simulator S for each adversary A. The
simulator internally runs A and behaves as follows.

• First it generates a key pair (PK∗, SK∗). Every time an honest party registers, it generates
a key pair and sends the public key as that party’s identity to Frmp and to A. Public keys
published by A are registered by S as identities (noted by Frmp as corrupted identities).

• When Frmp receives a post or repost request – say the ith one – from an honest party addressed
to an honest party, it requests S for a handle handlei (without telling it what the message is,
who the receiver is or whether it was a post or a repost). At this point S picks a random
message m̃sgi, encrypts it under PK∗ and sends this ciphertext to Frmp as handlei. Frmp

will keep this handle marked as honest. In its simulation S uses this ciphertext as the one
broadcast by the sender.

• When A sends out a ciphertext ζ, S behaves as follows:

– First it checks if DecSK∗(ζ) = m̃sgi, the random message chosen for some previous i. If
so, S requests Frmp to repost handlei.

– Otherwise it checks if DecSK(ζ) = msg 6= ⊥ for any of the private keys SK that it picked
while registering honest parties. If so, S asks Frmp to post msg, addressed to the party
for which SK was picked as the private key.

– If ζ is not decrypted by any of these private keys then S requests Frmp to post a dummy
message to a dummy user.

In all the above cases, S sends ζ as the handle to Frmp. Frmp keeps this handle marked as
adversarial, as it was posted by the adversary (possibly as a repost of a handle marked
honest).

8

• When Frmp receives a post request from an honest party addressed to a corrupt identity, it
sends the message being posted to S, along with the identity to which it is addressed. S
generates a handle by encrypting the message under the corrupt public key and sends it to
Frmp and A as before.

• When Frmp receives a repost request for a handle marked adversarial it sends S this handle.
S applies the rerandomization procedure to this handle and returns the resulting handle to
Frmp, which Frmp publishes. In its simulation S uses the rerandomized ciphertext as the one
broadcast by the sender.

In Section 8 a detailed analysis of this simulator is given.

5 Our construction

In this section we describe the Double-strand Cramer-Shoup (DSCS) encryption scheme referred
to in Theorem 1. First, we introduce a simpler encryption scheme that is used as a component of
the main scheme.

5.1 Double-strand malleable encryption scheme

We first define a rerandomizable encryption scheme which we call the “Double-strand malleable
encryption” (DSME). As its name suggests, it is malleable, so it does not achieve our notions of
RCCA security. However, it introduces the double-strand paradigm for rerandomization which we
will use in our main construction. We will also use our DSME scheme as a component in our main
construction, where its malleability will be a vital feature.

System parameters. A cyclic multiplicative group Ĝ of prime order q. Ĝ also acts as the message
space for this scheme.

Key generation. Pick random generators ĝ1, ĝ2, ĝ3 from Ĝ, and random a = (a1, a2, a3) from Zq.
The private key is a. The public key consists of ĝ1, ĝ2, ĝ3, and A =

∏3
j=1 ĝ

aj

j

Encryption: MEncMPK(u ∈ Ĝ):

• Pick random v, w ∈ Zq. For j = 1, 2, 3: let Vj = ĝv
j and Wj = ĝw

j .

• Output (V, uAv,W, Aw), where V = (V1, V2, V3) and W = (W1,W2,W3).

Decryption: MDecMSK(U = (V, AV ,W, AW)):

• Check ciphertext integrity: Check if AW
?=

∏3
j=1 W

aj

j . If not, output ⊥.

• Derive message: Output AV /
∏3

j=1 V
aj

j .

Rerandomization: MRerand(U = (V, AV ,W, AW)). The only randomness used in generating a
ciphertext is the choice of v and w in Ĝ. We can perfectly rerandomize both of these quantities
by choosing random s, t ∈ Zq and constructing a new ciphertext U ′ with corresponding
randomness v′ = v + sw, w′ = tw, as follows:

• For j = 1, 2, 3, set V ′
j = Vj ·W s

j .

9

• For j = 1, 2, 3, set W ′
j = W t

j .

• A′
V = AV ·As

W .

• A′
W = At

W .

The rerandomized ciphertext is (V′, A′
V ,W′, A′

W).

Homomorphism (multiplication by known value): Let u′ ∈ Ĝ and let U = (V, AV ,W, AW)
be a DSME ciphertext. We define the following operation:

u′ ⊗ U
def= (V, u′ ·AV ,W, AW)

It is not hard to see that for all private keys MSK, if MDecMSK(U) 6= ⊥ then MDecMSK(u′⊗
U) = u′ ·MDecMSK(U), and if MDecMSK(U) = ⊥ then MDecMSK(U ′) = ⊥ as well.

Observe that this scheme is malleable under more than just multiplication by a known quantity.
For instance, given an encryption of u, we can produce an encryption of ur for a known r ∈ Zq.
As it turns out, the way we use DSME in the main construction ensures that we achieve our final
security despite such additional malleabilities.

Correctness properties. We require that the DSME scheme satisfy the correctness properties
of a perfectly rerandomizable encryption scheme, as defined in Section 2.1.1. These are proved in
Section 6.

5.2 Double-strand Cramer-Shoup encryption scheme

Now we give our main construction: an anonymous, rerandomizable, RCCA-secure encryption
scheme called the “Double-strand Cramer-Shoup” (DSCS) encryption scheme. At the high level
it has two Cramer-Shoup encryption strands, one carrying the message, and the other to help
rerandomize it. But unlike in Cramer-Shoup we need to allow rerandomization, and so we do not
use a prefix of the ciphertext itself in ensuring consistency; instead we use the message. Further, we
need to restrict the ways in which recombinations of ciphertexts can yield related valid ciphertexts.
This leads us to longer strands (more components). Finally, in order to prevent the possibility of
mixing together two separate encryptions (say, in the manner in which rerandomizability allows two
strands to be mixed together) – which will let the adversary check if they have the same message
or public key, via a chosen ciphertext attack – we correlate the two strands of the ciphertext with
shared random masks. These masks are random exponents which are separately encrypted using
the malleable DSME scheme described above (so that they may be hidden from everyone but the
designated recipient, but also be rerandomized via the DSME scheme’s homomorphic operation).
A formal description follows.

System parameters. A cyclic multiplicative group G of prime order p. A space of messages. An
injective encoding encodeG of messages into G. An injective mapping encodeZp of messages
into Zp (or into Z∗p, without any significant difference). These functions should be efficiently
computable in both directions.

We also require a secure DSME scheme over a group Ĝ of prime order q, where Ĝ is also a
subgroup of Z∗p. This is crucial, as the homomorphic operation ⊗ of the DSME scheme must
coincide with multiplication in the exponent in G.

10

Finally, we require a fixed vector z = (z1, . . . , z5) ∈ (Zp)5 with a certain degenerate property.
For our purposes, z = (0, 0, 0, 1, 1) is sufficient.

Key generation. Generate 5 keypairs for the DSME scheme in Ĝ, as described above. Call them
Ai,ai for i = 1, . . . , 5.

Pick random generators g1, . . . , g5 ∈ G, and random b = (b1, . . . , b5), c = (c1, . . . , c5),d =
(d1, . . . , d5) from Zp. The private key consists of b, c,d and the 5 private keys for the DSME
scheme. The public key consists of (g1, . . . g5), the 5 public keys for the DSME scheme, and
the values:

B =
5∏

i=1

gbi
i , C =

5∏
i=1

gci
i , D =

5∏
i=1

gdi
i

Encryption: EncPK(msg):

• Pick random x, y ∈ Z∗p and random u1, . . . , u5 ∈ Ĝ.

• For i = 1, . . . , 5: let Xi = g
(x+zi)ui

i ; Yi = gyui
i ; and Ui = MEncAi(ui).

• Let µ = encodeG(msg), and m = encodeZp(msg).
• Output:

(X, µBx, (CDm)x,Y, By, (CDm)y,U)

where U = (U1, . . . , U5),X = (X1, . . . , X5),Y = (Y1, . . . , Y5).

Decryption: DecSK(ζ = (X, BX , PX ,Y, BY , PY ,U)):

• Decrypt Ui’s: For i = 1, . . . , 5: set ui = MDecai(Ui). If any ui = ⊥, immediately
output ⊥.

• Strip ui and zi: For i = 1, . . . , 5: set Xi = X
1/ui

i g−zi
i and Y i = Y

1/ui

i .

• Derive purported message: Set µ = BX/
∏5

i=1 X
bi

i , msg = encode−1
G (µ), and m =

encodeZp(msg).
• Check ciphertext integrity: Check the following conditions:

BY
?=

∏5
i=1 Y

bi

i ; PX
?=

∏5
i=1 X

ci+dim
i ; PY

?=
∏5

i=1 Y
ci+dim
i

If any checks fail, output ⊥. Otherwise output msg.

Rerandomization: Rerand(ζ = (X, BX , PX ,Y, BY , PY ,U)). The only randomness used in gen-
erating ζ is the choice of x, y, u = (u1, . . . , u5), and the randomness used in each instance of
MEnc. We can rerandomize each of these quantities by choosing random r1, . . . , r5 ∈ Ĝ, ran-
dom s, t ∈ Z∗p, and constructing a new ciphertext with corresponding randomness u′i = uiri,
x′ = x + ys, and y′ = yt:

• For i = 1, . . . , 5: U ′
i = MRerand(ri ⊗ Ui).

• For i = 1, . . . , 5: X ′
i = (XiY

s
i)ri .

• For i = 1, . . . , 5: Y ′
i = Y rit

i .
• B′

X = BXBs
Y and P ′

X = PXP s
Y .

• B′
Y = Bt

Y and P ′
Y = P t

Y .

The rerandomized ciphertext is ζ ′ = (X′, B′
X , P ′

X ,Y′, B′
Y , P ′

Y ,U′)

11

5.3 Complexity

A DSCS ciphertext consists of 40 elements from Ĝ and 14 elements from G. See Figure 5.3 for the
complexity of the DSCS algorithms.4

exponentiations multiplications inversions
Ĝ G Z∗p G Z∗p G

Enc 40 16 15 3 0 0
Dec (worst case) 30 35 40 22 10 1
Rerand 36 19 40 7 0 0

Figure 1: Group operations performed in DSCS algorithms.

Clearly our scheme is much less efficient than the Cramer-Shoup encryption scheme. On the
other hand, it is much more efficient than the only previously proposed rerandomizable (weak)
RCCA secure scheme [19], which used O(k) group elements to encode a k-bit message (or in
other words, to be able to encode group elements, it uses O(log p) group elements). In fact, if
we restrict ourselves to weak RCCA security (and a computational version of rerandomizability),
our construction can be simplified to have only 10 group elements. (We omit the details of that
construction in this paper.)

Rerandomizable RCCA security (anonymous or not) is a significantly harder problem by our
current state of knowledge. Despite the inefficiency, we believe that by providing the first complete
solution (not in generic group model) we have not only solved the problem from a theoretical
perspective, but also have opened up the possibility of efficient and practical constructions.

6 Proof of Theorem 1

We first show that the DSCS scheme satisfies the correctness requirements of a perfectly rerandom-
izable encryption scheme.

As mentioned in Section 4, to demonstrate the two security properties (RCCA security and
receiver-anonymity), we will demonstrate alternate encryption and decryption procedures. The
alternate encryption procedure AltEnc is described in Section 6.5 and the alternate decryption
procedure AltDec is described in Section 6.6. The lemmas in the rest of this section carry out the
proof outlined in Section 4.

6.1 Correctness properties

The correctness property of decryption (i.e, that it is the inverse of encryption) is straight-forward
to verify. The first correctness property of Rerand (i.e, that a rerandomization of an honestly
generated ciphertext is distributed as a fresh re-encryption) is also straight-forward to verify. We
now prove the final correctness property (i.e, that a rerandomization of an adversarially generated
ciphertext decrypts to the same value, under any secret key) for both the DSME and DSCS schemes.

Lemma 1 For all key pairs (MPK,MSK), all (purported) ciphertexts U , and all U ′ ← MRerand(U),
we must have MDecMSK(U ′) = MDecMSK(U).

4Multiplication and inversion operations in Z∗
p include operations in the subgroup bG. We assume that for bgi

elements of the public key, bg−1
i can be precomputed.

12

Proof: Let MSK = (a1, a2, a3) be a private key, and U = (V, AV ,W, AW) be a ciphertext such
that MDecMSK(U) = u 6= ⊥. It is easy to see that this happens if and only if the following two
conditions hold:

AV /u =
∏3

j=1 V ai
i ; AW =

∏3
j=1 W ai

i

Now let U ′ = (V′, A′
V ,W′, A′

W) = MRerand(U). Suppose the randomness used in MRerand is
s, t ∈ Zq. Then, substituting according to the two above constraints and the computations in
MRerand, we have:

A′
V /u = (AV As

W)/u =
[∏3

j=1 V ai
i

] [∏3
j=1 W ai

i

]s
=

∏3
j=1(ViW

s
i)ai =

∏3
j=1(V

′
i)ai

A′
W = At

W =
[∏3

j=1 W ai
i

]s
=

∏3
j=1(W

s
i)ai =

∏3
j=1(W

′
i)

ai

Thus MDecMSK(U ′) = u as well.
Likewise, MDecMSK(U) = ⊥ if and only if AW 6=

∏3
j=1 W ai

i . When this is the case, the
corresponding constraint on A′

W does not hold, as can be seen by a similar argument. Thus
MDecMSK(U ′) = ⊥ as well. �

Lemma 2 For all key pairs (PK,SK), all (purported) ciphertexts ζ, and all ζ ′ ← Rerand(ζ), we
must have DecSK(ζ ′) = DecSK(ζ).

Proof: Fix a private key SK and let ζ = (X, BX , PX ,Y, BY , PY ,U) be a (purported) ciphertext
such that DecSK(ζ) 6= ⊥. Suppose each Ui decrypts to ui under the ith DSME private key contained
in SK. Let ζ ′ = (X′, B′

X , P ′
X ,Y′, B′

Y , P ′
Y ,U′), where:

X ′
i = (XiY

s
i)ri ; Y ′

i = Y rit
i ; B′

X = BXBs
Y ; P ′

X = PXP s
Y ; B′

Y = Bt
Y ; P ′

Y = P t
Y

By the correctness properties of the DSME scheme, each U ′
i of the rerandomized ciphertext decrypts

to riui under the ith DSME private key contained in SK.
When decrypting ζ, the decryption procedure will strip the ui’s (and zi’s) to obtain: Xi =

X
1/ui

i g−zi
i and Y i = Y

1/ui

i . However, when decrypting the rerandomization ζ ′, the computed
values will be:

X
′
i = (X ′

i)
1/u′ig−zi

i = (XiY
s
i)ri/(riui)g−zi

i = XiY
s
i

Y
′
i = (Y ′

i)1/u′i = Y
rit/riui

i = Y
t
i

Next, the decryption procedure computes the purported message of ζ ′ by the following computation
(substituting according to the identities above and the fact that the check on BY succeeds while
decrypting ζ):

µ =
B′

X∏5
i=1(X

′
i)

bi
=

BX∏5
i=1 X

bi

i

Bs
Y∏5

i=1(Y
s
i)

bi
=

BX∏5
i=1 X

bi

i

· 1

In other words, the same purported message is computed as in the decryption of ζ. In the same
way, the integrity checks also succeed while decrypting ζ ′, and the decryption procedure indeed
returns the same message.

On the other hand, if DecSK(ζ) = ⊥, then DecSK(ζ ′) will output ⊥ at the same point in
the algorithm; either while decrypting a certain Ui or while performing an integrity check on the
ciphertext (though the purported ciphertexts may be different). �

13

6.2 Replay interactions

Instead of arguing separately about the two security experiments (RCCA security and receiver-
anonymity), we define a generic “experiment” called a replay interaction. Both security experiments
can be implemented in terms of replay interactions.

Replay interaction. Consider the following interaction against an adversary A.

1. Honestly generate a keypair (PK,SK)← KeyGen, and give PK to A.

2. (Phase I) Let A access the decryption oracle DecSK(·).
3. A gives a message msg∗. Give ζ∗ = EncPK(msg∗) to A.

4. (Phase II) Let A access a special guarded decryption oracle with the following
restrictions:

• On input ζ, if DecSK(ζ) = msg∗, the oracle’s response must be either msg∗ or
replay (possibly arbitrarily).

• Otherwise, the oracle’s response must match DecSK(ζ).

5. A outputs a bit.

An alternate decryption procedure is said to faithfully implement the oracle in Phases I & II if
for all adversaries A, the procedure’s answers to the adversary’s queries queries satisfy the given
restrictions, except with negligible probability (over the randomness in KeyGen and ciphertext
generation).

Claim 1 There is an alternate encryption procedure AltEnc which uses the private key SK instead
of the public key PK, and whose output is indistinguishable from the honest encryption proce-
dure. However, even though it uses the private key, its output is independent of the message and
corresponding public key, except with negligible probability over its randomness.

Claim 2 There is an alternate decryption procedure AltDec that can be implemented using only
ζ∗ and the public key PK, and which faithfully implements the decryption oracles of the replay
interaction, even when ζ∗ was generated by AltEnc.

Note that AltDec does not have access to SK or msg∗, yet must (in part) emulate GDecmsg∗

SK (·).
Later, we describe AltEnc and AltDec, and prove the above claims.

Proving RCCA security and receiver-anonymity given Claim 1 and Claim 2. First,
we show that both of the security experiments can be implemented by playing as the adversary in
replay interactions.

• To implement the RCCA security experiment against A, we participate as an adversary in
a replay interaction, and receive a public-key PK, which we pass on to A. The decryption
oracle of Phase I is implemented using access to the replay interaction’s decryption oracle.
In the challenge phase, when A gives a pair of messages msg0,msg1, we flip a coin b and
pass msg∗ = msgb to the replay interaction. On obtaining ζ∗ from the replay interaction,
we return it to the adversary. In Phase II, when A wants to query GDec

(msg0,msg1)
SK (ζ), we

use the special guarded decryption oracle from the replay interaction. If it returns replay or

14

one of msg0,msg1, we return replay; otherwise we return its result. From the condition on
the special guarded decryption oracle, it follows that this is a perfect implementation of the
RCCA security experiment. Finally, we output 1 if A correctly guesses b.

• To implement the receiver-anonymity experiment against A, we participate in two replay
interaction sessions, and receive two public-keys PK0 and PK1 which we pass to A. The
decryption oracles of Phase I of the receiver-anonymity experiment are implemented using
access to DecSK0 and DecSK1 of the replay interaction. In the challenge phase, when the
adversary gives a message msg∗, we flip a coin b, give msg∗ to both interactions, and return
ζ∗ = EncPKb

(msg∗) to the adversary (discarding EncPK1−b
(msg∗)). In Phase II, when A

wants to query GDecmsg∗

SK0,SK1
(ζ), we pass the query to both decryption oracles from the replay

interactions. If either oracle responds with msg∗ or replay, we return replay. Otherwise, we
return the results of both queries. Finally, we output 1 if A correctly guesses b.

By Claim 1, generating the encryptions using AltEnc instead of Enc does not noticeably affect
the outcome of the replay interaction. Then, by Claim 2, further replacing the decryption oracle
with AltDec also does not noticeably affect the outcome of the replay interaction. Call such an
interaction which uses both AltEnc and AltDec an alternate replay interaction.

It suffices to show that when implementing either security experiment in terms of alternate
replay interactions, the adversary has no advantage in guessing b. In such an implementation of
either experiment, the adversary’s view includes only the following quantities:

• Public key(s). These are obviously distributed independently of b.

• Answers to decryption queries in Phase I. By Claim 2, these can be computed using only the
public key(s), which the adversary already knows.

• The challenge ciphertext ζ∗. Here, the bit b was used to choose either the message or the
public key with which to generate the ciphertext. However, by Claim 1, the ciphertext is
distributed independently of this choice (i.e, independent of b).

• Answers to decryption queries in Phase II. By Claim 2, these can be computed using only
the public key(s) and ζ∗, both of which the adversary knows.

Thus in either security experiment (when implemented in terms of alternate replay interactions),
the adversary’s view is independent of b, and hence the adversary has zero advantage.

6.3 Decisional Diffie-Hellman assumption

We now describe a more intricate indistinguishability assumption, which is implied by the standard
DDH assumption in G and Ĝ.

First, consider the following two distributions:

• DDH(G, n) distribution. Pick random elements g1, . . . , gn ∈ G, and pick a random v ∈ Zp,
where |G| = p. Output (g1, . . . , gn, gv

1 , . . . , gv
n).

• Rand(G, n) distribution. Pick random elements g1, . . . , gn ∈ G, and pick random v1, . . . , vn ∈
Zp, where |G| = p. Output (g1, . . . , gn, gv1

1 , . . . , gvn
n).

15

We will require distributions of this form with n = 3 and n = 5, in different groups. Note that for
fixed n, the standard DDH assumption in G (which is the special case of n = 2) implies that the
above distributions are indistinguishable. To see this, consider a hybrid distribution in which the
first k exponents are randomly chosen, and the remaining n− k are all equal. The standard DDH
assumption is easily seen to imply that the kth hybrid distribution is indistinguishable from the
(k + 1)st.

Now consider the following two “double-strand” distributions:

• DS-DDH(G, n) distribution. Pick random elements g1, . . . , gn ∈ G, and pick random v, w ∈
Zp, where |G| = p. Output (g1, . . . , gn, gv

1 , . . . , gv
n, gw

1 , . . . , gw
n).

• DS-Rand(G, n) distribution. Pick random elements g1, . . . , gn ∈ G, and pick random
v1, . . . , vn, w1, . . . , wn ∈ Zp, where |G| = p. Output (g1, . . . , gn, gv1

1 , . . . , gvn
n , gw1

1 , . . . , gwn
n).

Again, a simple hybrid argument shows that if the DDH(G, n) and Rand(G, n) distributions are
indistinguishable, then so are DS-DDH(G, n) and DS-Rand(G, n). We call elements in the support
of these distributions double-strand tuples of length n.

Finally, our security proofs rely on the indistinguishability of the following two distributions:

• Pick K0 from DS-DDH(G, 5), and pick K1, . . . ,K5 from DS-DDH(Ĝ, 3). Output (K0, . . . ,K5).

• Pick K0 from DS-Rand(G, 5), and pick K1, . . . ,K5 from DS-Rand(Ĝ, 3). Output (K0, . . . ,K5).

A final hybrid argument shows that if DS-DDH(G, 5) and DS-Rand(G, 5) are indistinguishable, and
DS-DDH(Ĝ, 3) and DS-Rand(Ĝ, 3) are also indistinguishable, then the above two distributions are
indistinguishable.

6.4 Encryption and decryption as linear algebra

Before describing the alternate encryption and decryption procedures, we give a characterization
of our construction using linear algebra.

Definition 1 Let U = (V, AV ,W, AW) be a DSME ciphertext. The two DSME strands of U with
respect to a public key (ĝ1, ĝ2, ĝ3, A) are:

v = (v1, v2, v3), where vj = logbgj
Vj

w = (w1, w2, w3), where wj = logbgj
Wj

Observe that rerandomizing U gives a ciphertext whose two strands are of the form v + rw and
sw, for random r, s ∈ Zq. In ciphertexts generated by MEnc, both strands are scalar multiples of
the all-ones vector.

For simplicity later on, we call the all-ones vector the public key’s strand.

For DSCS ciphertexts, we define a similar notion of strands. However, in a DSCS ciphertext,
the first strand is “masked” by ui’s and zi’s, and the second strand is masked by ui’s. We separately
consider “masked” and “unmasked” definitions of strands.

16

Definition 2 Let ζ = (X, BX , PX ,Y, BY , PY ,U) be a DSCS ciphertext. The masked DSCS
strands of ζ with respect to a public key (g1, . . . , g5, B, C, D) are:

x = (x1, . . . , x5), where xi = loggi
Xi

y = (y1, . . . , y5), where yi = loggi
Yi

The unmasked DSCS strands of ζ with respect to a public key (g1, . . . , g5, B, C, D) and u =
(u1, . . . , u5) are:

x =
(

x1

u1
− z1, . . . ,

x5

u5
− z5

)
, y =

(
y1

u1
, . . . ,

y5

u5

)
As with DSME ciphertexts, rerandomizing ζ gives a ciphertext whose two (unmasked) strands are
of the form x + ry and sy, for r, s ∈ Zp. In ciphertexts generated by Enc, both unmasked strands
are scalar multiples of the all-ones vector.

For simplicity later on, we call the all-ones vector the public key’s (unmasked) strand.

Adversary’s view in a replay interaction. In a replay interaction, the view of the adversary
is a linear function of the private key in the following way:

For each DSME private key a = (a1, a2, a3), the adversary sees only the corresponding public
key A and, as part of the challenge ciphertext, a DSME ciphertext U∗ = (V∗, A∗

V ,W∗, A∗
W) which

decrypts to some u∗. Of these quantities, only A, A∗
V , and A∗

W are dependent on the private key.
Let w∗ and v∗ be the strands of U∗ with respect to ĝ1, ĝ2, ĝ3 of the public key. The following
constraints must hold: 1 1 1

w∗
1 w∗

2 w∗
3

v∗1 v∗2 v∗3

log ĝ1 0 0
0 log ĝ2 0
0 0 log ĝ3

a1

a2

a3

 =

 log A
log A∗

W

log(A∗
V /u∗)

 (1)

The logarithm is with respect to any fixed generator of Ĝ. In Phase I of the replay interaction,
only the first row constraint is relevant.

Similarly, let B,C,D be the corresponding parts of the DSCS public key, and let ζ∗ = (X∗, B∗
X , P ∗

X ,Y∗, P ∗
Y ,U∗)

denote the challenge ciphertext. Let x∗ and y∗ denote the unmasked DSCS strands of ζ∗, with
respect to the decryptions of each U∗

i , and the generators g1, . . . , g5 in the DSCS public key. The
following constraints must hold:

1 0 0
0 1 0
0 0 1
x∗ 0 0
y∗ 0 0
0 x∗ mx∗

0 y∗ my∗

G 0 0

0 G 0
0 0 G

bT

cT

dT

 =

log B
log C
log D

log(B∗
X/µ)

log B∗
Y

log P ∗
X

log P ∗
Y

, where G =

log g1 · · · 0
...

. . .
...

0 · · · log g5

 (2)

Again, the logarithm is with respect to any fixed generator of G. In Phase I of the replay interaction,
only the first three row constraints are relevant.

In the analysis that follows, we consider the adversary’s behavior over the remaining (indepen-
dent) randomness of the key generation.

17

6.5 The alternate encryption functionality

We now describe the alternate encryption functionality AltEnc needed for Claim 1. As a component,
it uses AltMEnc, an alternate encryption functionality for the DSME scheme.

DSME alternate encryption: AltMEnca(u).

• Pick random v1, v2, v3, w1, w2, w3 ∈ Zq. For j = 1, 2, 3 let Vj = ĝ
vj

j and Wj = ĝ
wj

j

(alternatively, in the analysis below we also consider Vi,Wi as inputs instead).

• Output (V, AV ,W, AW), where

AV = u ·
∏3

j=1 V
aj

j V = (V1, V2, V3)

AW =
∏3

j=1 W
aj

j W = (W1,W2,W3)

DSCS alternate encryption: AltEncSK(msg).

• Pick random x1, . . . , x5, y1, . . . , y5 ∈ Z∗p. For i = 1, . . . , 5, set Xi = gxi
i and Y i = gyi

i ,
(alternatively, in the analysis below we also consider Xi, Y i as inputs instead).

• Pick random u1, . . . , u5 ∈ Ĝ and for i = 1, . . . , 5, set Xi = (Xig
zi
i)ui , Yi = Y

ui

i , and
Ui = AltMEncai(ui).

• Let µ = encodeG(msg), and m = encodeZp(msg).

• Output (X, BX , PX ,Y, BY , PY ,U), where

BX = µ ·
∏5

i=1 X
bi

i U = (U1, . . . , U5)

PX =
∏5

i=1 X
ci+dim
i X = (X1, . . . , X5)

BY =
∏5

i=1 Y
bi

i Y = (Y1, . . . , Y5)

PY =
∏5

i=1 Y
ci+dim
i

Observe that both of these alternate encryption procedures generate ciphertexts whose two
(unmasked) strands are random vectors. The remainder of the ciphertext is constructed using the
private key to ensure that it (and any of its malleations or rerandomizations) will decrypt properly.

The following two lemmas complete the proof of Claim 1:

Lemma 3 In a replay interaction where ciphertexts are generated with AltEnc, the challenge ci-
phertext is distributed independently of the choice of message and public key. except with negligible
probability over the randomness in AltEnc.

Proof: The parts of the adversary’s view that depend on the key are given in the linear con-
straints of Equation 1 and Equation 2.

Consider the ith DSME component U∗
i of the challenge ciphertext. When AltMEnc is used to

generate U∗
i , its two strands are random vectors. Therefore, the matrix in Equation 1 is nonsingular

with overwhelming probability. Conditioned on this event, there are an equal number of private
keys consistent with each choice of right-hand side values in the equation. The right-hand side
includes the choice of public key and message u∗i , thus the view of the adversary is independent of
these choices.

18

Similarly, when AltEnc is used to generate the rest of the challenge ciphertext, its unmasked
strands are also random vectors (with respect to any choice of u∗). Thus the first matrix in equation
Equation 2 is nonsingular with overwhelming probability, for all values of m (this happens when
{1,x∗,y∗} are linearly independent). By the same reasoning as above, the adversary’s view is
independent of the choice of ciphertext and message. �

Lemma 4 For any adversary in a replay interaction, its advantage when the challenge ciphertext
is generated using AltEnc is negligibly close to its advantage in the original interaction (when the
ciphertext is generated using Enc), if the DDH assumption holds in G and Ĝ.

Proof: If the DDH assumption holds for Ĝ and G, then two the distributions described in
Section 6.3 are computationally indistinguishable. Elements in the support of these distributions
consist of 1 double-strand tuple of length 5 from G, and 5 double-strand tuples of length 3 from Ĝ.

Now consider a simulation of a replay interaction, where the input is from one of the above
distributions. For each i = 1, . . . , 5, let (ĝ1, ĝ2, ĝ3, V1, V2, V3,W1,W2,W3) be the ith double-strand
tuple from Ĝ. Set (ĝ1, ĝ2, ĝ3) as the corresponding part of the ith DSME public key, and generate
the remainder of the ith keypair honestly. To simulate the encryption of u∗i from the challenge
ciphertext with this keypair, use AltMEnc with the input values V1, V2, V3,W1,W2,W3.

Similarly, let (g1, . . . , g5, X1, . . . , X5, Y 1, . . . , Y 5) be the double-strand tuple from G. Set (g1, . . . , g5)
as the corresponding part of the DSCS public key and generate the remainder of the DSCS keypair
honestly. To simulate the encryption of the challenge ciphertext, use AltEnc with the input values
X1, . . . , X5, Y 1, . . . , Y 5.

It is easy to see that when the input is sampled from the first distribution (i.e, each tuple comes
from the appropriate DS-DDH distribution), the ciphertext is distributed as an honest encryption
with Enc (and MEnc). If the input is sampled from the second distribution (i.e, each tuple comes
from the appropriate DS-Rand distribution), then the ciphertext is distributed as an encryption
with AltEnc (and AltMEnc).

The rest of this simulation of the replay interaction can be implemented in polynomial time.
Thus, the outcomes of the two simulations must not differ by more than a negligible amount. �

6.6 The alternate decryption procedure

We now describe alternate decryption procedures for the DSME and DSCS schemes. They are
computationally unbounded, as they computes the strands of ciphertexts (i.e, they compute discrete
logarithms in Ĝ and G). Depending on whether they are being called in Phase I or Phase II of a
replay interaction, they have access to the challenge ciphertext ζ∗.

DSME alternate decryption (AltMDecU∗
MPK(U)). Let U∗ = (V∗, A∗

V ,W∗, A∗
W) denote the chal-

lenge ciphertext that was created with AltMEnc using the corresponding private key (if called
in Phase II of the interaction). Let U = (V, AV ,W, AW) denote the ciphertext query given
as input.

First, compute the strands v and w of U , and the strands v∗ and w∗ of U∗ (if given), both
with respect to the given public key. If in Phase I, consider the known strands to be 1 (the
public key strand). If in Phase II, consider the known strands to be {1,v∗,w∗}. Hereafter, we
somewhat abuse notation and talk about linear combinations of {1,v∗,w∗} and components

19

of U∗
i , both of which are misleading in Phase I. However, it should be understood that when

U∗ is not given, the coefficients of v∗ and w∗ in a linear combination are zero, and in those
cases, the components of U∗ in fact cancel out from the expressions we use.

We now check that v,w are both linear combinations of the known strands. If not, then
output ⊥. Otherwise, let w = αv∗ + βw∗ + γ1. If α 6= 0, then output ⊥. Otherwise check
that

AW
?= (A∗

W)βAγ

where A comes from the public key. If the check fails, output ⊥.

Now let v = πv∗ + βw∗ + γ1. Output the pair:(
δ =

AV

(A∗
V)π(A∗

W)βAγ
, π

)
Below, we prove that these values (δ, π) are such that MDecMSK(U) = δMDecMSK(U∗)π,
where MSK is the private key used to generate U∗. If U∗ has not been given yet, observe
that π and β must be zero, and in fact δ is the correct decryption of U .

The following lemma establishes the correctness of the output of AltMDec when it is used in
the context of a replay interaction.

Lemma 5 Fix a DSME key pair (MPK,MSK). Let U∗ be a DSME ciphertext generated by
AltMEncMSK . If AltMDecU∗

MPK(U) outputs (δ, π), then MDecMSK(U) = δMDecMSK(U∗)π.

Proof: Let v,w be the strands of U , and let v∗,w∗ be the strands of U∗. If we can write
v = πv∗ + βw∗ + γ1 for some π, β, γ, then each Vj = (V ∗

j)π(W ∗
j)β ĝγ

j .
If MSK = (a1, a2, a3) was the private key used to generate U∗ and A, we have:

MDecMSK(U) =
AV∏3

j=1 V
aj

j

=
AV(∏

j(V
∗
j)aj

)π (∏
j(W

∗
j)aj

)β (∏
j ĝ

aj

j

)γ
=

AV(
A∗

V
MDecMSK(U∗)

)π
(A∗

W)βAγ

=
[

AV

(A∗
V)π(A∗

W)βAγ

]
MDecMSK(U∗)π

�

We now describe the DSCS alternate decryption procedure AltDec.

DSCS alternate decryption (AltDecζ∗

PK(ζ)). Let ζ∗ = (X∗, B∗
X , P ∗

X ,Y∗, B∗
Y , P ∗

Y ,U∗) denote the
challenge ciphertext that was created with AltEnc (if called in Phase II of the interaction).
Let ζ = (X, BX , PX ,Y, BY , PY ,U) denote the ciphertext query given as input.

The first step in the honest decryption procedure is to decrypt each Ui, a DSME ciphertext.
We try to simulate the behavior of this step in the first part of the alternate decryption
procedure.

• For i = 1, . . . , 5: Call AltMDec
U∗

i
MPKi

(Ui), where MPKi is the ith DSME public key
contained in PK (omitting U∗

i if called in Phase I). If it returns ⊥, immediately return
⊥. Otherwise, store the pair (δi, πi) that it returned.

20

Next, we simulate how the honest decryption procedure strips the ui and zi terms from the
exponents of each Xi and Yi. To do this, we compute the masked strands x∗ and y∗ of ζ∗ (if
given), and compute the masked strands x and y of ζ (both with respect to the public key).

• Case 1: (∀i : πi = 0 or yi = xi = 0). In this case, we can unmask each component of x
and y as follows:

– If πi = 0, then the honest DSME decryption procedure would have decrypted Ui to
ui = δi. We can unmask this component with respect to this ui.

– If yi = xi = 0, then regardless of how the honest decryption procedure would have
decrypted Ui, xi unmasks to −zi and yi unmasks to 0.

After computing these unmasked strands of ζ (call them x and y), we check that both
are scalar multiples of 1. If not, we return ⊥. Otherwise, let x = x1 and y = y1.
Set µ = BX/Bx, msg = encode−1

G (µ), and m = encodeZp(msg). We perform the following
checks:

PX
?= (CDm)x; BY

?= By; PY
?= (CDm)y

If any check fails, return ⊥. Otherwise return msg.

If we are called in Phase I, output ⊥ at this point, as the following case requires the challenge
ciphertext ζ∗.

• Case 2: (∀i : πi = 1 or yi = xi = 0). In this case, we try to determine if the corre-
sponding unmasked strands x∗,y∗,x,y are linear combinations of the following form:

x = x∗ + βy∗, y = γy∗

We cannot determine this directly, as we cannot decrypt the Ui’s and U∗
i ’s to unmask

these strands. However, suppose we did have the correct DSME private keys and pro-
ceeded to decrypt ui = MDecai(Ui) and u∗i = MDecai(U

∗
i), for each i. Then we have:(

x1

u1
− z1, . . . ,

x5

u5
− z5

)
=

(
x∗1
u∗1
− z1, . . . ,

x∗5
u∗5
− z5

)
+ β

(
y∗1
u∗1

, . . . ,
y∗5
u∗5

)
⇐⇒

(
x1

u1
, . . . ,

x5

u5

)
=

(
x∗1
u∗1

, . . . ,
x∗5
u∗5

)
+ β

(
y∗1
u∗1

, . . . ,
y∗5
u∗5

)
⇐⇒

(
x1

u∗1
u1

, . . . , x5
u∗5
u5

)
= (x∗1, . . . , x

∗
5) + β(y∗1, . . . , y

∗
5)

and likewise(
y1

u1
, . . . ,

y5

u5

)
= γ

(
y∗1
u∗1

, . . . ,
y∗5
u∗5

)
⇐⇒

(
y1

u∗1
u1

, . . . , y5
u∗5
u5

)
= γ(y∗1, . . . , y

∗
5)

If πi = 1, we know that the ratio ui/u∗i = δi. Otherwise, if xi = 0, then the product
xi

u∗i
ui

= 0, independent of u∗i and ui. In either case, we know every component of the
vectors in these final two equalities, without having to explicitly decrypt the Ui’s and
U∗

i ’s. Thus we can decide whether the unmasked strands are linear combinations of the

21

appropriate form, without actually unmasking them. If they are not of this form, we
return ⊥. Otherwise, we perform the following checks:

BX
?= B∗

X(B∗
Y)β; PX

?= P ∗
X(P ∗

Y)β; BY
?= (B∗

Y)γ ; PY
?= (P ∗

Y)γ

If any check fails, return ⊥, otherwise return replay.

• Case 3: If the previous two cases do not hold, return ⊥.

The following lemma establishes the correctness of some of the cases where AltDec outputs ⊥.

Lemma 6 Consider a replay interaction in which the challenge ciphertext ζ∗ is generated with
AltEnc and the honest decryption procedure is used. Call a DSCS ciphertext “bad” if its component
DSME ciphertexts decrypt successfully, and one of its unmasked strands is linearly independent of
the known strands (the all-ones vector in Phase I, or the all-ones vector along with the unmasked
strands of the challenge ciphertext in Phase II).

With overwhelming probability over the key generation and randomness in AltEnc, all bad queries
to the Dec are rejected (i.e, it returns ⊥).

Proof: Consider the first bad ciphertext (with unmasked strands x and y) submitted by the
adversary. Assume without loss of generality that the independent strand is x. After decrypting
the DSME components, the honest decryption algorithm computes a purported message msg (and
corresponding µ and m) and checks the following constraint:

[
0 x mx

] G 0 0
0 G 0
0 0 G

bT

cT

dT

 =
[
log PX

]
, where G =

log g1 · · · 0
...

. . .
...

0 · · · log g5

The row [0 x mx] is independent of the existing rows in the first matrix in Equation 2. Among
the private keys consistent with Equation 2, exactly a 1/p fraction of them are also consistent with
any fixed value of log PX . Thus, conditioned on the adversary’s view (Equation 2), the “correct”
value of PX is uniformly distributed in G. The adversary has a 1/p chance of submitting a query
with that correct value.

Each time a decryption query is rejected, the adversary learns that at most a 1/p fraction of
private keys are no longer possible. The actual private key remains uniformly distributed among
the remaining values, from the adversary’s point of view. By a union bound, if the adversary
makes Q bad queries, one of them will be accepted with probability at most Q/(p−Q). Since the
adversary can make only polynomially many queries, this probability is negligible. �

We now prove a similar claim about some of the cases where AltMDec returns ⊥.

Lemma 7 During a replay interaction in which the challenge ciphertext ζ∗ is generated with AltEnc
and the honest decryption procedure is used, let U∗

i denote the ith DSME ciphertext component of
ζ∗. Call a purported DSME ciphertext “bad” if:

• In Phase I, its second strand is linearly independent of the public key strand; or,

• In Phase II, its second strand is linearly dependent on the first strand of the corresponding
U∗

i .

22

With overwhelming probability (over the key generation) every bad query submitted to MDec is
rejected.

Note that with overwhelming probability over the randomness in AltMEnc, the known strands
in Phase II span the space of all strands, so we ignore the case where a Phase II query is linearly
independent of the known strands.

Proof: As in the previous lemma, consider the first bad ciphertext submitted to MDec. We
consider the two cases:

• Phase I: The second strand is linearly independent of the known strands. The adversary’s
view in the replay interaction contains only the first row of the constraints in Equation 1.
Since the second strand is independent of this row, the “correct” value for MDec’s integrity
check on AW is distributed independently of this view. Over the remaining randomness in
the key generation, the value AW in the ciphertext is correct with only 1/q probability.

• Phase II: Suppose the second strand is linearly dependent on the first strand of the alternate
ciphertext U∗ = (V∗, A∗

V ,W∗, A∗
W). Over the remaining randomness in the key generation,

the value of MDec(U∗) is distributed independently of the adversary’s view in the replay
interaction, by Lemma 3. Thus the value A∗

V /MDec(U∗) =
∏

i(V
∗
i)ai is distributed indepen-

dently as well. However, the integrity check on the given ciphertext must contain the correct
combination of this value, or else the check fails. This can happen only with 1/q probability.

By a similar union bound as in the previous lemma, all bad queries are rejected with over-
whelming probability. �

Lemma 8 Consider a DSME ciphertext given in Phase I, whose first strand is linearly independent
of the public key strand. Then either MDec rejects the ciphertext with probability 1, or the decryption
of this ciphertext with MDec is uniformly distributed over Ĝ, over the remaining randomness in the
key generation.

Proof: By a similar argument as above, if the first strand is linearly independent of the known
strands, then the value computed by MDec to derive the purported message is distributed uniformly
over the group. Thus the purported message that MDec outputs is uniformly distributed. �

Lemma 9 Suppose the adversary gives a decryption query to the honest decryption oracle whose
DSME components decrypt successfully, and whose unmasked strands x and y are linearly dependent
on {x∗,y∗,1}. Then, except with negligible probability (over the randomness in AltEnc), one of the
following cases must hold:

• (∀i : πi = 0 or xi = yi = 0); x = x1; and y = y1 (for some x, y).

• (∀i : π1 = 1 or xi = yi = 0); x = x∗ + βy∗; and y = γy∗ (for some β, γ).

23

Proof: We view this linear dependence condition as a game:

• We give an encryption from AltEnc, and its masked strands x∗ and y∗ are fixed. However,
from Lemma 3, the u∗ values in this ciphertext are distributed independently, and we may
choose them later.

• The adversary submits a ciphertext to the decryption oracle. This fixes its masked strands
x and y. From Lemma 5, this also fixes a relationship between u∗ and u (i.e, δi, πi such that
ui = δi(u∗i)

πi).

• The decryption procedure will proceed to decrypt the Ui values to unmask the strands. At
this point, we can now randomly choose u∗, which determines u according to the relationship
in the previous step. Given these values, the corresponding unmasked strands x∗,y∗,x,y are
fixed. The adversary succeeds if x and y are linearly dependent on {x∗,y∗,1}.

We assume that the adversary has a strategy whereby he succeeds with noticeable probability over
the choices of x∗, y∗, and u∗. We will show that the only cases that do not lead to a contradiction
are the two cases given in the statement of the lemma.

The strand x is linearly dependent on {x∗,y∗,1} if there exist α, β, γ such that:

x = αx∗ + βy∗ + γ1

⇐⇒
(

x1

u1
− z1, . . . ,

x5

u5
− z5

)
= α

(
x∗1
u∗1
− z1, . . . ,

x∗5
u∗5
− z5

)
+ β

(
y∗1
u∗1

, . . . ,
y∗5
u∗5

)
+ γ1

⇐⇒
(

x1

δ1(u∗1)π1
, . . . ,

x5

δ5(u∗5)π5

)
= α

[(
x∗1
u∗1

, . . . ,
x∗5
u∗5

)
− z

]
+ β

(
y∗1
u∗1

, . . . ,
y∗5
u∗5

)
+ γ1 + z (3)

Multiplying the ith row on both sides by (u∗i)
πi yields the following equation:x1/δ1

...
x5/δ5

 =

(u∗1)
π1−1 · · · 0
...

. . .
...

0 · · · (u∗5)
π5−1

x∗1 − z1u

∗
1 y∗1 u∗1

...
...

...
x∗5 − z5u

∗
5 y∗5 u∗5

α

β
γ

 +

z1(u∗1)
π1

...
z1(u∗5)

π5

In each case, we use the following similar argument. We will show that with overwhelming

probability, the first 3 choices of u∗ determine the coefficients of the linear combination. The
adversary succeeds only if the constraint holds in the other components with noticeable probability
over the choices of the remaining 2 values of u∗. Recall that u∗i is distributed randomly in Ĝ, which
is an order-q subgroup of Z∗p. In particular, (u∗i)

π is also distributed randomly unless π = 0 mod q.
Substituting our choice of z = (0, 0, 0, 1, 1) makes the following analysis simpler. We write the

first 3 rows as above:

x1/δ1

x2/δ2

x3/δ3

 =

1︷ ︸︸ ︷(u∗1)
π1−1 0 0
0 (u∗2)

π2−1 0
0 0 (u∗3)

π3−1

2︷ ︸︸ ︷x∗1 y∗1 u∗1

x∗2 y∗2 u∗2
x∗3 y∗3 u∗3

α
β
γ

=

x∗1(u
∗
1)

π1−1 y∗1(u
∗
1)

π1−1 (u∗1)
π1

x∗2(u
∗
2)

π2−1 y∗2(u
∗
2)

π2−1 (u∗2)
π2

x∗3(u
∗
3)

π3−1 y∗3(u
∗
3)

π3−1 (u∗3)
π3

α
β
γ

 (4)

24

With overwhelming probability, (x∗1, x
∗
2, y

∗
3) and (y∗1, y

∗
2, y

∗
3) are independent, as are (x∗4, x

∗
5) and

(y∗4, y
∗
5). Matrix 1 is always nonsingular, as u∗i 6= 0. With overwhelming probability, matrix 2 is

nonsingular, and thus α, β, γ are fixed by the first 3 choices of u∗, as desired.
We now write the remaining two constraints in the following form:[

x4/δ4

x5/δ5

]
=

[
(u∗4)

π4−1 0
0 (u∗5)

π5−1

]
︸ ︷︷ ︸

3

[
x∗4 y∗4
x∗5 y∗5

] [
α
β

]
︸ ︷︷ ︸

4

+
[
(u∗4)

π4 0
0 (u∗5)

π5

]
︸ ︷︷ ︸

5

[
1 1
1 1

] [
γ

1− α

]
︸ ︷︷ ︸

6

(5)

We fix the left hand side of this equation and matrices 4 and 6, and assume the equation holds
with noticeable probability over the choice of u∗4, u

∗
5. We consider two cases:

• For some i ∈ {1, 2, 3}, we have πi = 1. Without loss of generality, let i = 1. Then applying
Cramer’s rule to solve for γ in matrices 1 and 2, we see that γ = ∆/(θu∗1 + ρ), where ∆ is the
determinant of the following matrix: x∗1 y∗1 x1/δ1

x∗2(u
∗
2)

π2−1 y∗2(u
∗
2)

π2−1 x2/δ2

x∗3(u
∗
3)

π3−1 y∗3(u
∗
3)

π3−1 x3/δ3

and θ, ρ are independent of u∗1. Also, θ 6= 0 except with negligible probability.

Suppose ∆ 6= 0. Then γ varies in a one-to-one fashion as u∗1 varies. the fourth constraint has
the following form:

x4/δ4 = (u∗4)
π4−1

[
αx∗4 + βy∗4

]
+ (u∗4)

π4

[
γ + 1− α

]
and for any fixed u∗4, the right-hand side varies as u∗1 varies. This constraint only holds with
negligible probability. We conclude that γ = ∆ = 0.

We can only have ∆ = 0 with noticeable probability when either:

– π2 = π3 = 1 and xi/δi = αx∗i + βy∗i , or

– x1 = x2 = x3 = 0

We now consider two subcases:

– If α = 1, the second term in Equation 5 vanishes. We must have either πi = 1 or xi = 0,
for i = 4, 5 (because if πi 6= 1 and xi 6= 0, then the ith constraint varies with the choice
of u∗i).
In this cases we get the required property that (∀i : xi = 0 or πi = 1), and α = 1 and
γ = 0.

– If α 6= 1, we must have π4 = π5 = 0, since otherwise the second term of Equation 5
varies with u∗4, u

∗
5. However if π4 = π5 = 0, matrix 4 must contain all zeroes, which

implies α = β = 0.
Now, α = β = γ = 0. Substituting into Equation 4, we see that x1 = x2 = x3 = 0. In
this case we get the property that (∀i : xi = 0 or πi = 0) and α = β = 0.

25

• For all i ∈ {1, 2, 3}, we have πi = 0. Note that the first two columns in the matrix of
Equation 4 are randomized by (u∗i)

−1 in each row, but the last column is all ones. Again we
consider 2 subcases:

– If x1/δ1 = x2/δ2 = x3/δ3, then in the Equation 4, we see that we must have α = β = 0.
If γ = −1, then we get x4 = x5 = 0. Otherwise we require π4 = π5 = 0 for the conditions
in Equation 5 to hold as u∗i varies.

– If x1/δ1, x2/δ2, x3/δ3 are not all equal, then consider solving the Equation 4 for α, β, γ.
Over the choice of u∗1, u

∗
2, u

∗
3, it is only with negligible probability that we can obtain

γ = 0 or γ = α−1. To see this, note that if γ were to obey either of these two equations,
then u∗3 could be uniquely solved in terms of the other variables (by first substituting γ
and then solving α and β from the first two rows of the system of equations, and then
solving (u∗3)

−1). So for Equation 5 to hold, it must be the case that π4 = π5 = 0. But
then, as before, we require that matrix 4 contain all zeroes. This implies α = β = 0.

In either case, we get the property that (∀i : xi = 0 or πi = 0) and α = β = 0.

The arguments concerning linear combinations of the y strand are very similar, and omitted
here for brevity. When substituting y for x, we lose the final z term in Equation 3. This accounts
for the difference in the possible linear combinations for y compared to x. �

Lemma 10 AltDec faithfully implements the decryption oracle in the replay interaction described
in Section 6.2, even when the encryptions are generated using AltEnc.

Proof: Consider a query ζ = (X, BX , PX ,Y, BY , PY ,U) made to AltDec. First, it calls AltMDec
on each Ui.

• According to Lemma 7, if some Ui is “bad”, then with overwhelming probability, the honest
MDec procedure would have rejected and so would have Dec. This is also what AltDec does.

• If in Phase I, some Ui’s first strand is linearly independent of the public key strand, then
by Lemma 8, the output of MDec would be uniformly distributed in the group. When the
honest Dec procedure continued to (implicitly) unmask the strands of ζ, the strands would
be linearly independent of the known strands, with overwhelming probability. By Lemma 6,
Dec would reject with overwhelming probability. This is also what AltDec does in this case.

• Whenever AltMDec performs an integrity check, it is easy to see that it corresponds to the
same integrity check that the MDec procedure would perform. So if AltMDec outputs ⊥ due
to a failed integrity check, so would have MDec.

• Otherwise, if AltMDec(Ui) returns (δi, πi), then by Lemma 5, these values are such that
MDec(Ui) = δiMDec(U∗

i)πi for any consistent private key.

Given the correctness of the (δi, πi) values that are computed, the AltDec procedure does check
for the correct linear combinations of the ciphertext’s strands (correct with respect to the u that
the honest decryption procedure would compute).

If the conditions of Lemma 9 do not hold, then the honest decryption procedure would reject
with overwhelming probability. In these cases, AltDec rejects as well (Case 3 in its description).

26

If Case 1 of the alternate decryption algorithm holds, the honest decryption would compute
values of Xi = gx

i and Y i = gy
i . It then computes:

µ =
BX∏5

i=1 X
bi

i

=
BX(∏5

i=1 gbi
i

)x = BX/Bx

which is exactly what the alternate decryption procedure computes. Similarly, the alternate de-
cryption procedure performs the following checks:

PX
?= (CDm)x; BY

?= By; PY
?= (CDm)y

which are easily verified to coincide with the honest decryption procedure’s checks in this case.
If Case 2 of the alternate decryption algorithm holds, the honest decryption procedure would

compute values of Xi = X
∗
i (Y

∗
i)

β and Y i = (Y ∗
i)

γ . Recall that msg∗ is the message used to generate
the challenge ciphertext ζ∗. The alternate decryption procedure’s first check is BX

?= B∗
X(B∗

Y)β.
If this check does not succeed, then the honest decryption procedure would compute a purported
message msg′ different than msg∗. Then the additional constraints

[
0 x m′x
0 y m′y

]G 0 0
0 G 0
0 0 G

bT

cT

dT

 =
[
log PX

]
, where G =

log g1 · · · 0
...

. . .
...

0 · · · log g5

are linearly independent of the constraints in Equation 2, because m′ 6= m∗. By the same logic as in
the proof of Lemma 6, the honest decryption procedure would reject with overwhelming probability,
which is what AltDec does as well.

Otherwise, the purported message that is computed while decrypting ζ is msg∗. Again, it can
easily be checked that the alternate decryption procedure’s checks:

PX
?= P ∗

X(P ∗
Y)β; BY

?= (B∗
Y)γ ; PY

?= (P ∗
Y)γ

coincide with the checks performed by the honest decryption procedure. If these checks succeed,
the honest decryption procedure would return msg∗, whereas AltDec returns replay. This response
is still considered acceptable for a replay interaction, thus we faithfully implement the guarded
decryption for the replay interaction. �

7 Replayable message posting

Below is the detailed description of Frmp, the Replayable Message Posting functionality.
The functionality accepts four kinds of requests from parties.

• register request: on receiving a message register from a party sender (corrupt or honest), the
functionality sends (id-req, sender) to the adversary, and expects in response an identity
string id.5 If the string received in response has been already used, ignore the request.
Otherwise respond to sender with the string id, and also send a message (id-announce, id)
to all other parties registered so far.

5This can be modified to have the functionality itself pick an id from a predetermined distribution specified as part
of the functionality. In this case the functionality will also provide the adversary with some auxiliary information
about id (e.g., the randomness used in sampling id). For simplicity we do not use such a stronger formulation.

27

• post request: on receiving a request (post, id,msg) from a party sender, the functionality
behaves as follows:

– If id is not a registered ID, ignore the request.

– If sender is uncorrupted and the party with ID id is uncorrupted, send (handle-req, sender)
to the adversary, and expect in return a string handle from the adversary. Record
(handle, id,msg,honest) internally and publish (handle-announce, handle) to all reg-
istered parties. Here honest indicates that the message originated from an honest party
and is addressed to an honest party.

– If sender is corrupted, or the party with ID id is corrupted, then proceed as above, but
instead of (handle-req, sender), send (handle-req, sender,msg, id) to the adversary
while requesting the handle, and record (handle, id,msg,adversarial). Note that in
this case the functionality reveals the input it received to the adversary (but as the
sender or the receiver is corrupted, it is indeed legitimate for the adversary to learn the
contents of the message).

• repost request: on receiving a message (repost, handle) from a party sender, the functionality
behaves as follows:

– If handle is not recorded internally, ignore the request.

– If sender is uncorrupted and (handle, id,msg,honest) is recorded internally, send (handle-req, sender)
to the adversary. On receiving a new handle handle′ as response from the adversary,
record (handle′, id,msg,honest) internally and publish (handle-announce, handle′) to
all registered parties.

– If sender is corrupt or (handle, id,msg,adversarial) is recorded internally (i.e., handle
is marked adversarial), send (handle-req, sender, handle) to the adversay (i.e., send
handle too). On receiving a new handle handle′ record (handle′, id,msg,adversarial)
internally and publish (handle-announce, handle′) to all registered parties. Note that
if handle is adversarial, then whenever it is reposted, the adversary learns that fact.
However, the msg or id associated with handle is not revealed.

• get request: on receiving a message (get, handle) from a party, if a record (handle, id,msg, ∗)
(i.e., marked honest or adversarial) is internally recorded and the ID id was assigned to
this party in response to a register request it made, then return (id,msg) to it. Otherwise
ignore this request.

8 Proof of Theorem 2

To prove Theorem 2, for any given real-world adversaryA, we need to show an ideal-world adversary
(simulator) S, so that for all PPT environment Z, realdscs

A,Z ≈ idealFrmp
S,Z .

We build S in stages, starting from the real-world scenario and altering it step by step to get an
ideal-world adversary, at every stage ensuring that the behaviours within any environment remain
indistinguishable. We describe these stages below, and highlight what property of the encryption
scheme is used to establish indistinguishability in that stage. All the simulators below exist in
the ideal world, but are also given (progressively less) information about the inputs to the honest
parties. We conveniently model this access to extra information using modified functionalities.

28

S0 and F0 (Correctness): F0 behaves exactly like Frmp except that it also relays all the input
messages it receives from honest parties to the adversary (S0). Thus, S0 has access to all the inputs
to the honest parties (i.e., their communication with the functionality, or equivalently that from
the environment). S0 internally simulates the encryption scheme algorithms for all honest parties,
and lets the adversary A interact with these simulated parties and directly with the environment,
as follows:

1. When the environment instructs an honest party to register, F0 relays this instruction to S0.
Then the honest party internally simulated by S0 runs the key-generation algorithm and S0

sends the resulting public key to the functionality as the identity string for the party.

2. When an honest party sender (as instructed by the environment) sends a post request (post, id,msg)
to F0, addressed to an honest party id, F0 relays the message (sender, post, id,msg) to S0.
Then S0 generates a ciphertext on behalf of sender as ζ = EncPK id

(msg) and sends it to A,
for delivery to all (simulated) parties. S0 also sends handle = ζ to F0. F0 internally records
(handle, id,msg,honest). When A delivers an encryption to an internally simulated party, S0

lets the functionality deliver (handle-announce, handle) to the corresponding ideal honest
party, who outputs it to the environment.

3. When instructed by an honest party sender to repost handle, F0 relays the message (sender, repost, handle)
to S0. Then S0 (more specifically, its internal simulation of sender) sets handle′ = Rerand(handle),
and sends it to A, for delivery to all parties. S0 sends handle′ to F0 as the new handle. Again,
when A delivers this ciphertext that it received to an internally simulated party, S0 lets F0

deliver (handle-announce, handle′) to the corresponding ideal honest party, who outputs it
to the environment. Note that if F0 had an internal record (handle, id,msg,honest) it will
record (handle′, id,msg,honest), and if it had a record (handle, id,msg,adversarial) it will
record (handle′, id,msg,adversarial).

4. When the adversary creates and sends a ciphertext ζ, S0 does the following:

• For each honest party’s private key SK, S0 checks if DecSK(ζ) is not ⊥. If any of them
succeeds, say for private key SK id for a party with ID (public-key) id, then S0 sends
(post, id,msg) to the functionality where DecSK id

(ζ) = msg. When the functionality
responds with a request for a handle, send handle = ζ.6 Note that F0 will record
(handle, id,msg,adversarial).

• If none of the decryptions succeed either, then S0 will send a message (post, id⊥,msg)
to the functionality with an arbitrary message. When the functionality responds with a
request for a handle, send handle = ζ. F0 will record (handle, id⊥,msg,adversarial).

5. When instructed to get the message from a handle, the internally simulated party runs Dec
and generates corresponding output for the environment. (This is only for convenient de-
scription. The internally simulated party need not do anything here.) We call these outputs
the simulated outputs. Note that the environment gets outputs from the ideal world honest
parties, and the simulated outputs are simply discarded.

6If the decryption succeeds for more than one id, then S0 repeats the same for each such id, and sends the same
handle to the functionality for each of the posts. This can be avoided by augmenting the correctness requirement of
the encryption scheme; see the remarks in Section 9.

29

We denote the output of an environment Z when interacting with S0 and honest parties who
interact with F0 by idealF0

S0,Z .

Claim 3 For any given PPT adversary, let F0 and S0 be as described above. Then ∀Z realdscs
A,Z ≈

idealF0
S0,Z .

Proof: This follows from the correctness requirements of the replayable encryption scheme alone.
Note that S0 exactly emulates the real world actions of the honest parties and A. In addition it also
interacts with the functionality to ensure that the outputs that the environment receives from the
ideal honest parties are always equal to the simulated outputs. Obviously the handles output by
the ideal honest parties are the same as those in simulation (because S0 sends these handles to the
functionality). It is easy to see that the correctness of Dec and Rerand ensures that the simulated
outputs of get instructions on all handles are equal to the ideal outputs. �

S1 and F1 (Rerandomizability): S1 is in fact identical to S0, but F1 differs from F0 in that it
does not tell S1 whether a request received is a post or repost request. More specifically, F1 differs
from F0 as follows:

• When a (repost, handle) command is given by an honest party sender, F1 checks if handle
is marked adversarial, i.e., if there is a record (handle, id,msg,adversarial).7 If so, F1

sends (sender, repost, handle) to S1, just as F0 does. On getting back a new handle handle′, it
records (handle′, id,msg,adversarial).

• If handle is marked honest, i.e., there is a record (handle, id,msg,honest) then it sends
(sender, post, id,msg) to the adversary (S1) and requests a new handle in return (as if the
command received is (post, id,msg)). On getting back a new handle handle′, it records
(handle′, id,msg,honest).

Claim 4 For any given PPT adversary, let S0, F0, S1 and F1 be as described above. Then ∀Z
idealF0

S0,Z = idealF1
S1,Z .

Proof: This follows from the perfect rerandomizability of the replayable encryption scheme.
The only way the two executions differ is in whether a ciphertext is rerandomized (as S0 does
on receiving a repost command relayed to it by F0) or whether a fresh encryption is generated
for the same message (as S1 ends up doing when F1 sends a post command). We point out
that F1 replaces repost by post only for handles marked honest, which are guaranteed to be
correctly generated ciphertexts. Then by the perfect rerandomization property of the encryption,
S1 generates ciphertexts distributed identically to what S0 generates by rerandomization. Thus the
two executions do not differ, and indeed idealF0

S0,Z = idealF1
S1,Z . �

7Recall that handle can be adversarial if it is a ciphertext generated by or addressed to the adversary, or was
generated by a simulated honest party as a rerandomization of a handle marked adversarial.

30

S2 and F2 (RCCA security): F2 differs from F1 in that the adversary is not given the contents
of the posted messages. When the environment instructs a party sender to post a message, F2

relays (sender, post, id) to S2 (instead of (sender, post, id,msg) as in F1). S2 behaves like S1, except
as follows:

1. When it receives a the jth message of the from (sender, post, id) from F2, it picks a random
message m̃sgj , sets handlej = EncPK id

(m̃sgj) and continues to behave like S1. In addition it
internally records (handlej , m̃sgj) for later reference.

2. When the adversary creates and sends a ciphertext ζ, S2 does the following:

• S2 checks if DecSK(ζ) = m̃sgj for each private key SK that it has generated so far (when
honest parties send register commands to F2) and each randomly chosen message m̃sgj

(which it picked on receiving the jth post command relayed by F2). If so, S2 sends the
message (A, repost, handlej) to F2, where handlej is the handle that was sent in response
to that post command; when F2 responds with a request for a new handle S2 sends
handle′ = ζ.8

• For convenient description later, we shall have S2 do the same for a “dummy private
key” SK∗, generated as (PK∗, SK∗)← KeyGen in the beginning of the simulation.

• If none of the decryptions match a previously stored random message, then S2 continues
just like S1.

Claim 5 For any given PPT adversary, let S1, F1, S2 and F2 be as described above. Then ∀Z
idealF1

S1,Z ≈ idealF2
S2,Z .

Proof: This follows from the RCCA security of the replayable encryption scheme. Intuitively,
the only way the two executions differ is in whether the simulator provides encryptions of the
actual message (as S1 does) or of a random message (as S2 does). Note that in the execution
idealF2

S2,Z , if the adversary sends an encryption to the random message chosen by S2 or to the
actual message that was sent by the honest party to F2, F2 ends up recording the actual message
again; this is not the case with idealF2

S2,Z , but we can consider modifying S1 to pick a random
message, and if the adversary sends an encryption to that message (which can happen with only
negligible probability), replace it with the actual message (as S2 does). Then (the modified) S1

and S2 essentially implement the two indistinguishable experiments in RCCA game.
But to apply the RCCA security guarantee first we will have to reduce to the case of a single

encryption. This is done using a series of hybrid experiments.
We define Ŝi which interacts with F1 (and hence receives the message in the post commands)

to be exactly like S1, but with the following differences:

• Let the jth post command reported by F1 be (post,msgj , idj) (1 ≤ j ≤ n). For each j, Ŝi

picks random messages m̃sgj . For j ≤ i it uses EncPK idj
(m̃sgj) as the simulated encryption,

but for j > i, it uses EncPK idj
(msgj) just like S1.

8As before, if the decryption succeeds for more than one id, then S2 repeats the same for each such id, and sends
the same handle to the functionality for each of the posts.

31

• When the adversary produces a ciphertext ζ, Ŝi checks if DecSK(ζ) equals msgj or m̃sgj for any
j, for any private key SK it generated so far (including SK∗). If so it sends (A, post,msgj , id)
to F1 (where id corresponds to the private key that yielded the decryption), and follows up
by sending ζ as the handle.9 Recall that in contrast, Ŝi would send (A, post, m̃sgj , id) if the
decryption is to m̃sgj .

Clearly Ŝn is identical to S2 (and it does not use the messages included in the post commands
relayed by F1), and so idealF1

Ŝn,Z
= idealF2

S2,Z . However Ŝ0 and S1 differ slightly, in that if

DecSK(ζ) = m̃sgj (for some private key SK) then Ŝ0 replaces m̃sgj by msgj . However this can
happen only with negligible probability as adversary’s view is independent of m̃sgj in the interaction
with Ŝ0 up to that point. So we do have idealF1

S1,Z ≈ idealF1

Ŝ0,Z
.

That idealF1

Ŝi,Z
≈ idealF1

Ŝi+1,Z
follows from the RCCA-2 security of the encryption, because

Ŝi and Ŝi+1 can be seen as carrying out the the RCCA experiment with the bit b = 0 and b = 1
respectively. �

S3 and F3 (Receiver-anonymity): S3 and F3 are similar to S2 and F2, except for the following:

• F3 does not send the ID id (i.e., the receiver’s public-key) when relaying the post instructions
to S3.

• So S3 uses the dummy key-pair (PK∗, SK∗)← KeyGen for producing encryptions (note that
it still encrypts the randomly chosen messages). That is, when the jth post instruction is
relayed, S3 picks a random message m̃sgj and sets handlej = EncPK∗(m̃sgj).

Note that on receiving a ciphertext ζ from A, S3 (just like S2) tries to decrypt it with SK∗ as well
as with the private keys for the simulated honest parties.

Claim 6 For any given PPT adversary, let S2 and S3 be as described above. Then ∀Z idealF2
S2,Z ≈

idealF3
S3,Z .

Proof: The proof uses the receiver-anonymity of the encryption scheme. A series of hybrids are
used to reduce a non-negligible advantage of distinguishing the two situations to a non-negligible
advantage in a receiver-anonymity game (which involves only two key-pairs and one message). The
details follow. Let n be an upperbound on the number of IDs and ` be an upperbound on the
number of messages that will be posted by honest players (` and n are not predetermined; they can
depend on A and Z). Let the IDs be denoted by id1, . . . , idn (sorted say in the order in which they
are generated); let the key-pair generated for idi be denoted by (PKi, SKi) (where PKi = idi).
Also let the random message chosen by S2 for the j-th post command with idi as the receiver be
denoted by msgi

j (for 1 ≤ j ≤ `). We consider a hybrid simulator Ŝi
j which behaves like S2, except

as follows:

• On receiving (sender, post, idi′) for the j′th time, with (i′, j′) ≤ (i, j) (i.e., i′ < i, or i′ = i
and j′ ≤ j) from F2, Ŝi

j picks a random message msgi′
j′ and encrypts it using PK∗ to get

ζi′
j′ = EncPK∗(msgi′

j′).

9As before, if the decryption succeeds for more than one id, the simulator repeats the same for each such id, and
sends the same handle to the functionality for each of the posts.

32

Note that Ŝn
` is the same as S3, and Ŝ1

0 is the same as S2. Further idealF2
S3,Z = idealF3

S3,Z ,
because S3 does not use the extra inputs from F2. So by the standard hybrid argument it is enough
to show that idealF2

Ŝi
j ,Z
≈ idealF2

Ŝi
j−1,Z

(where Ŝi
0 is the same as Ŝi−1

` , or in the case of i = 1, same

as S2). The difference between Ŝi
j and Ŝi

j−1 is whether msgi
j was encrypted using PK∗ or PKi (and

whether ζi
j is decrypted using SK∗ or SKi). We now argue that an environment Z and adversary A

who can distinguish between these two cases for some (i, j) can be converted to an adversary Aanon

with a non-negligible advantage in the receiver-anonymity game. Without loss of generality, assume
that Pr[idealF2

Ŝi
j ,Z

= 0] > Pr[idealF2

Ŝi
j−1,Z

= 0] (and Pr[idealF2

Ŝi
1,Z

= 0] > Pr[idealF2

Ŝi−1
` ,Z

= 0]).

First consider Aanon running in the game with b = 0, as follows. Aanon internally runs the
system with Z, Ŝi

j and the ideal functionality F3, but with the following modifications.

• Let (PK∗, PKi) = (PK0, PK1) where the latter keys are provided by the game. The game
also provides access to the decryption oracles (guarded against the challenge message in Phase
II).

• Note that now Ŝi
j does not have the secret keys SK∗ and SKi, and hence it needs to get

access to oracles to carry out decryptions.

• When Ŝi
j wants to encrypt msgi

j Aanon outputs this message in the challenge phase. It receives
ζ∗ ← EncPKb

(msgi
j), which it uses as the encryption for Ŝi

j . When b = 0 this is an encryption
using PK∗, just as Ŝi

j requires.

• After this note that the guarded decryption oracles are enough to run Ŝi
j . This is because

when A produces a ciphertext ζ, Ŝi
j needs to only check if DecSK(ζ) = m̃sgj for any private

key SK it has produced (and in particular if either DecSKi(ζ) or DecSK∗(ζ) equals msgi
j ; in

either case Ŝi
j will request a repost). So Aanon can simply use the guarded decryption oracle

for this.

Finally, Aanon outputs what Z outputs in this internal simulation. As sketched above, if b = 0,
this is a perfect simulation of Ŝi

j running with Z and the ideal parties and the functionality F3.
On the other hand if b = 1, then this is a perfect simulation of Ŝi

j−1 (or Ŝi−1
` , if j=1) running

likewise. Then a non-negligible advantage for Z to distinguish between the two cases translates to
a non-negligible advantage for Aanon in the receiver-anonymity game. �

Concluding the proof. Combining the above claims we get that realdscs
A,Z ≈ idealF3

S3,Z . Note
that F3 is in fact identical to Frmp. So letting S = S3 completes the proof.

9 Extensions

Once our constructions are made available as a UC-secure realization of Frmp, it is easier to extend
in a modular fashion. We describe a few extensions which are easily achieved, yet can be very
useful.

In some applications, it is convenient for the recipient of a ciphertext to be able to check whether
it is a rerandomization of another ciphertext, or a “fresh” re-encryption of the same message. We

33

call such a functionality a replay-test functionality. A replay-test precludes having perfect or even
statistical rerandomization functionality, and so we must settle for a computational definition of
rerandomization.

We point out that redefining RCCA security, receiver-anonymity and rerandomizability in this
case is a non-trivial extension of our current definitions. In particular, note that in a chosen
ciphertext attack, an adversary can now access the replay-test oracle as well as the decryption
oracle, and queries to the decryption responses are now guarded based on the replay-test check.

However instead of modifying our security definitions based on standalone experiments, we can
directly formulate a UC functionality. The new functionality is identical to Frmp, but in addition
provides the designated user with a Test command: a party can give two handles, and if it is the
designated receiver of both the handles, then the functionality tells it whether the two handles
were derived as reposting of the same original post. For this the functionality maintains some
extra book-keeping internally. This functionality can be easily achieved starting from Frmp: to
each message, a random nonce is appended, before posting it. Test is implemented by the receiver
retrieving the messages of the two handles and comparing their random nonces.

The second extension we point out is of adding authentication. As should be intuitive, this can
be achieved by signing the messages using a public-key signature scheme, before posting them. In
terms of the functionality, a separate register feature is provided which allows senders to register
themselves (this corresponds to publishing the signature verification key). Then the get command
is augmented to provide not only the message in the handle, but also who originally posted the
handle. The identities for receiving messages and sending messages are separate, but they can
be tied together (by signing the encryption key and publishing it), so that only the signature
verification keys can be used as identities in the system.

The way we have presented our encryption scheme, there is a hard limit on the message length,
as the message must be encoded as an element in a group of fixed size. However Frmp can easily
be extended to handle messages of variable lengths: for this the longer message is split into smaller
pieces; to each piece is appended a serial number and a common random nonce; further the first
piece also carries the total number of pieces. Then each piece is posted using the fixed-length
Frmp functionality. Decryption performs the obvious simple integrity checks on receiving a set
of ciphertexts and discards them if they are not all consistent and complete. Note that the new
variable-length Frmp functionality achieved thus informs the adversary of the length of the message
(i.e., number of pieces) while posting or reposting a handle. It is easy to construct a simulator
(on receiving a handle and a length, the simulator creates the appropriate number of handles and
reports to the adversary; when the adversary reposts handles, the simulator will not make a repost
unless all handles it generated for one variable-length handle are reposted together).

Finally, the Frmp functionality can be strengthened to disallow duplicate handles. This cor-
responds to ensuring that a ciphertext in the rerandomizable RCCA encryption scheme does not
successfully decrypt under multiple private keys. This requires us to introduce an additional security
condition for the encryption scheme, namely, an adversary, when given two public keys and access
to their decryption oracles, cannot generate a ciphertext which decrypts to valid plaintexts under
both private keys. It can be shown that our RCCA encryption scheme does meet this requirement,
with minor modifications.

Note that these extensions can be applied one after the other.

34

10 Conclusion

There are several interesting directions that this work leads to. One question relates to improving
the efficiency of the constructions. Public-key encryption schemes like Cramer-Shoup are much
less efficient than the private-key schemes. To exploit the best of both worlds, one can use a
hybrid encryption scheme which uses a public-key encryption scheme to share a private-key over
the public-channel, and then carry out the private-key encryption for the actual voluminous data.
It is interesting to ask if this kind of a hybrid scheme can be devised for a rerandomizable encryption
schemes. Consider using a stream cipher (or pseudorandom generator, PRG) as the private-key
encryption scheme: here the output of the PRG would be used like a one-time pad on the data,
and the input to it would be encrypted using the public-key encryption scheme. One approach
for making such a scheme rerandomizable would be to build some sort of a homomorphic PRG
and a corresponding homomorphic public-key encryption scheme which would allow anyone to
rerandomize an encryption of the input for the PRG in such a way that the output of the PRG is
rerandomized in a predictable way.

This leads us to the second question of extending Replayable CCA security definition to allow
some homomorphic properties of the encryption. Note that CCA security requires non-malleability
and homomorphism seeks to demand (specific kinds of) malleability. A definition combining the
two should allow just the specific kinds of malleability as required by the homomorphic property
and be non-malleable otherwise. It is an interesting direction to explore potential applications of
such schemes and if such schemes can indeed be created.

Finally, we based our schemes on the DDH assumption. However as we mentioned before it is
likely that the extensions of [12] can be adapted for our problem too. But we point out that our
requirements on the “Universal Hash Proofs” would be a little more demanding than what [12]
required. In particular, when using the double-strand approach, we seem to require 5-universality
and not 2-universality. (This corresponds to our use of five bases g1, . . . , g5 instead of just two in
[11].) We leave it for future work to investigate this.

Acknowledgment

We would like to acknowledge useful discussions with Rui Xue about the work in [12].

References

[1] J. H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption. In L. R.
Knudsen, editor, EUROCRYPT, volume 2332 of Lecture Notes in Computer Science, pages
83–107. Springer, 2002.

[2] J. K. Andersen and E. W. Weisstein. Cunningham chain. From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/CunninghamChain.html, 2005.

[3] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-key encryption.
In C. Boyd, editor, ASIACRYPT, volume 2248 of Lecture Notes in Computer Science, pages
566–582. Springer, 2001.

35

[4] D. Boneh. The decision diffie-hellman problem. In J. Buhler, editor, ANTS, volume 1423 of
Lecture Notes in Computer Science, pages 48–63. Springer, 1998.

[5] J. Camenisch and A. Lysyanskaya. A formal treatment of onion routing. In V. Shoup, editor,
CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 169–187. Springer, 2005.

[6] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Electronic Colloquium on Computational Complexity (ECCC) TR01-016, 2001. Previous ver-
sion “A unified framework for analyzing security of protocols” availabe at the ECCC archive
TR01-016. Extended abstract in FOCS 2001.

[7] R. Canetti, H. Krawczyk, and J. B. Nielsen. Relaxing chosen-ciphertext security. In D. Boneh,
editor, CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 565–582. Springer,
2003.

[8] D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Commun.
ACM, 4(2), February 1981.

[9] D. Chaum. Security without identification: Transaction systems to make big brother obsolete.
Commun. ACM, 28(10):1030–1044, 1985.

[10] D. Chaum. The dining cryptographers problem: Unconditional sender and recipient untrace-
ability. Journal of Cryptology, 1:65–75, 1988.

[11] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive
chosen ciphertext attack. In H. Krawczyk, editor, CRYPTO, volume 1462 of Lecture Notes in
Computer Science. Springer, 1998.

[12] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext
secure public-key encryption. In L. R. Knudsen, editor, EUROCRYPT, volume 2332 of Lecture
Notes in Computer Science, pages 45–64. Springer, 2002.

[13] R. Dingledine, N. Mathewson, and P. F. Syverson. Tor: The second-generation onion router.
In USENIX Security Symposium, pages 303–320. USENIX, 2004.

[14] E. Elkind and A. Sahai. A unified methodology for constructing public-key encryption schemes
secure against adaptive chosen-ciphertext attack. Cryptology ePrint Archive, Report 2002/042,
2002. http://eprint.iacr.org/.

[15] Free haven project. http://freehaven.net/.

[16] T. E. Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
In CRYPTO, pages 10–18, 1984.

[17] O. Goldreich. Foundations of Cryptography: Basic Applications. Cambridge University Press,
2004.

[18] D. M. Goldschlag, M. G. Reed, and P. F. Syverson. Onion routing. Commun. ACM, 42(2):39–
41, 1999.

36

http://eprint.iacr.org/
http://freehaven.net/

[19] J. Gröth. Rerandomizable and replayable adaptive chosen ciphertext attack secure cryptosys-
tems. In M. Naor, editor, TCC, volume 2951 of Lecture Notes in Computer Science, pages
152–170. Springer, 2004.

[20] M. Lad. Personal communication, 2005.

[21] The onion routing program. http://www.onion-router.net/. A program sponsored by the
Office of Naval Research, DARPA and the Naval Research Laboratory.

[22] B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure reactive
systems. In ACM Conference on Computer and Communications Security, pages 245–254,
2000.

[23] M. Prabhakaran. New Notions of Security. PhD thesis, Department of Computer Science,
Princeton University, 2005.

[24] M. Prabhakaran and A. Sahai. New notions of security: achieving universal composability
without trusted setup. In STOC, pages 242–251. ACM, 2004.

[25] F. H. Project. Anonymity bibliography. http://freehaven.net/anonbib/, 2006.

[26] M. Reiter and A. Rubin. Crowds: Anonymity for web transactions. ACM Transactions on
Information and System Security, 1(1), June 1998.

[27] V. Shoup. A proposal for an iso standard for public key encryption. Cryptology ePrint Archive,
Report 2001/112, 2001. http://eprint.iacr.org/.

37

http://www.onion-router.net/
http://freehaven.net/anonbib/
http://eprint.iacr.org/

	Introduction
	Definitions
	Encryption and security definitions
	Perfectly rerandomizable encryption (syntax and correctness)
	Replayable CCA (RCCA) security
	Receiver-anonymity

	Replayable message posting functionality
	Decisional Diffie-Hellman (DDH) assumption

	Motivating the double-strand construction
	Results
	Our construction
	Double-strand malleable encryption scheme
	Double-strand Cramer-Shoup encryption scheme
	Complexity

	Proof of [thm:dscs]Theorem 1
	Correctness properties
	Replay interactions
	Decisional Diffie-Hellman assumption
	Encryption and decryption as linear algebra
	The alternate encryption functionality
	The alternate decryption procedure

	Replayable message posting
	Proof of [thm:rmp]Theorem 2
	Extensions
	Conclusion

